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Abstract. The value at risk (VaR) and the conditional value at risk (CVaR) are two popular 
risk measures to hedge against the uncertainty of data. In this paper, we provide a compu-
tational toolbox for solving high-dimensional sparse linear regression problems under 
either VaR or CVaR measures, the former being nonconvex and the latter convex. Unlike 
the empirical risk (neutral) minimization models in which the overall losses are decompos-
able across data, the aforementioned risk-sensitive models have nonseparable objective 
functions so that typical first order algorithms are not easy to scale. We address this scaling 
issue by adopting a semismooth Newton-based proximal augmented Lagrangian method 
of the convex CVaR linear regression problem. The matrix structures of the Newton sys-
tems are carefully explored to reduce the computational cost per iteration. The method is 
further embedded in a majorization–minimization algorithm as a subroutine to tackle the 
nonconvex VaR-based regression problem. We also discuss an adaptive sieving strategy to 
iteratively guess and adjust the effective problem dimension, which is particularly useful 
when a solution path associated with a sequence of tuning parameters is needed. Extensive 
numerical experiments on both synthetic and real data demonstrate the effectiveness of 
our proposed methods. In particular, they are about 53 times faster than the commercial 
package Gurobi for the CVaR-based sparse linear regression with 4,265,669 features and 
16,087 observations.
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Supplemental Material: The software that supports the findings of this study is available within the paper 
and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023. 
1282) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/ 
2022.0012) at (http://dx.doi.org/10.5281/zenodo.7483279). 
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1. Introduction
In statistical learning, the empirical risk minimization that minimizes the average losses over the training data set is 
a risk-neutral way to learn a statistical model. However, in some situations, decision makers may be concerned 
more about the losses over the left tail to exclude outliers or the right tail to avoid overfitting. Adopting the termi-
nology in risk management, we call this procedure risk-sensitive statistical learning.

Let A be an n × d matrix with each row Ai representing the ith observation of d-dimensional input features and b 
be an n-dimensional vector with each bi representing the ith output response. The following optimization model 
can be used to estimate the linear relationship between the input–output pairs:

minimize
x∈Rd

R[(ℓ(bi � Aix))i∈[n]] + λ p(x), (1) 

where ℓ : R→ R+ is a nonnegative univariate function that measures the individual discrepancy between the true 
output bi and the model’s predicted output Aix, the function p : Rd→ R parameterized by a positive scalar λ�is a 
regularizer that forces a prescribed structure on the solution x such as sparsity, and R : Rn→ R is a risk measure 
that represents one’s risk attitude toward training the model. We use the notation (zi)i∈[n] to represent the n-dimen-
sional vector (z1,: : : , zn)

⊤ when each zi is a scalar. If the decision maker is risk-neutral, the decision maker may sim-
ply take the expectation over the empirical probability distribution of the observed data {Ai,bi}i�1,: : : ,n as the 
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function R such that Problem (1) reduces to the usual regularized empirical risk minimization problem

minimize
x∈Rd

1
n
Xn

i�1
ℓ(bi �Aix) +λp(x): (2) 

There is extensive literature on first and second order methods to solve various combinations of the error function ℓ�
and the regularizer p. We refer interested readers to the monograph by Hastie et al. (2015) for a comprehensive 
review of the algorithms and statistical properties for Problem (2).

Different from the risk-neutral approach, the risk-sensitive learning model takes an asymmetric view of the indi-
vidual losses {ℓ(bi�Aix)}i�1,: : : ,n distributed on two tails. In this paper, we are interested in two risk measures: the 
value at risk (VaR) and the conditional value at risk (CVaR). Suppose that one observes n realizations of a nonnega-
tive random variable Z, denoted as z1, : : : , zn, each with probability 1=n. Assume further that k :� (1� α)n is a posi-
tive integer. Then, the VaR (also called the quantile) of Z with respect to its empirical distribution at the confidence 
level α�is defined as

VaRα(Z) :� argmin
c∈R

1
n
Xn

i�1
1{zi≤c} ≥ α

( )

� z[k+1]; (3) 

the CVaR (also called the superquantile) of Z with respect to its empirical distribution at the confidence level α�is 
given by (c.f. Rockafellar and Uryasev 2000)

CVaRα(Z) :�minimum
c∈R

c+ 1
(1� α)n

Xn

i�1
max(zi � c, 0)

( )

�
1
k ‖z‖(k):

(4) 

In these two formulations, 1{zi≤c} is the indicator function of {zi ≤ c} that takes the value one if zi ≤ c and zero other-
wise, z[1] ≥ z[2] ≥⋯≥ z[n] ≥ 0 are the components of the nonnegative vector z arranged in the nonincreasing order, 
and ‖z‖(k) �

Pk
i�1 z [ i ] is its Ky–Fan k-norm (Fan 1951, Horn and Johnson 2013). Adopting one of these two risk mea-

sures as R in (1) and taking p(x) � ‖x‖1, we may obtain the following two optimization problems:

VaR-based sparse linear regression : minimize
x∈Rd

[(ℓ(bi �Aix))i∈[n]][k+1] +λ‖x‖1; (5) 

CVaR-based sparse linear regression : minimize
x∈Rd

1
k
‖(ℓ(bi �Aix))i∈[n]‖(k) +λ‖x‖1: (6) 

The ℓ1 penalty terms here are used to enforce sparsity of the solutions to identify important features. Different from 
Problem (2), these two problems concentrate on the right tail of the losses by either minimizing merely the (k+ 1)th 
largest one or the average over the top k largest ones. In fact, one may consider a more general truncated CVaR- 
based model

minimize
x∈Rd

1
k1� k2

��
�
�

�
�
�(ℓ(bi�Aix))i∈[n]

�
�
�

�
�
�
(k1)
�

�
�
�

�
�
�(ℓ(bi�Aix))i∈[n]

�
�
�

�
�
�
(k2)

�
+λ‖x‖1 (7) 

for some 0 ≤ k2 < k1 ≤ n, where the averaged losses from the k1th largest to the (k2 + 1)th largest are taken into 
account. Usually, the exclusion of the bottom (n� k1)’s losses is because the decision maker is risk-averse so that the 
decision maker wants to focus only on the bad scenarios with large losses, whereas the top k2’s losses are excluded 
because they are treated as outliers. Obviously both Problems (5) and (6) are special cases of (7) with proper choices 
of k1 and k2. When k1 � n and k2 ≥ 1, Problem (7) is risk-seeking because it minimizes the average over the bottom 
(n� k2)’s smallest losses.

Risk-sensitive learning has attracted attention from various communities. The popular (sparse) least trimmed 
squares estimation in statistics (Rousseeuw 1984, Wang et al. 2007, Alfons et al. 2013) is a special instance of (7), in 
which only the k smallest squared residuals are considered to exclude outliers in the data. In operations research, 
the CVaR-based learning problem (6) is closely connected to the (distributionally) robust optimization. In particu-
lar, if ℓ�is the absolute value function, then Problem (6) is equivalent to the robust linear regression problem whose 
ambiguity set is constructed by the k-norm ball (Xu et al. 2010). In machine learning, Problem (7) covers the average 
top k aggregate loss model (Lyu et al. 2020) and is closely related to the hard example mining approach to train a 
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deep neural network (Bengio et al. 2009, Shrivastava et al. 2016) in which larger weights are assigned to the right 
tail of the losses. Although risk-sensitive models show promising numerical results in many applications, a highly 
stable, efficient, and scalable numerical solver is not available to date, and this hinders the popularity of the models 
to some extent.

Our first goal in this paper is to design an efficient method to solve the convex problem (6) when d is huge (say, 
millions) and n is large (say, thousands). Compared with the empirical risk minimization problem (2), the difficulty 
of solving Problem (6) mainly comes from two sources: One is the nonsmoothness of the CVaR function (even if ℓ�is 
smooth); this makes the overall objective function the sum of two nonsmooth parts, which precludes the proximal 
gradient type methods to solve it. The other is the nonseparability of the CVaR-based loss across data so that one 
cannot easily obtain an unbiased (sub)gradient using a subset of the data to reduce the computational cost via sam-
pling. The recent paper by Levy et al. (2020) tries to address the latter issue by adopting the biased sampling or the 
nearly unbiased multilevel Monte Carlo gradient estimator to approximate the subgradient of the CVaR function, 
in which the loss measurement ℓ�is assumed to be continuously differentiable. Their proposed approaches inherit 
both advantages and disadvantages of the stochastic first order–type methods: that one trades the stability and effi-
ciency for the scalability. When ℓ�is the square or the absolute value function, a different way to solve (6) is to refor-
mulate it to a standard quadratic program (QP) or linear program (LP) so that one can directly solve them by 
calling off-the-shelf QP or LP solvers. In fact, this is one of the approaches adopted by the commercial package Port-
folio Safeguard,1 which relies on the Gurobi to solve the reformulated problems. Although Portfolio Safeguard 
works well for small-to-medium-sized instances, it cannot handle large instances very efficiently, especially when 
the ℓ1-regularizer appears in the objective function.

Keeping both the stability and scalability in mind, we develop a semismooth Newton-based proximal aug-
mented Lagrangian method to solve the dual formulation of Problem (6). The main motivation for us to consider 
this approach is to take advantage of the potential solution sparsity (which, in particular, holds if d≫ n) to reduce 
the effective dimension of the Newton system. We show that, for each step of the semismooth Newton method, the 
computational cost to invert the (generalized) Hessian matrix is determined by the cardinality of the support of the 
previous iterates, which ultimately equals the number of nonzero entries of the solution. The latter value is expected 
to be much smaller than the true variable dimension d under a reasonable choice of the penalty parameter λ, mak-
ing our approach scalable in terms of d. We further modify the aforementioned approach so that it can be used as a 
subroutine to solve the nonconvex Problems (5) and (7), in which the majorization–minimization (MM) algorithm 
is adopted as the outer loop driver.

Our second contribution of this paper is an iterative screening method to guess and adjust the irrelevant features 
before the start of the aforementioned optimization process, which is particularly useful when a solution path asso-
ciated with a sequence of λ’s is needed. The existing safe screening methods (El Ghaoui et al. 2012, Wang et al. 2014, 
Ndiaye et al. 2015, Shibagaki et al. 2016) and heuristic screening methods (Fan and Lv 2008, Tibshirani et al. 2012, 
Lin et al. 2020) produce (nearly) valid regions to eliminate unnecessary features based on dual feasible solutions. 
These methods can be overly conservative and retain an unnecessarily large proportion of variables for the problem 
at the current grid point, especially when the grid is coarse. In contrast, our proposed approach is more aggressive 
by forcing all entries outside of the support of a given point (usually the solution at the previous grid point) to be 
zero in the first step. We then adjust the effective space of the model based on the Karush–Kuhn–Tucker (KKT) con-
ditions of the current problem and solve the newly generated restricted problem repeatedly until all KKT condi-
tions are satisfied. Our numerical results show that the average reduced subproblem sizes nearly match the actual 
number of nonzeros in the optimal solutions.

It is worth mentioning that, although we focus on the linear regression problem in the present paper, the pro-
posed computational framework to deal with the nonseparable risk measures can be easily generalized to other 
large-scale risk-management problems arising from operations research and financial engineering.

The rest of the paper is organized as follows. In Section 2, we present some background on the proximal mapping 
and semismooth functions. Section 3 is devoted to the computational framework of the convex CVaR-based linear 
regression problem (6). We first introduce the proximal augmented Lagrangian method applied to the dual formu-
lation. Subsequently, an efficient and scalable semismooth Newton method is discussed to solve the augmented 
Lagrangian subproblem, and we show how to take advantage of the potential solution sparsity to efficiently solve 
the linear Newton equation. In Section 4, we present an adaptive sieving strategy as a preprocess to guess and 
adjust the support of the primal solution iteratively, which is, in particular, useful to efficiently compute a solution 
path of the CVaR-based learning problem (6) for a fine grid of λ’s. Section 5 is about a majorization–minimization 
algorithm to solve the nonconvex problem (7), in which the subproblems are solved based on a similar algorithm in 
Section 3. Extensive numerical experiments on synthetic and real data are presented in Section 6, and they demon-
strate the effectiveness of our proposed methods.
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2. Preliminaries
To proceed, we first list notations used in the later discussion. We write Em×n as the m × n matrix of all ones, en(�

En×1) as the n-dimensional vector of all ones, 0m×n as the m × n matrix of all zeros, and In as the n × n identity matrix. 
For any given positive integer n, denote [n] :� {1, 2, : : : , n}. For any x ∈ Rm, we write Diag(x) as the m × m diagonal 
matrix whose ith diagonal entry is xi for i � 1, 2, : : : , m. For any given collection of square matrices {Aℓ ∈ Raℓ×aℓ}rℓ�1, 
the notation Diag(A1, A2, : : : , Ar) represents the block diagonal matrix whose ℓth diagonal block is Aℓ. Generalizing 
the Ky–Fan k-norm of a nonnegative vector in Section 1, we use the same notation to define the k-norm of any vector 
z ∈ Rn as ‖z‖(k) :�

Pk
i�1 |z |

↓

[i], where w↓ is the vector of entries of w that are arranged in the nonincreasing order 
w↓
[1] ≥⋯≥ w↓

[n] for any w ∈ Rn.
Let f : Rn→ (�∞, +∞] be a given closed proper convex function. The Moreau envelope of f at any x ∈ Rn is 

defined as the value function ef (x) :�minimumy∈Rn{f (y) + 1=2‖y� x‖2}. The single-valued optimal solution map-
ping of this problem, which is usually called the proximal point mapping of f, is denoted as Proxf . It is known that 
the Moreau envelop of any proper closed convex function is continuously differentiable with the gradient

∇ef (x) � x�Proxf (x), x ∈ Rn: (8) 

Detailed properties of the Moreau envelope and the proximal mapping can be found in Rockafellar and Wets (1998, 
chapter 1.G). In particular, the Moreau identity x � Proxf (x) + Proxf ∗ (x) plays an important role in our algorithmic 
development, where f ∗(y) :� supx∈Rn{〈y, x〉� f (x)} denotes the conjugate function of f. It is known that (Bhatia 1997, 
exercises IV.1.18) the dual norm of the vector k-norm is given by

‖x‖(k)∗ �max ‖x‖∞ , 1
k
‖x‖1

� �

, x ∈ Rn:

Hence, for any r > 0, 

Prox r‖·‖(k) (x) � x� ProxδBr
(k)∗
(x) � x�ΠBr

(k)∗
(x), 

where Br
(k)∗ is the (k)∗-norm ball with the radius r given by Br

(k)∗ :� {x ∈ Rn | ‖x‖∞ ≤ r, ‖x‖1 ≤ kr}. In fact, it is known 
from Helgason et al. (1980) that the projection onto this ball has an explicit expression ΠBr

(k)∗
(x) � sign(x) ◦ y, where 

the nonnegative vector y is defined as

y �
y(λ∗) if

Xn

i�1
yi(λ

∗) � kr

min{ren, |x | } otherwise

8
><

>:

with the vector y(λ∗) given by yi(λ
∗) :�max{min( |xi | �λ

∗, r), 0} for i ∈ [n], and λ∗ ∈ R is a solution of the equation 
Pn

i�1 yi(λ
∗) � kr. The value of λ∗ can be computed by the breakpoint searching algorithm with O(nlogn) complexity 

(Held et al. 1974, Helgason et al. 1980).2 One can also make use of median of breakpoint subsets to further reduce 
the complexity to O(n) (Brucker 1984, Pardalos and Kovoor 1990).

Next, we introduce the concepts of semismoothness and generalized Jacobian. One may find these definitions in 
Facchinei and Pang (2007, chapter 7). Suppose that F : O ⊂ Rn→ Rm is a locally Lipschitz continuous function on an 
open set O. Based on Rademacher’s theorem, F is then (Fréchet) differentiable almost everywhere in O. Let DF :�

{x ∈ Rn |F is differentiable at x} and denote F′(x) as the derivative of F at x ∈DF. Then, the Bouligand subdifferential 
of F at x ∈O is defined as

∂BF(x) :� lim
i→∞

F′(xi)
�
�
�xi ∈DF, xi→ x

� �

:

The Clarke generalized Jacobian of F at x ∈O is the convex hull of ∂BF(x), written as ∂F(x) :� conv{∂BF(x)}: The 
function F is called semismooth at a point x ∈O if F is directionally differentiable at x and for any h→ 0 and 
V ∈ ∂F(x+ h),

F(x+ h)� F(x)�Vh � o(‖h‖):

If o(‖h‖) is replaced by O(‖h‖2) in the preceding equation, then F is called strongly semismooth at x ∈O.
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3. An Algorithm for the CVaR-Based Learning
In this section, we propose a semismooth Newton-based augmented Lagrangian method to solve the convex CVaR-based 
learning problem (6) and discuss how to leverage the solution sparsity to reduce the computation cost so that the proposed 
algorithm is scalable in terms of both the number of samples n and the dimension of the features d.

For notational simplicity, we denote f (z) :� ‖(ℓ(zi))i∈[n]‖(k) and h(x) :� ‖x‖1 for any z ∈ Rn and x ∈ Rd. Then, Prob-
lem (6) can be equivalently written as

minimize
x∈Rd,z∈Rn

{f (z) +λh(x) |Ax� z � b}, (9) 

whose Lagrangian dual problem is given by

maximize
u∈Rn

� {g(u) :� (λh)∗(�A⊤u) + f ∗(u) + 〈u, b〉}: (10) 

Notice that the objective function of Problem (6) is real-valued convex and lower level bounded. We then know 
from Rockafellar and Wets (1998, theorem 1.9) that its optimal value is finite and solution set is nonempty and so is 
that of (9). Because there are only linear constraints in (9), it further follows from Bertsekas et al. (2003, proposition 
6.4.2) that the optimal values of the primal problem (9) and dual problem (10) are the same.

3.1. A Proximal Augmented Lagrangian Method for the Dual Problem
We first derive the proximal augmented Lagrangian function for the (unconstrained) dual problem (10) by the gen-
eral theory in Rockafellar and Wets (1998, definition 11.45 and example 11.57). Define a proper closed convex func-
tion g̃ : Rn × Rd × Rn→ (�∞, +∞] as

g̃(u, j1, j2) :� (λh)∗(�A⊤u+ j1) + f ∗(u+ j2) + 〈u, b〉:

Obviously, g̃(u, 0, 0) � g(u) for any u ∈ Rn, where g is the negative dual objective function in (10). The Lagrangian 
function L : Rn × Rd × Rn→ (�∞, +∞] of (10) is given by

L(u; x, z) :� inf
(j1,j2)∈Rd×Rn

{g̃(u, j1, j2)� 〈x, j1〉� 〈z, j2〉}

��λh(x)� f (z)� 〈x, A⊤u〉 + 〈z, u〉 + 〈u, b〉:

Given a positive scalar σ, the augmented Lagrangian function is then given by

Lσ(u; x, z) :� sup
(j1, j2)∈Rd×Rn

L(u; j1, j2)�
1

2σ ‖j1 � x‖2 �
1

2σ ‖j2 � z‖2
� �

�
1
σ

1
2 ‖x� σA

⊤u‖2 � eσλh(x� σA⊤u)
� �

�
1

2σ ‖x‖
2

+
1
σ

1
2 ‖z + σu‖

2
� eσf (z + σu)

� �

�
1

2σ ‖z‖
2
+ 〈u, b〉:

Based on the augmented Lagrangian function, we present the proximal augmented Lagrangian method to solve 
the dual problem (10) in Algorithm 1.

Algorithm 1 (A Proximal Augmented Lagrangian Method for the Dual Problem (10))
Initialization: Given are a positive nondecreasing sequence {σt}t≥0 and a positive nonincreasing sequence 
{τt}t≥0. Choose (u0, x0, z0) ∈ Rn × Rd × Rn. Set t � 0. Repeat the following steps until a proper stopping criterion 
is satisfied by the sequence {(ut, xt, zt)}. 
1: Step 1. Compute an approximate solution

ut+1 ≈ arg min
u∈Rn

φt(u) :� Lσt(u; xt, zt) +
τt

2σt
‖u� ut‖2

� �

: (11) 

2: Step 2. Update the multipliers

(xt+1, zt+1) � Proxσtλh(xt � σtA⊤ut+1), Proxσtf (z
t + σtut+1)

� �
:
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The global convergence and the local superlinear convergence rate of the proximal augmented Lagrangian method 
are well-studied in the existing literature, see, for example, the seminal work of Rockafellar (1976). For complete-
ness, we briefly discuss proper stopping criteria of the subproblem computation in (11) such that the overall algo-
rithm (a) converges and (b) in an asymptotically superlinear rate.

Following the general framework in Rockafellar (1976), we consider the maximal monotone operator T induced 
by the subgradient of the convex–concave Lagrangian function

T (u, x, z) :� {(u′, x′, z′) | (u′, � x′, � z′) ∈ ∂L(u; x, z)}

� {(u′, x′, z′) |u′ � z�Ax+ b, x′ ∈ A⊤u+ ∂(λh)(x), z′ ∈�u+ ∂f (z)}:

Denote a block diagonal matrix

Mt :� Diag(τt In, Id, In) ≻ 0: (12) 

We consider the following stopping criteria adopted in Li et al. (2020) that are implementable conditions based on 
the general principles in Rockafellar (1976):

‖∇φt(u
t+1)‖ ≤

min( ffiffiffiffiτt
√ , 1)
σt

εt, (A) 

‖∇φt(u
t+1)‖ ≤

δt min( ffiffiffiffiτt
√ , 1)
σt

‖(ut+1, xt+1,zt+1)� (ut, xt, zt)‖Mt , (B) 

where {εt}t≥0 and {δt}t≥0 are positive summable sequences with each δt < 1. In the original work of Rockafellar (1976), 
the local convergence rate is established under the Lipschitz continuity of T . This condition is not easily satisfied by 
(9) because it, in particular, requires the uniqueness of the primal–dual solution pair. There are extensive works to 
relax this Lipschitz continuity assumption in the convergence rate analysis of the augmented Lagrangian method. We 
refer readers to the review paper by Cui et al. (2021) and references therein for recent development on this topic. We 
state the global convergence and the local asymptotically superlinear convergence rate of Algorithm 1 based on the 
results in Li et al. (2020). To proceed, we denote SKKT as the set of all KKT pairs (u, x, z) satisfying 0 ∈ T (u, x, z) and 
write distM(x, S) as the distance of a point x to a closed convex set S in the M-norm for some positive definite matrix 

M, that is, distM(x, S) :� infy∈S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x� y)⊤M(x� y)
q

. The subscript M is omitted if it is the identity matrix.

Theorem 1. Suppose that τt ↓ τ∞ > 0 and σt ↑ σ∞ ≤∞. (a) Let {(ut, xt, zt)} be the sequence generated by Algorithm 1
under the stopping criterion (A). Then, {(ut, xt, zt)} is bounded, and {ut} and {xt} converge to optimal solutions of the dual 
problem (10) and the primal problem (9), respectively. (b) Let {(ut, xt, zt)} be the sequence generated by Algorithm 1 under 
both stopping criteria (A) and (B). Assume in addition that, for any r > 0, there exists κ > 0 such that

dist ((u, x, z), SKKT) ≤ κ dist (0,T (u, x, z))

for all (u, x, z) satisfying dist ((u, x, z), SKKT)) ≤ r. Then, for any t ≥ 0,

distMt+1 ((ut+1, xt+1, zt+1), SKKT) ≤ µt distMt((ut, xt, zt), SKKT), 

where Mt is given in (12) and

µt :�
1

1� δt
δt +
(1+ δt)κγtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

t + κ
2γ2

t
p

 !

→ µ
∞

:�
κγ∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
∞ + κ

2γ2
∞

p < 1 as t→∞

with γt :�max(τt, 1) and γ∞ �max(τ∞, 1).

The rate is said to be asymptotically superlinear because µ∞ � 0 if σ∞ �∞. In practice, one may take a moderate 
value of µ to get a decent linear convergence rate. The additional assumption in part (b) is a local error bound con-
dition of the KKT solution mapping that is weaker than the so-called Lipschitz continuity of the set valued map-
ping T �1 employed in the original work of Rockafellar (1976). Notice that the k-norm function (including the ℓ1 
norm as a special case) is piecewise linear. From Sun (1986, proposition 2.24) and the fact that the sum of two poly-
hedral multifunctions is also polyhedral, we know that T is a polyhedral multifunction if the loss function ℓ�is con-
vex piecewise linear quadratic. Therefore, for both the quadratic loss or the absolute value loss in Problem (9), the 
associated operator T satisfies the assumed condition in part (b); see Li et al. (2020, lemma 2.4 and remark 1) for a 
formal proof.
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3.2. A Semismooth Newton Algorithm for Subproblem (11)
Although the proximal augmented Lagrangian method enjoys the superlinear convergence rate for the ℓ1-regularized 
CVaR-based minimization problem, one has to solve a nontrivial convex subproblem (11) for each iteration. In this 
section, we discuss how to design a semismooth Newton method for solving this subproblem efficiently.

Notice that φt(·) defined in (11) is a strongly convex and smooth function. It follows from (8) that the unique opti-
mal solution of φt(·) can be computed via the following nonlinear equation:

∇φt(u) ��AProxσtλh(xt� σtA⊤u) +Proxσtf (z
t + σtu) + b+

τt

σt
(u� ut) � 0: (13) 

Although the function ∇φt(·) is not differentiable because of the nonsmoothness of the proximal mappings Proxσtλh 
and Proxσtf , it is actually piecewise affine if f is piecewise linear quadratic (Rockafellar and Wets 1998, proposition 
12.30). Because every piecewise affine mapping is strongly semismooth (Facchinei and Pang 2007, proposition 
7.4.4), we know that the gradient mapping ∇φt(·) is strongly semismooth, and the semismooth Newton method is, 
thus, applicable here.

Consider the following set-valued function ∂̂
2
φt : Rn ⇉ Rn×n:

∂̂
2
φt(u) :� σtA∂Proxσtλh(xt� σtA⊤u)A⊤ + σt∂Proxσt f (z

t + σtu) +
τt

σt
In, u ∈ Rn, 

where ∂Proxσtλh(·) and ∂Proxσtf (·) are the Clarke generalized Jacobian of Proxσtλh(·) and Proxσtf (·), respectively. It 
follows from Hiriart-Urruty et al. (1984, theorem 2.2) that

∂̂
2
φt(u)j � ∂

2
φt(u)j, ∀j ∈ Rn, 

where ∂2
φt(u) denotes the generalized Hessian of φt at u, that is, the Clarke generalized Jacobian of ∇φt at u. The 

framework of the semismooth Newton method for solving (11) is demonstrated in Algorithm 2.

Algorithm 2 (A Semismooth Newton Method for Subproblem (11))
Initialization: Choose positive scalars µ ∈ (0, 1=2), τ ∈ (0, 1], γ,δ ∈ (0, 1) and an initial point ut,0 ∈ Rn. Set i � 0. 
Execute the following steps until the stopping criteria (A) and/or (B) in the augmented Lagrangian method at 
ut,i+1 are satisfied. 
1: Step 1 (finding the semismooth Newton direction). Choose V i ∈ ∂Proxσtλh(xt� σtA⊤ut,i) and W i ∈ ∂Proxσtf (zt+

σtut,i). Let U i :� σtAV iA⊤ + σtW i + τt σ�1
t In. Apply the direct method or the conjugate gradient method to find 

an approximate solution dir i ∈ Rn of the following linear equation

U idir i ��∇φt(u
t,i) (14) 

such that ‖U i dir i +∇φt(ut,i)‖ ≤min(γ, ‖∇φt(ut,i)‖1+τ).
2: Step 2 (line search). Set αi � δ

mi , where mi is the first nonnegative integer m for which

φt(u
t,i + δmdir i) ≤ φt(u

t,i) +µδm〈∇φt(u
t,i), dir i〉:

3: Step 3. Set ut,i+1 � ut,i + αidir i and i← i+ 1.

The global convergence and the convergence rate of the semismooth Newton method are extensively studied in the 
existing literature; see, for example, Zhao et al. (2010, proposition 3.3 and theorem 3.4) and Li et al. (2018, theorem 3). 
For completeness, we repeat the results as follows.

Theorem 2. Let {ut,i}i≥0 be the sequence generated by Algorithm 2. Then, {ut,i} converges to the unique optimal solution 
ut+1 of Subproblem (11). In addition,

‖ut,i+1� ut+1‖ �O(‖ut,i� ut+1‖1+τ), 

for all i sufficiently large, where τ ∈ (0, 1] is the constant used in Algorithm 2.

3.3. Solving the Linear Equation (14)
The main computational and storage burdens of the semismooth Newton method discussed in the preceding section 
are to solve the n × n dimensional linear Equation (14). Consider the ith iterate of the semismooth Newton method. 
For brevity, we write u̇ :� ut,i ∈ Rn, ω1(u̇) :� xt� σtA⊤u̇ ∈ Rd, ω2(u̇) :� zt + σtu̇ ∈ Rn and parameters σ :� σt, τ :� τt. 
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Then, the linear system (14) takes the following form:

σAVA⊤ + σW + τ
σ

In

� �
dir � rhs, (15) 

where V ∈ ∂Proxσλ‖·‖1(ω1(u̇)), W ∈ ∂Proxσf (ω2(u̇)) and rhs :��∇φt(u̇).
In this part, we take ℓ(t) � |t | as the loss function in (9) as an example to show how to explore the structures of 

matrices V and W so that the linear Equation (15) can be solved efficiently. Notice that, for this case, the function f :

Rn→ R reduces to the Ky–Fan k-norm for a vector in Rn (not necessarily nonnegative).

3.3.1. The Term AVA⊤. We take the following special element V from the generalized Jacobian set ∂Proxσλ‖·‖1(ω1(u̇)):

V �Diag(v) with vj �
0 if | (ω1(u̇))j | ≤ σλ
1 otherwise,

j � 1, 2, : : : , d:
�

Denote the active index set J :� {j ∈ [d] |vj � 1} and its cardinality s � |J | . We have 

AVA⊤ � (AV)(AV)⊤ � AJ A⊤J ∈ R
n×n, 

where AJ ∈ Rn×s represents the submatrix of A obtained by removing all the columns of A not in J . Therefore, the 
cost of computing AVA⊤ is only O(n2s), which is much smaller than the naive matrix multiplication O(n2d) when 
s≪ d.

3.3.2. The Matrix W. Let P(ω2(u̇)) � |ω2(u̇) | ↓ with a proper signed permutation matrix P ∈ Rn×n and M ∈ ∂ΠBσ
(k)∗

(P(ω2(u̇))). It follows from the general formula for the generalized Jacobian of ∂ΠBσ
(k)∗

stated in Online Appendix A 
and the Moreau identity that

W � In�P⊤MP � P⊤(In�M)P ∈ ∂Proxσ‖·‖(k) (ω2(u̇)):

3.3.3. Solving Equation (15). With D :� σW + τσ�1In, we can rewrite Equation (15) in the following form

(σAJ A⊤J +D)dir � rhs: (16) 

In our implementation, this equation is solved via different methods based on the values of n and s: (a) If n and s are 
both very large, we solve the equation by the conjugate gradient method.3 (b) If s ≥ θ1n for some θ1 ∈ (0, 1], one 
may solve the equation via the Cholesky factorization. (c) If n is large but s is very small (which could especially 
happen when the iterate is close to a true sparse solution), one may solve (16) efficiently in the following way. Based 
on the Sherman–Morrison–Woodbury formula, the solution dir of (16) can be computed as

dir �D�1rhs�D�1AJ (σ
�1Is +A⊤J D�1AJ )

�1A⊤J (D
�1rhs)

�D�1rhs�D�1AJ T�1A⊤J (D
�1rhs), (17) 

where T :� σ�1Is +A⊤J D�1AJ ∈ Rs×s. Notice that the main computational cost of Equation (17) is to calculate D�1 and 
T�1. In the following, we show in detail that utilizing the special structure of W and the Sherman–Morrison–Woodbury 
formula, we can compute the inverse of D at a low computational cost. For simplicity, we denote u :� P(ω2(u̇)), 
u �ΠBσ

(k)∗
(u), δ :� σ+ τσ�1, - :� (τ+ σ2)

�1σ2 and r :� σ. In addition, we write

α :� {i ∈ [n] | ui � r}, β :� {i ∈ [n] | 0 < ui < r}, γ :� [n] \ (α ∪ β):

Case 1: u � u. In this case, M � In so that W � P⊤(In �M)P � 0n×n and D � τσ�1In, which yields that D�1 � στ�1In. 
Thus, the computational cost of A⊤J D�1AJ is O(s2n).

Case 2: u ≠ u, ‖u‖∞ � r, ‖u‖1 < kr. We have W � P⊤(In�M)P � P⊤αPα, where Pα ∈ R |α | ×n represents the submatrix 
of P obtained by removing all the rows of P not in α. Thus, D � σP⊤αPα + τσ�1In and

D�1 �

1
δ

In +
σ2

τ
P⊤β∪γPβ∪γ

� �

if |α | ≥ θ2 |β ∪ γ |

σ

τ
(In�-P⊤αPα) if |α | < θ2 |β ∪ γ | ,

8
>><

>>:

which implies that the cost of A⊤J D�1AJ is O(s2(n+ |β ∪ γ | )) when |α | ≥ θ2 |β ∪ γ | and O(s2(n+ |α | )) when |α | <
θ2 |β ∪ γ | with a constant θ2 ∈ (0, 1], respectively.
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Case 3: u ≠ u, ‖u‖∞ < r, ‖u‖1 � kr. Then,

W � P⊤Diag 1
|α ∪ β |

E |α∪β | × |α∪β | , Iγ
� �

P � 1
|α ∪ β |

e⊤|α∪β |Pα∪β
� �⊤

e⊤|α∪β |Pα∪β
� �

+P⊤γPγ:

Hence, 

D � σ 1
|α ∪ β |

e⊤|α∪β |Pα∪β
� �⊤

e⊤|α∪β |Pα∪β
� �

+ P⊤γPγ
� �

+ τσ�1In:

Subcase 3.1: |α ∪ β | ≤ θ2 |γ | . One may obtain that

D�1 � δ�1[In�V⊤3 (δσ
�1Σ�1

3 +V3V⊤3 )
�1V3], 

where V⊤3 � ((e⊤|α∪β |Pα∪β)
⊤, P⊤α∪β) ∈ R

n×(1+ |α∪β | ) and Σ�1
3 �Diag( |α ∪ β | , � I |α∪β | ) ∈ R(1+ |α∪β | )×(1+ |α∪β | ). In particular, 

the part (δσ�1Σ�1
3 +V3V⊤3 )

�1V3 can be computed explicitly. Indeed, because Pα∪βP⊤α∪β � I |α∪β | and δ � σ+ τσ�1, one 
may obtain that

δ

σ
Σ�1

3 +V3V⊤3 �
2+ τ
σ2

� �
|α ∪ β | e⊤|α∪β |

e |α∪β | �
τ

σ2 I |α∪β |

0

B
@

1

C
A, 

which is a symmetric quasidefinite matrix. Then, by the structure of V3, one has

(δσ�1Σ�1
3 +V3V⊤3 )

�1V3 �

σ2

(τ+ σ2) |α ∪ β |
e⊤|α∪β |Pα∪β

σ2

τ

σ2

(τ+ σ2) |α ∪ β |
e |α∪β | e⊤|α∪β |Pα∪β�Pα∪β

� �

0

B
B
B
@

1

C
C
C
A
:

The cost of A⊤J D�1AJ is O(s2(n+ |α ∪ β | + 1)).

Subcase 3.2: |α ∪ β | > θ2 |γ | . We have that

D�1 �
σ

τ
In �
σ-

τ

1
|α ∪ β |

e⊤|α∪β |Pα∪β
� �⊤

e⊤|α∪β |Pα∪β
� �

+P⊤γPγ
� �

:

The cost of A⊤J D�1AJ is O(s2(n+ |γ | + 1)).

Case 4: u ≠ u, ‖u‖∞ � r, ‖u‖1 � kr, β≠ ∅. It follows that

W � P⊤Diag I |α | ,
1
|β |

E |β | × |β | , I |γ |
� �

P � P⊤αPα +
1
|β |

e⊤|β |Pβ
� �⊤

e⊤|β |Pβ
� �

+P⊤γPγ:

Therefore, 

D � σ[P⊤αPα + |β |�1(e⊤|β |Pβ)
⊤
(e⊤|β |Pβ) + P⊤γPγ] + τσ�1In:

Subcase 4.1: |β | < θ2( |α | + |γ | ). One obtains that

D�1 � δ�1[In�V⊤4 (δσ
�1Σ�1

4 +V4V⊤4 )
�1V4], 

where V⊤4 :� (P⊤β , (e⊤|β |Pβ)
⊤
) ∈ Rn×( |β | +1) and Σ�1

4 :�Diag(�I |β | , |β | ) ∈ R(1+ |β | )×(1+ |β | ). Similarly as in subcase 3.1, by 
making use of the structure of Σ�1

4 and V4, one also gets the explicit expression (δσ�1Σ�1
4 +V4V⊤4 )

�1V4 as follows:

δ

σ
Σ�1

4 +V4V⊤4
� ��1

V4 �

σ2

τ

σ2

(τ+ σ2) |β |
e |β | e⊤|β |Pβ�Pβ

� �

σ2

(τ+ σ2) |β |
e⊤|β |Pβ

0

B
B
B
@

1

C
C
C
A
:

Using this formula, the computational cost of A⊤J D�1AJ is O(s2(n+ |β | + 1)).
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Subcase 4.2: |β | ≥ θ2( |α | + |γ | ). We can obtain that

D�1 �
σ

τ
In�
σ-

τ
P⊤αPα +

1
|β |

e⊤|β |Pβ
� �⊤

e⊤|β |Pβ
� �

+P⊤γPγ
� �

:

The computational cost of A⊤J D�1AJ is then O(s2(n+ |α | + |γ | + 1)).

Case 5. u ≠ u, ‖u‖∞ � r, ‖u‖1 � kr, β � ∅. Then, M � 0n×n, that is, W � In. Hence, D � δIn, which implies D�1 � δ�1In, 
and the cost of A⊤J D�1AJ reduces to O(s2n).

These formulas indicate that, in computing the matrix multiplications A⊤J D�1AJ as part of T, we only need 
O(s2n) computational costs that are linear in n instead of O(n2s+ s2n) (recall that s < θ1n here). The inverse of s × s 
matrix T�1 can be then computed via the Cholesky factorization at O(s3) cost. Finally, we list the main computa-
tional cost of the semismooth Newton method for one iteration in Table 1.

4. Fast Computation of a Solution Path
The previous section focuses on solving (6) for a fixed value of λ > 0. One may also need to find a solution path of 
{x(λi)}i�1,: : : ,N for a given sequence of grid points λ1 ≥ λ2 ≥⋯≥ λN ≥ 0 in order to select the best hyperparameter λ�
via the cross-validation. In this section, we present an adaptive sieving (AS) strategy to effectively reduce problem 
dimension in an iterative way so that a solution path can be quickly generated.

The AS strategy can be viewed as a special warm-start scheme that aggressively guesses and adjusts the support 
of x(λi) at a new grid point λi based on the solution x(λi�1) computed at the previous grid point. Specifically, we 
start the ith problem in a restricted space by setting all components not in the support of x(λi�1) as zero, which usu-
ally has a much smaller size than those given by the screening rules in El Ghaoui et al. (2012), Shibagaki et al. (2016), 
Ndiaye et al. (2015), and Wang et al. (2014). After solving the restricted problem by Algorithm 1, we update the sup-
port guided by the KKT conditions of the computed primal–dual pair and repeat this process until all KKT condi-
tions of the original problem are satisfied.

The approach is motivated by a recent paper (Lin et al. 2020) on the computation of an exclusive Lasso solution 
path, in which the overall objective is the sum of a smooth function and a nonsmooth one. Because the CVaR func-
tion is not smooth, the method proposed in Lin et al. (2020) cannot be directly applied here. Our main contribution 
is to show that it suffices to consider only partial KKT conditions to guess and adjust the active features when Algo-
rithm 1 is used as the subroutine to solve each reduced problem. The support is selected based on the following 
principle, which in fact is a direct consequence of Ndiaye et al. (2021, proposition 1). All proofs in this section are 
deferred to Online Appendix B.

Lemma 1. Let (x̂, ẑ, û) be a KKT pair of Problem (9). Given j ∈ [d], if x∗ satisfies �(A⊤û)j ∈ int (∂(λh)(x∗))j, then x∗j � x̂j.

Let (x̂, ẑ, û) be a KKT pair of Problem (9) with λ � λi. The preceding lemma indicates that only those elements in 
J :� {j ∈ [d] | � (A⊤û)j ∉ int(∂(λh)(x∗))j} can be active, where x∗ is a solution of the restricted problem in the space of 
the support. Because the dual solution û is unknown, we take the expansion of the dual solution from the reduced 

Table 1. The Main Computational Costs of Algorithm 2 in Each Iteration Under Solving Linear Equation (14) by the Direct 
Method

Step Main terms Cost Total cost

Step 1 s ≥ θ1n AJ A⊤J O(n2s) O(n2(n+ s))
Cholesky factorization of σAJ A⊤J + σW + τσ�1In O(n3)

s < θ1n A⊤J D�1AJ O(s2n) O(s2(n+ s))
D�1rhs O(n)

Cholesky factorization of T O(s3)

Step 2 ∇φt(u̇) A⊤u̇ O(nd) O(n(d+ log n))
Proxσλ‖·‖1 (ω1(u̇)) O(d)

AProxσλ‖·‖1 (ω1(u̇)) O(nd)
Proxσ‖·‖(k) (ω2(u̇)) O(n logn )

φt(u̇) A⊤u̇ O(nd) O(n(d+ log n))
1
2 ‖ω1(u̇)‖2 � eσλ‖·‖1 (ω1(u̇)) �

1
2 ‖Proxσλ‖·‖1 (ω1(u̇))‖2 O(d)

1
2 ‖ω2(u̇)‖2 � eσ‖·‖(k) (ω2(u̇)) �

1
2 ‖Proxσ‖·‖(k) (ω2(u̇))‖2 O(n log n)
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problem as its estimate. Denote the proximal residual function

Rλ(x, u) :� x�Proxλh(x�A⊤u): (18) 

We are now ready to present the detail of the AS strategy in Algorithm 3.

Algorithm 3 (Compute a Solution Path of Problem (9) for {λi}
N
i�1)

Choose an initial point x(λ0) ∈ Rd as the solution of (9) for λ � λ0, a sequence of grid points λ0 > λ1 >⋯> λN 
> 0, and a tolerance ε ≥ 0. Compute the initial nonactive set I ∗(λ0) :� {1 ≤ j ≤ d | xj(λ0) � 0}. Execute the follow-
ing steps for i � 1, 2, : : : , N with the initialization I0(λi) � I ∗(λi�1) and ν�� 0. 
1: Step 1. Find a KKT pair (xν(λi), zν(λi), uν(λi)) of the following problem:

minimize
x∈Rd,z∈Rn

{f (z) +λih(x)� 〈dx, x〉� 〈dz, z〉 |Ax� z� b � dc, xIν(λi) � 0}, (19) 

where dx ∈ Rd, dz ∈ Rn and dc ∈ Rn are error vectors satisfying

max (‖dx‖, ‖dz‖, ‖dc‖) ≤
ε
ffiffiffi
3
√ and (dx)Iν(λi)

� 0: (20) 

Compute Rλi xν(λi), uν(λi)( ) defined in (18). 
2: Step 2. If ‖Rλi xν(λi), uν(λi)( )‖ ≤ ε, stop and set (x∗(λi), u∗(λi)) � (xν(λi), uν(λi)) with I ∗(λi) � Iν(λi). Let i← i+ 1 

(unless i �N already so that the algorithm should be stopped); otherwise, compute the index set

J ν+1(λi) � j ∈ I ν(λi)

�
�
�
�
�
� A⊤uν(λi)
� �

j ∉ λi ∂h(xν(λi))( )j +
ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 |Iν(λi) |

p B∞

 !

j

8
<

:

9
=

;

and set I ν+1(λi) ← Iν(λi) \J
ν+1(λi). Set ν← ν+ 1 and go back to step 1.

Similarly as in Lin et al. (2020, proposition 2), we can establish the following finite convergence of Algorithm 3.

Proposition 1. For each λi, Algorithm 3 terminates after a finite number of iterations with the output (x∗(λi), u∗(λi)) satis-
fying ‖Rλi(x∗(λi), u∗(λi))‖ ≤ ε.

The main computational burden in Algorithm 3 is to solve the constrained problems (19) repeatedly. Denote I c :

� [d] \ I and let AI ∈ Rn× |I | be the submatrix of A consisting of the columns of A indexed by I . In fact, the tuple 
(x, z) together with the corresponding multiplier for the equality constraint can be obtained by approximately solv-
ing the following problem

minimize
x∈R | Ic | ,z∈Rn

{f (z) +λih(x) |AI c x� z� b � 0}: (21) 

Let (x̃, z̃, ũ) be an approximate KKT solution of the problem. Denote

(dx)I c � x̃� xI c , dz � z̃� z, dc � AI c xI c � z� b, 

where xI c :� Proxλih(x̃�A⊤
I c ũ) and z :� Proxf (ũ + z̃). Then, as long as max (‖(dx)I c‖, ‖dz‖, ‖dc‖) ≤ ε=

ffiffiffi
3
√

, we have that 
Conditions (20) are satisfied by the pair (x, z), where x ∈ Rd is obtained by expanding xI c to a d-dimensional vector 
with the rest of the entries being 0.

Notice that we only use partial KKT conditions of Problem (9) as the stopping criterion of the AS strategy. In the 
following theorem, we show that the output tuple (x, z, u) of Algorithm 3 is indeed an approximate KKT solution 
of Problem (9) measured by all KKT conditions of Problem (9) provided that x � Proxλih(x + dx�A⊤u).

Theorem 3. Consider a fixed λi > 0 and a given tolerance ε ≥ 0. Let (x, z, u) be a KKT solution of the reduced Problem (19) 
satisfying Conditions (20) and xI � 0. If x further satisfies that x � Proxλih(x + dx�A⊤u), then (x, z, u) is a KKT solution 
of the original problem:

minimize
x∈Rd,z∈Rn

{f (z) +λih(x)� 〈dx, x〉� 〈dz, z〉 |Ax� z� b � dc} (22) 

with (dx, dz, dc) satisfying Conditions (20).

It is worth mentioning that the condition x � Proxλih(x + dx�A⊤u) in Theorem 3 is mild because we always have 
x ≈ Proxλih(x + dx�A⊤u) as long as the inequalities ‖Rλi(x, u)‖ ≤ ε�and ‖dx‖ ≤ ε=

ffiffiffi
3
√

hold for sufficiently small 
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tolerance ε. Indeed, from the definition of Rλi(x, u) in (18) and the Lipschitz continuity of Proxλih(·), one may get 
that

‖x�Proxλih(x + dx�A⊤u)‖ � ‖Rλi(x, u) + Proxλih(x�A⊤u)�Proxλih(x + dx�A⊤u)‖

≤ ‖Rλi(x, u)‖ + ‖dx‖ ≤ ε+ ε=
ffiffiffi
3
√
:

As a final remark, Problem (21) has the same form as (9) under a subset of measurement AI c , which can be solved 
efficiently via the algorithm discussed in Section 3.

5. Extension to the VaR-Based Learning
Different from the CVaR that is convex in the random variable, the value at risk or, more generally, the truncated 
CVaR with k2 ≠ 0 in (7) are nonconvex risk measures. In this section, we apply an MM algorithm (Ortega and 
Rheinboldt 2000, section 8.3(d)) to solve the nonconvex problem (7), in which each convex subproblem is solved by 
a similar method as in the previous sections.

Consider the following problem:

minimize
x∈Rd

F(x) :� f1(Ax� b)� f2(Ax� b) + λ‖x‖1, (23) 

where f1 : Rn→ (�∞, +∞] and f2 : Rn→ R are two convex functions. When f1 � ‖ • ‖(k1), f2 � ‖ • ‖(k2) and parameters 
n ≥ k1 > k2 > 0, the problem reduces to the truncated CVaR problem in (7) with the absolute value loss. It is easy to 
see that the preceding objective function can be decomposed into the difference of two convex functions f1(Ax�
b) +λ‖x‖1 and f2(Ax� b). Given an initial point x0, the MM algorithm consists of the following iterations:

xν+1 ≈ argmin
x∈Rd

(

F̂(x;ρν, cν, xν, aν) :� f1(Ax� b) +λ‖x‖1� f2(Axν� b)� (aν)⊤(Ax�Axν)

+
ρν
2 ‖x� xν‖2 + cν

2 ‖Ax�Axν‖2
)

, (24) 

where aν ∈ ∂f2(Axν� b) is a subgradient of f2 at Axν� b, and {ρν} and {cν} are two positive convergent sequences 
on R. Let eν+1 be a residual vector of the dual problem of (24) satisfying

uν+1 ∈ argmin
u∈Rn

{φ(u;ρν, cν, xν, aν)� 〈u, eν+1〉}, (25) 

where φ�is the corresponding negative dual objective function given by

φ(u;ρν, cν, xν, aν) :� cν
1
2 ‖c

�1
ν u+ c�1

ν aν +Axν� b‖2� ec�1
ν f1(c

�1
ν u+ c�1

ν aν +Axν� b)
� �

+ ρν
1
2 ‖x

ν � ρ�1
ν A⊤u‖2� eλρ�1

ν ‖·‖1
(xν � ρ�1

ν A⊤u)
� �

+ 〈u, b〉�
ρν
2 ‖x

ν‖
2
�

cν
2 ‖Axν� b‖2� 〈aν, Axν � b〉 + f2(Axν� b):

Then, we can build the convergence of the MM algorithm whose proof is presented in Online Appendix C. Recall 
that, for the difference-of-convex program minimizex {g(x)� h(x)}, where g : Rn→ (�∞, +∞] and h : Rn→ R are 
two convex functions, we say a point x∗ ∈ Rn is a critical point if ∂g(x∗) ∩ ∂h(x∗)≠ ∅; see, for example, Tao and An 
(1997).

Theorem 4. Let {xν} be a sequence generated by the MM algorithm. Assume that {ρν} and {cν} are positive convergent 
sequences with limν→∞ρν > 0, and the inequality

2f1(eν+1) +
cν
2 ‖e

ν+1‖2 ≤
cν
8 ‖A(x

ν+1� xν)‖2 (26) 

holds for any ν ≥ 0, where eν+1 is given in (25). Then, (a) F(xν) ≥ F(xν+1) + (ρν=2)‖xν+1� xν‖2; (b) every cluster point x∞ of 
the sequence {xν} generated by the MM algorithm is a critical point of (23).

The subgradient of the nonseparable k-norm function can be formulated according to Watson (1992), Overton and 
Womersley (1993), and Wu et al. (2014). Notice that this subproblem takes almost the same form as the CVaR-based 
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regression (6) except for the two proximal terms. Similar to the MM framework in Tang et al. (2020), one can easily 
extend the properties and techniques in Algorithms 1 and 2 to efficiently solve such subproblems by the semismooth 
Newton method based on the proximal point algorithm. Details of the derivations are omitted.

6. Numerical Experiments
We have conducted extensive numerical experiments to demonstrate the effectiveness of the risk-sensitive models 
and the efficiency of our proposed algorithms. All the algorithms are implemented in MATLAB on a windows 
workstation (16-core, Intel(R) Core(TM) i7-10700 @ 2.90 GHz, 32 G RAM). The codes are available at the GitHub 
repository (Wu et al. 2022).

Throughout the experiments, we take the loss ℓ�as the absolute value function.

6.1. Implementation Details
For the convex CVaR-based problem (9), we measure the qualities of the computed solutions in the following way:

ηres :� max{ηp, ηd, ηgap}, (27) 

where ηp, ηd and ηgap represent the relative primal infeasibility, the relative dual infeasibility, and the relative dual-
ity gap, respectively:

ηp :�
‖Ax� z� b‖

1+ ‖b‖ , ηd :�max
‖A⊤u�ΠBλ∞

(A⊤u)‖
1+ ‖A⊤u‖

,
‖u�ΠB1

(k)∗
(u)‖

1+ ‖u‖

( )

,

ηgap :�
|‖Ax� b‖(k) +λ‖x‖1 + 〈u, b〉 |

1+ ‖Ax� b‖(k) +λ‖x‖1 + |〈u, b〉 |
:

8
>>>><

>>>>:

We also compute the following relative KKT residuals of the iterates

ηkkt � max{ηx, ηz, ηu}, (28) 

where

ηx �
‖A⊤u +ΠBλ∞

(x� A⊤u)‖
1 + ‖x‖ + ‖A⊤u‖

, ηz �
‖u�ΠB1

(k)∗
(z + u)‖

1 + ‖z‖ + ‖u‖ , ηu �
‖Ax� z� b‖

1 + ‖b‖ :

In addition, when two algorithms are stopped under different criteria, we use the objective values obtained from 
Gurobi with the tolerance 10�9 (denoted as objGurobi) as benchmarks to test the quality of the computed objective 
values by both algorithms (denoted as objcomputed):

relobj :�
|objcomputed� objGurobi |

1+ |objGurobi |
:

Given a tolerance ε > 0, we stop the algorithm if ηres ≤ ε�unless otherwise stated.
For the nonconvex VaR or truncated CVaR-based linear regressions, we stop the MM algorithm if

obj-gap :�
|F(xt+1)� F(xt) |

1 + |F(xt) |
≤ ε, (29) 

where F is the objective function defined in (23).
We set the maximum iteration numbers of both the outer proximal augmented Lagrangian and the inner semi-

smooth Newton method to be 200. The parameters σt and τt in Algorithm 1 are updated according to the following 
rule:

σt+1 �
σt if mod(t, 3) ≠ 0
min{1:3σt, 106} otherwise

; τt+1 �
τt if mod(t, 3) ≠ 0
max{5τt=6, 10�6} otherwise:

��

Both synthetic data and the real data from the University of California, Irvine (UCI) data repository are used for the 
experiments.4 In order to get sufficiently large test instances, we adopt the same manner as in Huang et al. (2010) to 
expand the original features of the UCI data using polynomial basis functions and append a digit number to the 
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data set name to indicate the degree of the used polynomial. We only present the results on the UCI data to save 
space. Results on the synthetic data are presented in Online Appendix F.

6.2. Solving the CVaR-Based Linear Regression for a Fixed l
In this section, we compare the performance of our Algorithm 1 (N-ALM) with four other approaches under differ-
ent accuracy: (a) the first order alternating direction method of multipliers (ADMM) and the smoothing method 
based on the inexact regularized proximal Newton method (S-IRPN) to get relatively low-accuracy solutions (with 
ε � 10�3); (b) the Portfolio Safeguard (PSG) solver to get moderate-accuracy solutions (with ε � 10�6); and (c) the 
barrier method in Gurobi (version 9.5.2) to get high-accuracy solutions (with ε � 10�8). The detailed description of 
the ADMM and the S-IRPN to solve (9) are provided in Online Appendices D and E. We use the default settings in 
PSG and Gurobi for their respective termination. The ADMM is stopped if the total number of iterations reaches 
30,000. The maximum time allowed for each method is two hours.

Table 2 shows the results of N-ALM, S-IRPN, and ADMM when k � ⌈0:1n⌉, ⌈0:5n⌉ and ⌈0:9n⌉, where all three 
algorithms are terminated by relobj ≤ 10�3 because the S-IRPN does not return dual variables to compute ηres 
defined in (27). The column under “nnz” (here and in the rest of the tables) represents the number of nonzero 
entries of the solution x estimated in the way nnz :�min{k | ‖x‖(k) ≥ 0:999‖x‖1}: Under the “iteration numbers” col-
umn of the N-ALM, we report the iteration counts for the outer loop proximal augmented Lagrangian method first, 
followed by the number of the inner semismooth Newton iterations in the bracket. As for the S-IRPN, we record the 
number of the approximating problems, followed by the number of iterations of the inner inexact regularized prox-
imal Newton and the innermost coordinate descent algorithm in the bracket.

One may observe from Table 2 that the N-ALM can solve all the UCI instances within 92 seconds, but the ADMM 
and S-IRPN cannot solve the large instances loglp.E2006.train and triazines4 within two hours. For the small 

Table 2. Results of the N-ALM, S-IRPN, and ADMM on UCI Data with ε � 10�3(λ :� kλc‖A⊤b‖∞)

Proname
n; d λc k nnz

Relobj Iteration numbers Time (seconds)

N-ALM S-IRPN ADMM N-ALM S-IRPN ADMM N-ALM S-IRPN ADMM

triazines4
186; 5,57,845

1e-4 19 891 9.8e-4 7.0e-3 1.0e-3 32(150) 3(83,39,510) 17,990 6.8 7,239.7 1,953.8
93 979 9.8e-4 1.0e-2 5.0e-3 35(150) 3(89,40,720) 30,000 6.4 7,447.5 3,217.7

168 641 9.0e-4 5.7e-3 2.0e-3 41(151) 3(67,41,330) 30,000 6.4 7,546.2 3,229.9
pyrim5

74; 1,69,911
1e-5 8 292 6.8e-4 6.2e-4 1.0e-3 16(49) 5(101,47,560) 7,319 0.6 995.3 113.2

37 209 9.7e-4 7.0e-3 1.0e-3 26(75) 4(221,347,860) 25,423 0.8 7,222.6 392.7
67 192 8.5e-4 8.1e-4 1.0e-3 30(82) 4(119,176,020) 28,930 0.9 3,644.6 447.9

log1p:E2006:test
3, 308; 1,771, 946

1e-6 331 73 7.0e-4 9.3e-4 1.0e-3 17(94) 2(27,5,590) 12,547 12.5 462.7 1,469.5
1,654 18 6.3e-4 2.2e-4 9.9e-4 11(40) 2(15,3,130) 18,516 4.0 256.6 2,145.4
2,978 12 5.7e-4 3.3e-4 1.0e-3 12(33) 2(10,350) 22,495 3.0 31.8 2,607.3

bodyfat7
252; 1, 16, 280

1e-7 26 256 8.8e-4 2.8e-2 1.0e-3 23(113) 9(337,180,800) 5,529 1.6 7,209.6 154.2
126 235 8.3e-4 2.9e-3 1.0e-3 36(168) 5(122,212,920) 13,039 2.2 7,295.7 356.7
227 234 7.8e-4 9.7e-4 1.0e-3 40(186) 5(121,181,200) 13,769 2.6 6,134.1 373.8

housing7
506; 77, 520

1e-7 51 428 1.0e-3 7.0e-3 1.0e-3 32(137) 2(254,190,540) 9,857 3.2 7,223.7 386.9
253 456 8.8e-4 1.5e-3 1.0e-3 25(111) 6(267,194,270) 5,493 2.4 7,218.4 195.5
456 411 8.5e-4 9.8e-4 1.0e-3 25(93) 3(201,135,340) 6,695 1.8 5,038.5 234.1

log1p:E2006:train
16, 087; 4, 265,669

1e-7 1,609 124 7.5e-4 8.7e-4 1.8e-3 12(82) 2(22,5,760) 11,671 44.1 1,763.2 7,200.5
8,044 69 4.2e-4 6.1e-4 5.6e-3 8(42) 2(20,4,570) 11,688 14.4 1,399.2 7,200.3

14,479 54 9.0e-4 6.2e-4 9.9e-3 9(37) 2(19,3,300) 11,704 10.8 1,012.7 7,200.2
mpg7

392; 3, 432
1e-7 40 224 7.9e-4 1.2e-3 9.9e-4 25(103) 9(480,410,710) 896 0.7 1,199.2 1.6

196 205 1.0e-3 9.5e-4 9.9e-4 21(85) 2(91,42,080) 487 0.4 122.7 0.7
353 188 1.0e-3 1.0e-3 9.8e-4 19(67) 3(127,69,530) 773 0.2 195.1 1.0

abalone7
4,177; 6, 435

1e-8 418 157 9.9e-4 1.3e-1 9.9e-4 5(58) 4(708,109,890) 100 2.0 7,215.3 5.6
2,089 108 8.6e-4 7.4e-4 8.8e-4 3(28) 1(167,41,790) 120 0.8 2,212.4 5.8
3,760 80 9.5e-4 8.7e-4 9.1e-4 5(43) 1(48,27,280) 135 0.6 1,428.3 6.4

space_ga9
3,107; 5, 005

1e-8 311 261 9.6e-4 9.8e-4 9.9e-4 28(672) 4(235,202,370) 1,285 14.4 4,766.9 37.9
1,554 223 9.2e-4 9.9e-4 9.2e-4 22(439) 3(116,116,120) 535 7.6 2,668.3 14.2
2,797 214 9.4e-4 8.5e-4 9.8e-4 21(262) 3(97,77,690) 467 3.4 1,770.8 12.2

E2006:test
3,308; 72, 812

1e-9 331 325 8.8e-4 9.9e-4 1.0e-3 24(774) 4(111,11,100) 2,120 13.2 136.1 56.1
1,654 65 7.0e-4 7.7e-4 9.9e-4 8(265) 2(57,1,280) 1,666 3.1 17.8 45.5
2,978 22 9.5e-4 6.5e-4 9.8e-4 5(29) 2(27,370) 1,514 0.3 5.7 41.6

E2006:train
16, 087; 1,50, 348

1e-10 1,609 529 8.7e-4 8.5e-4 9.9e-4 10(972) 3(180,10,140) 2,073 91.7 599.6 765.6
8,044 105 6.6e-4 9.7e-4 1.0e-3 5(241) 1(46,1,030) 1,429 15.6 61.5 579.0

14,479 52 9.1e-4 1.4e-4 1.0e-3 6(51) 2(46,1,090) 1,236 2.7 64.1 527.6
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instances mpg7, space_ga9, and abalone7, the performance of the ADMM is comparable to the N-ALM and at least 
126 times faster than the S-IRPN. However, for the large-scale instance loglp.E2006.test, the ADMM is much slower 
than the S-IRPN, and the latter is at least 10 times slower than the N-ALM. These results indicate that the N-ALM 
outperforms the S-IRPN and the ADMM even under low accuracy on the large-scale UCI data. It is also worth 
pointing out that the computational time of the N-ALM on most of the test instances decreases as the value of k 
increases. Further results of the N-ALM for different values of k can be found in Online Appendix F.

In Table 3, we evaluate the performance of our N-ALM to solve Problem (9) with seven solvers in the PSG pack-
age: VAN, TANK, CAR, BULDOZER, VANGRB, CARGRB, and HELI. These solvers use different optimization 
techniques to solve (9) with the latter three relying on Gurobi LP solvers to solve the subproblems (the detailed 
methods for each solver are not disclosed in the online manual of PSG). During our experiments, we found that 
VAN performs best among the seven solvers of PSG for solving Problem (9). Because the variable size of VAN can-
not exceed 10,000, we only reported the results of our algorithm and VAN on three small-scale instances abalone7, 
mpg7, and space_gap9. Table 3 shows that our N-ALM is much more efficient and stable than VAN. For example, 
for the instances mpg7 with k � 40 and k � 353, VAN fails to obtain a good solution within two hours, whereas our 
N-ALM successfully solve them within one second.

In Table 4, we compare the performance of the N-ALM and the barrier method for the LP reformulation of (9) 
implemented by Gurobi. One can find that, on average, the N-ALM is about 26 times faster than Gurobi although 
the latter is comparable to the N-ALM for the smallest instance mpg7. For the largest instance log1p.E2006.train 
with n � 16,087 and d � 4,265,669, our approach is about 53 times faster than Gurobi.

6.3. Computing a Solution Path of the CVaR-Based Linear Regression
In this part, we demonstrate the effectiveness of the AS strategy combined with N-ALM (AS+N-ALM) for the 
ℓ1-penalized CVaR-based problem (9) with a sequence of {λi}i�1,: : : ,N. In order to guarantee the finite termination of 
Algorithm 3, we follow Proposition 1 to stop the N-ALM when ηkkt ≤ 10�6, where ηkkt is the relative KKT residual 
defined in (28). We choose an initial index set I ∗(λ0) as follows (Lin et al. 2020):

I ∗(λ0) � {i ∈ [d] |ci is among the first ⌈
ffiffiffi
d
√
⌉ largest values in c1, : : : , cd}, 

where ci :� |〈ai, b〉 |=‖ai‖‖b‖ and ai is the ith column vector of design matrix A for i � 1, : : : , d.
In order to test the effectiveness of the AS+N-ALM for the computation of a solution path, we compare it with 

two other methods: the warm-started N-ALM (Warm+N-ALM) that takes the solution from the previous λ�as the 
initial point and the pure N-ALM. We take equally spaced grid points λ�with the number (esgp) and the range 
given in the second and third columns of Table 5, respectively. An interesting observation can be made from this 
table: for a fixed interval of λ, say λ ∈ [1:5, 4:5], the average time of both AS+N-ALM and Warm+N-ALM is shorter 
if finer grids are used as the solution from the previous iteration is closer to the next one. The performance of 

Table 3. Results of the N-ALM and the PSG Solver VAN on UCI Data with ε � 10�6 (λ :� kλc‖A⊤b‖∞)

Probname λc k solver nnz relobj Objective values Time (seconds)

mpg7
392; 3, 432

1e-7 40 N-ALM 162 6.46e-9 142.2669 0.9
VAN 178 6.07e-5 142.2756 7,200.4

196 N-ALM 173 1.52e-7 447.1833 0.7
VAN 181 2.04e-5 447.1923 6,037.5

353 N-ALM 165 2.78e-9 537.2936 0.4
VAN 171 3.25e-5 537.3111 7,202.2

abalone7
4,177; 6, 435

1e-8 418 N-ALM 102 4.97e-10 1,951.951 3.8
VAN 116 2.00e-5 1,951.990 4,383.6

2,089 N-ALM 88 1.12e-8 5,108.126 2.7
VAN 95 1.53e-5 5,108.204 2,920.8

3,760 N-ALM 75 9.10e-9 6,099.619 2.8
VAN 77 1.45e-5 6,099.708 3,091.5

space_ga9
3,107; 5, 005

1e-8 311 N-ALM 197 6.61e-9 61.86195 17.6
VAN 218 3.51e-5 61.86416 7,201.7

1,554 N-ALM 178 4.27e-9 178.2515 13.5
VAN 200 1.70e-5 178.2546 4,275.5

2,797 N-ALM 160 1.36e-8 218.2444 14.0
VAN 175 1.72e-5 218.2482 3,790.7

Wu et al.: Risk-Based Linear Regression at Scale 
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AS+N-ALM is consistently better than the Warm+N-ALM and N-ALM for all the test instances, which can also be 
seen clearly from Figure 1 on the cumulative time used to generate each path. In particular, the AS+N-ALM is about 
2.5 and 5 times faster than Warm+N-ALM and N-ALM, respectively, for loglp.E2006.test and 2.2 and 4.2 times fas-
ter, respectively, for loglp.E2006.train. The superior performance of the AS strategy may be partially explained by 
Figure 2: the average reduced subproblem size (mean(n)) by this strategy matches the actual number of nonzeros in 
the optimal solution quite well.

6.4. Solving the Nonconvex Truncated CVaR-Based Linear Regression
The last part of the results is about the MM algorithm associated the semismooth Newton method based on the proxi-
mal point algorithm (MM+N-PPA) for the truncated CVaR-based problem (23), for which we compare its perfor-
mance with the barrier method in Gurobi for solving the QP reformulation of Subproblem (24) (MM+Gurobi). 
Because the origin is a good initial point for the MM algorithm when the solution is sufficiently sparse, we compute a 
low-accuracy solution (ε � 10�4) by the N-ALM for the convex problem (23) with k2 � 0 as an initial point of MM only 
when a small λc is taken on each instance. The parameters k1 and k2 are chosen from {(k1, k2) | (⌈0:9n⌉, ⌈0:9n⌉� 1), 
(⌈0:1n⌉, ⌈0:1n⌉� 1), (⌈0:9n⌉, ⌈0:1n⌉)}.

The results are summarized in Table 6. It can be observed that all the instances can be solved successfully by 
MM+N-PPA under the criterion obj-gap < 10�6, where obj-gap is defined in (29). The symbol “-” indicates that 
MM+Gurobi reports failure for that instance as it is out of memory when computing the d × d matrix A⊤A in the QP 
form of Subproblem (24). One can also find that our MM+N-PPA can be at least 289 times faster than the MM+Gur-
obi on the small-scale instance mpg7.

Table 4. Results of the N-ALM and Gurobi on UCI Data with ε � 10�8 (λ :� kλc‖A⊤b‖∞)

Proname
n; d λc k nnz

Objective values Iteration numbers Time (seconds)

N-ALM Gurobi N-ALM Gurobi N-ALM Gurobi

triazines4
186; 5,57,845

1e-4 19 1,026 2.06652976 2.06652974 89(371) 42 16.2 342.2
93 804 6.87454698 6.87454700 75(284) 59 11.7 464.2

168 690 9.90365457 9.90365458 78(281) 55 11.5 445.0
pyrim5

74; 1, 69,911
1e-5 8 89 0.09927193 0.09927193 80(194) 25 2.1 24.3

37 89 0.12563268 0.12563269 80(199) 30 2.1 28.4
67 89 0.15290241 0.15290242 80(195) 32 2.1 27.6

log1p:E2006:test
3, 308; 17,71,946

1e-6 331 75 291.872709 291.872709 62(227) 23 23.7 374.7
1,654 11 764.447381 764.447381 64(190) 22 15.6 288.7
2,978 7 991.113836 991.113836 67(173) 14 13.8 285.8

bodyfat7
252; 1, 16, 280

1e-7 26 233 0.00227986 0.00227986 60(221) 31 2.9 97.9
126 233 0.01104852 0.01104853 70(264) 40 3.4 114.6
227 233 0.01990488 0.01990488 71(274) 47 3.5 118.6

housing7
506; 77, 520

1e-7 51 342 139.054736 139.054736 95(541) 28 9.5 146.0
253 355 456.549602 456.549600 111(631) 30 11.7 153.8
456 326 597.894136 597.894136 73(233) 29 4.0 152.3

log1p:E2006:train
16, 087; 4, 265, 669

1e-7 1,609 146 1,356.80447 1,356.80447 66(326) 18 116.4 4,434.2
8,044 71 3,562.21589 3,562.22408 66(294) 15 79.6 7,204.4

14,479 38 4,476.78391 4,476.78391 71(353) 20 85.2 2,714.1
mpg7

392; 3,432
1e-7 40 162 142.266885 142.266885 72(212) 17 0.9 3.4

196 173 447.183182 447.183182 63(214) 15 0.7 3.2
353 164 537.293571 537.293586 87(173) 18 0.5 3.5

abalone7
4,177; 6, 435

1e-8 418 102 1,951.95134 1,951.95134 63(217) 19 4.2 251.8
2,089 88 5,108.12623 5,108.12625 51(210) 18 3.1 241.0
3,760 75 6,099.61915 6,099.61916 58(246) 17 3.3 234.6

space_ga9
3,107; 5, 005

1e-8 311 197 61.8619528 61.8619526 83(992) 17 18.9 356.4
1,554 178 178.251538 178.251539 84(1,015) 18 14.5 361.6
2,797 160 218.244432 218.244432 77(1,311) 14 14.5 283.4

E2006:test
3,308; 72, 812

1e-9 331 317 246.275458 246.275458 62(936) 21 15.9 88.0
1,654 72 644.312599 644.312599 53(967) 23 11.9 43.6
2,978 32 770.693080 770.693080 55(1,019) 11 11.9 51.1

E2006:train
16,087; 1,50,348

1e-10 1,609 563 1,303.27104 1,303.27104 64(1,983) 20 162.7 1,960.6
8,044 126 3,433.28303 3,433.28304 67(2,235) 16 124.3 532.0

14,479 60 4,175.14735 4,175.14735 69(2,665) 21 134.2 378.8
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Figure 1. (Color online) The Cumulative Time Spent by Each Method to Generate the Whole Solution Path 
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Figure 2. (Color online) The Average Number of Selected Active Features by the AS Strategy (Diamond Line) vs. the True Car-
dinality of the Solution (Star Line) 
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Endnotes
1 See http://www.aorda.com/index.php/portfolio-safeguard/.
2 The codes are available at http://www.dingchao.info/codes/.
3 The conjugate gradient method is used in our experiment if one of the following cases is satisfied: (i) n > 5,000 and s > 3, 000; (ii) n > 2,000 
and s > 8,000; (iii) n > 100 and s > 10,000.
4 See https://archive.ics.uci.edu/ml/index.php.
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