An efficient sieving based secant method for sparse optimization problems with least-squares constraints

Defeng Sun

Department of Applied Mathematics

East China Normal University, Shanghai; April 26, 2024

Joint work with Qian Li (PolyU), Yancheng Yuan (PolyU)

Outline

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Conclusion

Outline

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $arphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Conclusion

Least-squares constrained optimization problem

We consider the following least-squares constrained optimization problem

$$\min_{x \in \mathbb{R}^n} \{ p(x) \mid ||Ax - b|| \le \varrho \}, \qquad (\mathsf{CP}(\varrho))$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are given data, ϱ (noise level) is a given parameter satisfying $0 < \varrho < \|b\|$, and $p : \mathbb{R}^n \to (-\infty, +\infty]$ is a proper closed convex function with p(0) = 0.

We assume that $(CP(\varrho))$ admits an active solution.

Examples :

- The ℓ_1 penalty : $p(x) = ||x||_1$, $x \in \mathbb{R}^n$.
- ▶ The sorted ℓ_1 penalty : $p(x) = \sum_{i=1}^n \gamma_i |x|_{(i)}$, $x \in \mathbb{R}^n$ with given parameters $\gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_n \ge 0$ and $\gamma_1 > 0$, where $|x|_{(1)} \ge |x|_{(2)} \ge \cdots \ge |x|_{(n)}$.
- The fused lasso penalty, ...

The level set methods

Method 1 [Van den Berg-Friedlander 2008, 2011] solves (CP(*p*)) by finding a root of the following univariate nonlinear equation

$$\phi(\tau) = \varrho, \qquad (E_{\phi})$$

where $\phi(\cdot)$ is the value function of the following level-set problem

$$\phi(\tau) := \min_{x \in \mathbb{R}^n} \{ \|Ax - b\| \, | \, p(x) \le \tau \}, \quad \tau \ge 0.$$
(1)

Feasibility issue with a dimension reduction technique applied to (1) ?

Method 2 [Li-Sun-Toh 2018] solves (CP(*p*)) by finding a root of the following equation :

$$\varphi(\lambda) := \|Ax(\lambda) - b\| = \varrho, \qquad (E_{\varphi})$$

where $x(\lambda) \in \Omega(\lambda)$ is any solution to

$$\min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2} \|Ax - b\|^2 + \lambda p(x) \right\}, \quad \lambda > 0.$$
 (P_{LS}(λ))

The secant method

Let $f: \mathbb{R} \to \mathbb{R}$ be a locally Lipschitz continuous function which is semismooth at a solution x^* to the equation f(x) = 0.

The secant method : Step 1. Given $x^0, x^{-1} \in \mathbb{R}$. Let k = 0. Step 2. Let $x^{k+1} = x^k - \left(\frac{f(x^k) - f(x^{k-1})}{x^k - x^{k-1}}\right)^{-1} f(x^k).$ Step 3. k := k + 1. Go to Step 2.

- If f is smooth, the secant method is superlinearly convergent with Q-order at least $(1 + \sqrt{5})/2$ [Traub 1964].
- If f is (strongly) semismooth, then the secant method is 3-step Q-superlinearly (Q-quadratically) convergent [Potra-Qi-Sun 1998].

Outline

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $arphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Conclusion

Properties of the value function $\varphi(\cdot)$

The dual of $(P_{LS}(\lambda))$ can be written as

$$\max_{y \in \mathbb{R}^m, u \in \mathbb{R}^n} \left\{ -\frac{1}{2} \|y\|^2 + \langle b, y \rangle - \lambda p^*(u) \, | \, A^T y - \lambda u = 0 \right\}. \tag{D_{LS}}(\lambda))$$

We assume

$$\lambda_{\infty} := \Upsilon(A^T b \,|\, \partial p(0)) > 0 \tag{2}$$

and that for any $\lambda > 0$, there exists $(y(\lambda), u(\lambda), x(\lambda)) \in \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^n$ satisfying the following Karush–Kuhn–Tucker (KKT) system

$$x \in \partial p^*(u), \quad y = b - Ax, \quad A^T y - \lambda u = 0.$$
 (KKT)

Proposition

Assume that $\lambda_{\infty} > 0$. It holds that

- for all $\lambda \geq \lambda_{\infty}$, $y(\lambda) = b$ and $0 \in \Omega(\lambda)$;
- the value function $\varphi(\cdot)$ is nondecreasing on $(0, +\infty)$ and for any $\lambda_1 > \lambda_2 > 0$, $\varphi(\lambda_1) = \varphi(\lambda_2)$ implies $p(x(\lambda_1)) = p(x(\lambda_2))$, where for any $\lambda > 0$, $x(\lambda)$ is an optimal solution to $(P_{LS}(\lambda))$.

Properties of $\varphi(\cdot)$ when p is a gauge function

When $p(\cdot)$ is a gauge function, $p^*(\cdot)=\delta(\cdot\,|\,\partial p(0))$ and the optimization problem (D_{\rm LS}(\lambda)) is equivalent to

$$\max_{y \in \mathbb{R}^m} \left\{ -\frac{1}{2} \|y\|^2 + \langle b, y \rangle \mid \lambda^{-1} y \in Q \right\}, \quad Q := \{ z \in \mathbb{R}^m \mid A^T z \in \partial p(0) \}.$$
(3)

The unique solution to (3) is

$$y = -\lambda \Pi_Q(\lambda^{-1}b).$$

Proposition

Let $p(\cdot)$ be a gauge function. Assume that $\lambda_{\infty} > 0$. It holds that

- (i) the functions $y(\cdot)$ and $\varphi(\cdot)$ are locally Lipschitz continuous on $(0, +\infty)$;
- (ii) the function $\varphi(\cdot)$ is strictly increasing on $(0, \lambda_{\infty}]$;
- (iii) if the set Q is tame, then $\varphi(\cdot)$ is semismooth on $(0, +\infty)$;
- (iv) if Q is globally subanalytic, then $\varphi(\cdot)$ is $\gamma\text{-order semismooth on }(0,+\infty)$ for some $\gamma>0.$

Let
$$p(\cdot) = \|\cdot\|_*$$
 be the nuclear norm function defined on $\mathbb{R}^{d \times n}$. Then $Q = \{z \in \mathbb{R}^m \mid \mathcal{A}^* z \in \partial p(0)\}$ is a tame set and $\Pi_Q(\cdot)$ is semismooth.

Properties of $\varphi(\cdot)$ when p is a gauge function Cont.

Proposition

Let $p(\cdot)$ be a gauge function. Define $\Phi(x) := \frac{1}{2} ||Ax - b||^2$, $x \in \mathbb{R}^n$ and

$$H(x,\lambda) := x - \operatorname{Prox}_p(x - \lambda^{-1} \nabla \Phi(x)), \quad (x,\lambda) \in \mathbb{R}^n \times \mathbb{R}_{++}.$$

For any $(x, \lambda) \in \mathbb{R}^n \times \mathbb{R}_{++}$, denote $\partial_x H(x, \lambda)$ as the Canonical projection of $\partial H(x, \lambda)$ onto \mathbb{R}^n . It holds that

- if $\Pi_{\partial p(0)}(\cdot)$ is strongly semismooth and $\partial_x H(\bar{x}, \bar{\lambda})$ is nondegenerate at some $(\bar{x}, \bar{\lambda})$ satisfying $H(\bar{x}, \bar{\lambda}) = 0$, then $y(\cdot)$ and $\varphi(\cdot)$ are strongly semismooth at $\bar{\lambda}$;
- if $p(\cdot)$ is further assumed to be polyhedral, the function $y(\cdot)$ is piecewise affine and $\varphi(\cdot)$ is strongly semismooth on \mathbb{R}_{++} .

Outline

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Conclusion

The HS-Jacobian of $\varphi(\cdot)$

Assume that $p(\cdot)$ is a polyhedral gauge function. Then the set $\partial p(0)$ is polyhedral, which can be assumed to take the form of

$$\partial p(0) := \{ u \in \mathbb{R}^n \, | \, Bu \le d \} \tag{4}$$

for some $B \in \mathbb{R}^{q \times n}$ and $d \in \mathbb{R}^{q}$.

• We will derive the HS-Jacobian [Han-Sun 1997] of the function $\varphi(\cdot)$ to prove that the Clarke Jacobian of $\varphi(\cdot)$ at any $\lambda \in (0, \lambda_{\infty})$ is positive.

▶ Let $\lambda \in (0, \lambda_{\infty})$ be arbitrarily chosen. Let $(y(\lambda), u(\lambda))$ be the unique solution to

$$\max_{y \in \mathbb{R}^m, u \in \mathbb{R}^n} \left\{ -\frac{1}{2} \|y\|^2 + \langle b, y \rangle - \lambda p^*(u) \, | \, A^T y - \lambda u = 0 \right\}$$
 (D_{LS}(λ))

with the parameter λ . We denote $(y, u) = (y(\lambda), u(\lambda))$ to simplify our notation.

The HS-Jacobian of $\varphi(\cdot)$ Cont.

• There exists $x \in \Omega(\lambda)$ such that (y, u, x) satisfies the following KKT system :

$$u = \Pi_{\partial p(0)}(u+x), \quad y-b+Ax = 0, \quad A^T y - \lambda u = 0.$$
 (5)

$$u = \Pi_{\partial p(0)}(u+x) \Leftrightarrow u = \arg\min_{z \in \mathbb{R}^n} \left\{ \frac{1}{2} \|z - (u+x)\|^2 \,|\, Bz \le d \right\}.$$
(6)

The augmented KKT system :

$$\begin{cases} B^{T}\xi - x = 0, \quad Bu - d \le 0, \quad \xi \ge 0, \quad \xi^{T}(Bu - d) = 0, \\ y - b + Ax = 0, \quad A^{T}y - \lambda u = 0. \end{cases}$$
(7)

Let $M(\lambda)$ be the set of Lagrange multipliers associated with (y, u) defined as

$$M(\lambda) := \left\{ (x,\xi) \in \mathbb{R}^n \times \mathbb{R}^l \,|\, (y,u,x,\xi) \text{ satisfies (7)} \right\}.$$

The HS-Jacobian of $\varphi(\cdot)$ Cont.

Since $x = B^T \xi$, we obtain the following system by eliminating the variable x in (7):

$$\begin{cases} Bu-d \le 0, \quad \xi \ge 0, \quad \xi^T (Bu-d) = 0, \\ y-b+\widehat{A}\xi = 0, \quad A^T y - \lambda u = 0, \end{cases}$$
(8)

where $\widehat{A} = AB^T \in \mathbb{R}^{m \times q}.$ Denote

$$\widehat{M}(\lambda) := \left\{ \xi \in \mathbb{R}^q \,|\, (y, u, \xi) \text{ satisfies (8)} \right\}. \tag{9}$$

Denote the active set of u as

$$I(u) := \{ i \in l \mid B_{i:}u - d_i = 0 \}.$$
 (10)

For any $\lambda \in (0, \lambda_{\infty})$, we define

$$\mathcal{B}(\lambda) := \left\{ K \subseteq [q] \mid \exists \ \xi \in \widehat{M}(\lambda) \text{ s.t. } \operatorname{supp}(\xi) \subseteq K \subseteq I(u) \text{ and } \operatorname{rank}(\widehat{A}_{:K}) = |K| \right\}.$$
(11)

The HS-Jacobian of $\varphi(\cdot)$ Cont.

Since the polyhedral set $\widehat{M}(\lambda)$ does not contain a line, this implies that $\widehat{M}(\lambda)$ has at least one extreme point. Note that $0 < \lambda < \lambda_{\infty}$ and $x \neq 0$, which implies that $\overline{\xi} \neq 0$ and $\mathcal{B}(\lambda)$ is nonempty.

▶ Define the HS-Jacobian of $y(\cdot)$ as

$$\mathcal{H}(\lambda) := \left\{ h^K \in \mathbb{R}^m \, | \, h^K = \widehat{A}_{:K} (\widehat{A}_{:K}^T \widehat{A}_{:K})^{-1} d_K, \ K \in \mathcal{B}(\lambda) \right\}, \quad \lambda \in (0, \lambda_\infty),$$
(12)

where d_K is the subvector of d indexed by K. For notational convenience, for any $\lambda \in (0, \lambda_{\infty})$ and $K \in \mathcal{B}(\lambda)$, denote

$$P^{K} = I - \hat{A}_{:K} (\hat{A}_{:K}^{T} \hat{A}_{:K})^{-1} \hat{A}_{:K}^{T}.$$
(13)

Define

$$\mathcal{V}(\lambda) := \left\{ t \in \mathbb{R} \, | \, t = \lambda \| h \|^2 / \varphi(\lambda), \ h \in \mathcal{H}(\lambda) \right\}, \quad \lambda \in \mathcal{D}, \tag{14}$$

where $\mathcal{D} = \{\lambda \in (0, \lambda_{\infty}) | \varphi(\lambda) > 0\}.$

Nondegeneracy of $\partial \varphi(\bar{\lambda})$ for any $\bar{\lambda} \in (0, \lambda_{\infty})$

Lemma

Let $\bar{\lambda} \in (0, \lambda_{\infty})$ be arbitrarily chosen. It holds that

$$y(\bar{\lambda}) = P^{K}b + \bar{\lambda}h^{K}, \quad \forall h^{K} \in \mathcal{H}(\bar{\lambda}).$$
(15)

Moreover, there exists a positive scalar ς such that $\mathcal{N}(\bar{\lambda}) := (\bar{\lambda} - \varsigma, \bar{\lambda} + \varsigma) \subseteq (0, \lambda_{\infty})$ and for all $\lambda \in \mathcal{N}(\bar{\lambda})$,

- $\blacktriangleright \ \mathcal{B}(\lambda) \subseteq \mathcal{B}(\bar{\lambda}) \quad \text{and} \quad \mathcal{H}(\lambda) \subseteq \mathcal{H}(\bar{\lambda}) \, ;$
- $y(\lambda) = y(\overline{\lambda}) + (\lambda \overline{\lambda})h, \quad \forall h \in \mathcal{H}(\lambda).$

Theorem

For any $\overline{\lambda} \in (0, \lambda_{\infty})$, it holds that

- ▶ for any positive integer $k \ge 1$, the function $\varphi(\cdot)$ is piecewise C^k in an open interval containing $\bar{\lambda}$;
- ▶ all $v \in \partial \varphi(\bar{\lambda})$ are positive.

Nondegeneracy of HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions

Proposition

Suppose that $p(\cdot)$ is a polyhedral gauge function and $\partial p(0)$ has the expression as in (4). Let $\bar{\lambda} \in (0, \lambda_{\infty})$ be arbitrarily chosen. Let $\mathcal{B}(\bar{\lambda})$ and $\mathcal{V}(\bar{\lambda})$ be the sets defined as in (11) and (14) for $\lambda = \bar{\lambda}$. If $d_K \neq 0$ for all $K \in \mathcal{B}(\bar{\lambda})$, then v > 0for all $v \in \mathcal{V}(\bar{\lambda})$. Moreover, $d_K \neq 0$ for all $K \in \mathcal{B}(\bar{\lambda})$ when $p(\cdot) = \|\cdot\|_1$.

► This proposition shows that for the least-squares constrained Lasso problem, $\partial_{HS}\varphi(\bar{\lambda})$ is positive for any $\bar{\lambda} \in (0, \lambda_{\infty})$.

Outline

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $arphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Conclusion

The convergence properties of the secant method

Let $f:\mathbb{R}\to\mathbb{R}$ be a locally Lipschitz continuous function which is semismooth at a solution x^* to the following equation

$$f(x) = 0. \tag{16}$$

The secant method : Step 1. Given $x^0, x^{-1} \in \mathbb{R}$. Let k = 0. Step 2. Let $x^{k+1} = x^k - \left(\frac{f(x^k) - f(x^{k-1})}{x^k - x^{k-1}}\right)^{-1} f(x^k)$. Step 3. k := k + 1. Go to step 2.

Denote

$$\bar{d}^- := -f'(\bar{x}; -1)$$
 and $\bar{d}^+ := f'(\bar{x}; 1),$ (17)

The convergence properties of the secant method

Proposition

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is semismooth at a solution x^* to (16). Let d^- and d^+ be the lateral derivatives of f at x^* as defined in (17). If d^- and d^+ are both positive (or negative), then there are two neighborhoods \mathcal{U} and \mathcal{N} of x^* , $\mathcal{U} \subseteq \mathcal{N}$, such that for $x^{-1}, x^0 \in \mathcal{U}$, The secant method is well defined and produces a sequence of iterates $\{x^k\}$ such that $\{x^k\} \subseteq \mathcal{N}$. The sequence $\{x^k\}$ converges to x^* 3-step Q-superlinearly, i.e., $|x^{k+3} - x^*| = o(|x^k - x^*|)$. Moreover, it holds that

(i)
$$|x^{k+1} - x^*| \le \frac{|d^+ - d^- + o(1)|}{\min\{|d^+|, |d^-|\} + o(1)} |x^k - x^*|$$
 for $k \ge 0$;

(ii) if
$$\alpha:=\frac{|d^+-d^-|}{\min\{|d^+|,|d^-|\}}<1$$
, then $\{x^k\}$ converges to x^* Q-linearly with Q-factor α ;

(iii) if f is γ -order semismooth at x^* for some $\gamma>0$, then $|x^{k+3}-x^*|=O(|x^k-x^*|^{1+\gamma})$ for sufficiently large k; the sequence $\{x^k\}$ converges to x^* 3-step quadratically if f is strongly semismooth at x^* .

▶ When |d⁺ - d⁻| is small and f is strongly semimsooth, we know from the above proposition that the secant method converges with a fast Q-linear rate and 3-step Q-quadratic rate.

A numerical example for the secant method

We test the secant method with $x^{-1}=0.01 \mbox{ and } x^0=0.005$ for finding the zero $x^*=0$ of

$$f(x) = \begin{cases} x(x+1) & \text{if } x < 0, \\ -\beta x(x-1) & \text{if } x \ge 0, \end{cases}$$
(18)

where β is chosen from $\{1.1, 1.5, 2.1\}$.

- Case I : $\beta = 1.1, \ d^+ = 1.1, \ d^- = 1, \ \text{and} \ \alpha = 0.1$;
- Case II : $\beta = 1.5, \ d^+ = 1.5, \ d^- = 1, \ {\rm and} \ \alpha = 0.5$;
- Case III : $\beta = 2.1, d^+ = 2.1, d^- = 1$, and $\alpha = 1.1$.

Table – The numerical performance of finding the zero of (18).

						0		()	
Case	lter	1	2	3	4	5	6	7	8
1	x	-5.1e-5	-4.3e-6	2.2e-10	-2.2e-11	-1.8e-12	4.1e-23	-4.1e-24	-3.4e-25
- 11	x	-5.1e-5	-1.7e-5	8.4e-10	-4.2e-10	-1.1e-10	4.5e-20	-2.2e-20	-5.6e-21
111	x	-5.1e-5	-2.6e-5	1.3e-9	-1.5e-9	-5.1e-10	7.4e-19	-8.2e-19	-2.8e-19

The convergence properties of the secant method cont.

Proposition

Let $p(\cdot)$ be a polyhedral gauge function and λ^* be the solution to (E_{φ}) . Assume that $0 < \lambda_{\infty} < +\infty$. If $\partial \varphi(\lambda^*)$ is a singleton, the sequence $\{\lambda_k\}$ generated by the secant method for solving (E_{φ}) converges to λ^* Q-superlinearly with Q-order at least $(1 + \sqrt{5})/2$.

A strongly semismooth function is not necessarily piecewise smooth. For example

$$f(x) = \begin{cases} \kappa x, & \text{if } x < 0, \\ -\frac{1}{3} \left(\frac{1}{4^k}\right) + (1 + \frac{1}{2^k})x, & \text{if } x \in \left[\frac{1}{2^{k+1}}, \frac{1}{2^k}\right] \quad \forall k \ge 0, \\ 2x - \frac{1}{3} & \text{if } x > 1, \end{cases}$$
(19)

where κ is a given constant.

A numerical example for the secant method cont.

Set $\kappa = 1$. Note that $x^* = 0$ is the unique solution of (19). In the secant method, we choose $x^0 = 0.5$ and $x^{-1} = x^0 + 0.1 \times f(0.5)^2 = 0.545$. The numerical results are shown in the following table.

Table – The numerical performance of the secant method on finding the zero of (19).

			-					-		
lt	er	1	2	3	4	5	6	7	8	
	x	1.7e-1	3.6e-2	4.0e-3	1.0e-4	2.7e-7	2.0e-11	4.0e-18	6.1e-29	•
f((x)	1.9e-1	3.7e-2	4.0e-3	1.0e-4	2.7e-7	2.0e-11	4.0e-18	6.1e-29	

We can observe that the generated sequence $\{x_k\}$ converges to the solution $x^* = 0$ superlinearly with Q-order $(1 + \sqrt{5})/2$.

A globally convergent secant method for $(CP(\varrho))$

The globally convergent secant method for $(CP(\rho))$: **•** Step 1. Given $\mu \in (0,1)$, $\lambda_{-1}, \lambda_0, \lambda_1$ in $(0, \lambda_\infty)$ satisfying $\varphi(\lambda_0) > \rho$, and $\varphi(\lambda_{-1}) < \varrho$. Set $i = 0, \lambda = \lambda_{-1}$, and $\overline{\lambda} = \lambda_0$. Let k = 0. Step 2. Compute $\hat{\lambda}_{k+1} = \lambda_k - \frac{\lambda_k - \lambda_{k-1}}{\varphi(\lambda_k) - \varphi(\lambda_{k-1})} (\varphi(\lambda_k) - \varrho).$ (20)Step 3. If $\lambda_{k+1} \in [\lambda_{-1}, \lambda_0]$, then continue, else, go to Step 4. 1. Compute $x(\hat{\lambda}_{k+1})$ and $\varphi(\hat{\lambda}_{k+1})$. Set i = i+1. 2. If either (i) or (ii) holds : (i) $i \ge 3$ and $|\varphi(\hat{\lambda}_{k+1}) - \rho| \le \mu |\varphi(\lambda_{k-2}) - \rho|$ (ii) i < 3, then set $\lambda_{k+1} = \hat{\lambda}_{k+1}$, $x(\lambda_{k+1}) = x(\hat{\lambda}_{k+1})$; else go to Step 4. 3. Go to Step 5. Step 4. If $\varphi(\hat{\lambda}_{k+1}) > \varrho$, then set $\overline{\lambda} = \min\{\overline{\lambda}, \hat{\lambda}_{k+1}\}$; else set $\lambda = \max\{\lambda, \hat{\lambda}_{k+1}\}$. Set $\lambda_{k+1} = 1/2(\overline{\lambda} + \underline{\lambda})$. Compute $x(\lambda_{k+1})$ and $\varphi(\lambda_{k+1})$. Set i = 0Step 5. if $\varphi(\lambda_{k+1}) > \varrho$, then set $\overline{\lambda} = \min\{\overline{\lambda}, \lambda_{k+1}\}$; else set $\lambda = \max\{\lambda, \lambda_{k+1}\}.$ Step 6. k = k + 1. Go to Step 2.

Outline

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $arphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Conclusion

The adaptive sieving technique [Yuan-Lin-Sun-Toh 2023]

Consider the problem

$$\min_{x \in \mathbb{R}^n} \left\{ \Phi(x) + P(x) \right\},\tag{21}$$

where $\Phi:\mathbb{R}^n\to\mathbb{R}$ is a continuously differentiable convex function, and $P:\mathbb{R}^n\to(-\infty,+\infty]$ is a closed proper convex function. We define the proximal residual function $R:\mathbb{R}^n\to\mathbb{R}^n$ as

$$R(x) := x - \operatorname{Prox}_P(x - \nabla \Phi(x)), \quad x \in \mathbb{R}^n.$$
(22)

Algorithm AS for (21) (simplified form) :

- Step 1. Given an initial index set I₀ ⊆ [n], a given tolerance ε ≥ 0 and a given positive integer k_{max}. Find an approximate solution x⁰ to (21) with the constraint x_{I₀^c} = 0. Let s = 0.
- ▶ Step 2. Create $J_{s+1} = \left\{ j \in I_s^c \mid (R(x^s))_j \neq 0 \right\}$. If $J_{s+1} = \emptyset$, let $I_{s+1} \leftarrow I_s$; otherwise, set a integer $0 < k \le \min\{|J_{s+1}|, k_{\max}\}$ and define

 $\widehat{J}_{s+1} = \big\{ j \in J_{s+1} \ \big| \ |(R(x^s))_j| \text{ is among the first } k \text{ largest values in } \{|(R(x^s))_i|\}_{i \in J_{s+1}} \big\}.$

Update $I_{s+1} \leftarrow I_s \cup \widehat{J}_{s+1}$.

Step 3. Find an approximate solution x^{s+1} to (21) with the constraint $x_{I_{s+1}^c} = 0$.

Step 5. Set
$$s = s + 1$$
. Go to Step 2.

SMOP : A root finding based Secant Method for solving the Optimization Problem $(CP(\varrho))$

SMOP : A root finding based secant method for $(CP(\varrho))$:

▶ Step 1. Given $0 < \underline{\lambda} < \lambda_1 < \lambda_0 \le \overline{\lambda} \le \lambda_\infty$ satisfying $\varphi(\underline{\lambda}) < \varrho < \varphi(\overline{\lambda})$. Call Algorithm AS with $I_0 = \emptyset$ to solve ($P_{LS}(\lambda)$) with $\lambda = \lambda_0$ and obtain the solution $x(\lambda_0)$. Compute $\varphi(\lambda_0)$. Let k = 1.

• Step 2. Set
$$I_0^k = \{i \in [n] \mid (x(\lambda_{k-1}))_i \neq 0\}.$$

Step 3. Call Algorithm AS with $I_0 = I_0^k$ to solve ($P_{LS}(\lambda)$) with $\lambda = \lambda_k$ to obtain $x(\lambda_k)$ and compute $\varphi(\lambda_k)$.

Step 4. Generate λ_{k+1} by the globally convergent secant method.

Step 5. Set k = k + 1. Go to Step 2.

Outline

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $arphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Conclusion

Numerical experiments

Problem idx	Name	m	n	Sparsity(A)	norm(b)
1	E2006.train	16087	150360	0.0083	452.8605
2	log1p.E2006.train	16087	4272227	0.0014	452.8605
3	E2006.test	3308	150358	0.0092	221.8758
4	log1p.E2006.test	3308	4272226	0.0016	221.8758
5	pyrim5	74	201376	0.5405	5.7768
6	triazines4	186	635376	0.6569	9.1455
7	bodyfat7	252	116280	1.0000	16.7594
8	housing7	506	77520	1.0000	547.3813

Table – Statistics of the UCI test instances.

Table – The values of c to obtain $\varrho = c \|b\|$ when $p(\cdot) = \|\cdot\|_1$.

Test	id×	1	2	3	4	5	6	7	8
	с	0.1	0.1	0.08	0.08	0.05	0.1	0.001	0.1
	nnz(x)	339	110	246	405	79	655	107	148
	c_{LS}	2.6-7	2.8-4	4.2-7	2.1-4	5.7-3	2.8-3	1.1-6	1.3-
	с	0.09	0.09	0.06	0.06	0.015	0.03	0.0001	0.04
п	nnz(x)	1387	1475	884	1196	92	497	231	377
	c_{LS}	1.1-7	6.2-5	1.7-7	9.6-5	3.0-4	5.6-5	3.8-8	3.0-

ℓ_1 penalty, Test I

Table – The performance of SMOP (A1), SSNAL-LSM (A2), SPGL1 (A3) and ADMM (A4), in solving CP(ρ) with $\rho = c ||b||$.

	time (s)	η	outermost iter				
idx	A1 A2 A3 A4	A1 A2 A3 A4	A1 A2 A3 A4				
	Test I with stoptol = 10^{-4}						
1	1.39+0 2.18+2 3.51+2 4.22+2	2.3-5 4.9-5 1.0-4 1.0-4	24 29 7342 2049				
2	2.29+0 5.12+2 1.45+3 6.84+2	3.1-6 7.8-5 9.0-5 8.7-5	12 16 3445 1470				
3	4.02-1 5.83+1 3.21+2 8.87+1	9.4-6 2.6-5 1.0-4 1.0-4	24 30 21094 4918				
4	1.59+0 2.06+2 7.19+2 9.90+1	1.2-5 7.3-5 9.5-5 1.3-5	13 15 3174 854				
5	2.73-1 1.20+1 9.81+0 5.63+0	6.9-6 5.4-6 7.4-5 2.2-5	6 14 498 273				
6	2.32+0 1.74+2 3.35+2 1.01+2	5.8-6 4.4-5 9.1-5 7.5-5	9 17 1987 571				
7	4.35-1 9.12+0 8.98+0 8.59+0	2.8-5 5.9-5 9.8-5 9.9-5	15 18 539 583				
8	2.99-1 9.07+0 1.29+1 7.94+0	2.6-5 8.6-5 1.0-4 9.0-5	10 14 515 424				
	Tes	t I with stoptol = 10^{-6}					
1	1.45+0 3.22+2 1.51+3 7.06+2	2.5-7 6.1-8 9.9-7 1.0-6	25 36 28172 3539				
2	2.52+0 6.68+2 1.75+3 3.42+3	9.9-8 3.5-8 9.2-7 9.9-7	13 24 4155 8725				
3	4.12-1 7.40+1 2.11+3 1.81+2	1.1-8 2.3-7 <u>6.2-6</u> 1.0-6	25 35 <u>100000</u> 10100				
4	1.72+0 3.40+2 1.04+3 4.03+2	1.3-9 5.7-7 7.2-7 7.9-7	14 26 4584 3820				
5	2.93-1 1.61+1 4.58+1 3.95+2	1.0-7 6.0-8 9.1-7 9.8-7	7 19 2468 20155				
6	2.47+0 2.13+2 8.24+2 2.31+3	3.0-7 4.0-7 8.2-7 3.4-7	10 23 5578 13672				
7	4.68-1 1.18+1 9.11+0 1.85+1	1.9-9 9.6-7 2.7-7 9.9-7	17 22 544 1250				
8	3.28-1 1.45+1 3.84+1 4.40+1	2.4-7 8.4-8 4.0-7 8.7-7	11 24 1539 2427				

ℓ_1 penalty, Test II

Table – The performance of SMOP (A1), SSNAL-LSM (A2), SPGL1 (A3) and ADMM (A4), in solving CP(ρ) with $\rho = c ||b||$.

	time (s)	η	outermost iter
idx	A1 A2 A3 A4	A1 A2 A3 A4	A1 A2 A3 A4
	Tes	t II with stoptol = 10^{-4}	
1	7.26+0 4.51+2 1.38+3 6.12+2	3.0-6 4.6-5 1.0-4 1.0-4	26 30 27775 3014
2	6.79+0 1.54+3 1.32+3 4.01+2	1.8-5 3.6-5 9.7-5 6.8-5	14 21 3000 733
3	3.51+0 1.84+2 1.50+3 1.34+2	1.3-5 2.3-5 <u>8.7-2</u> 1.0-4	25 29 <u>100000</u> 7333
4	2.91+0 6.91+2 6.23+2 4.94+1	7.5-6 3.6-6 9.6-5 5.8-5	14 22 2694 385
5	6.23-1 1.53+1 8.65+0 2.01+1	2.8-5 7.9-6 6.6-5 9.5-5	9 13 395 1000
6	9.02+0 3.46+2 3.60+3 3.82+2	6.8-6 3.7-5 <u>7.6-2</u> 9.9-5	12 17 <u>24924</u> 2232
7	1.50+0 1.59+1 3.06+2 3.39+1	1.6-5 8.7-6 9.9-5 9.8-5	12 18 19820 2340
8	2.37+0 1.90+1 1.69+2 1.19+1	1.4-6 8.9-5 9.1-5 9.8-5	13 18 5914 644
	Tes	t II with stoptol = 10^{-6}	
1	7.23+0 5.96+2 3.60+3 8.82+2	3.7-9 2.9-7 3.6-2 1.0-6	27 35 <u>62384</u> 4453
2	7.37+0 1.85+3 2.04+3 1.46+3	1.4-7 3.9-7 9.7-7 1.0-7	15 27 4688 3464
3	3.59+0 2.36+2 1.49+3 1.99+2	8.1-10 8.3-7 <u>8.7-2</u> 1.0-6	26 36 <u>100000</u> 11051
4	3.02+0 8.44+2 1.37+3 2.18+2	3.1-9 4.3-7 9.9-7 6.0-7	15 28 5912 1980
5	6.37-1 2.49+1 4.14+2 1.48+2	2.4-7 3.0-8 8.7-7 9.7-7	10 22 22091 7592
6	9.37+0 4.25+2 3.60+3 3.60+3	5.4-11 6.7-7 <u>7.5-2</u> 1.2-7	14 22 <u>25158</u> 21556
7	1.59+0 2.09+1 3.37+2 8.54+1	3.2-7 1.9-8 8.8-7 9.7-7	13 23 21523 5817
8	2.39+0 2.68+1 1.65+3 3.34+1	4.5-7 6.9-7 8.8-7 9.8-7	14 26 59147 1834

The ratio of computation time between BMOP (B) and NMOP (N) to the computation time of SMOP in solving $(CP(\varrho))$

Test I

Test II

Generating a solution path for $(CP(\varrho))$.

Fig. Test I

Fig. Test II

sorted ℓ_1 penalty

Table – The performance of SMOP (A1), Newt-ALM-LSM (A2) and ADMM (A4), in solving the sorted ℓ_1 penalized problems with least-squares constraints (CP(ϱ)) with $\varrho = c ||b||$. The stopping tolerance is set to 10^{-6} .

		time (s)	η	outermost iter						
idx	$c \mid nnz(x) \mid c_{LS}$	A1 A2 A4	A1 A2 A4	A1 A2 A4						
	Test I									
2	0.15 3 2.4-2	3.84+0 1.34+2 3.60+3	1.1-7 5.3-7 2.8-1	8 21 8637						
4	0.1 3 4.8-3	4.79+0 1.35+2 3.60+3	6.0-7 8.9-7 2.9-4	10 17 28891						
5	0.1 113 1.9-2	6.29-1 4.98+1 4.23+2	1.0-7 4.5-7 1.5-7	7 22 17974						
6	0.15 413 1.0-2	3.10+0 2.43+2 3.60+3	2.7-7 1.6-7 1.9-4	9 21 19071						
7	0.002 22 1.9-5	3.56-1 1.67+1 2.44+1	3.6-9 6.0-7 9.9-7	14 22 1616						
8	0.15 95 6.9-3	$6.06 - 1 \mid 2.55 + 1 \mid 1.57 + 2$	1.3-7 7.7-7 9.0-7	10 23 8329						
		Test II								
1	0.1 339 2.6-7	2.53+1 1.40+2 5.13+2	2.9-7 5.6-7 1.0-6	25 34 2490						
2	0.095 629 1.0-4	5.39+1 4.82+2 2.87+3	1.7-7 2.9-7 9.4-7	17 27 6770						
3	0.08 246 4.2-7	4.98+0 6.54+1 1.60+2	2.0-8 7.1-7 1.0-6	25 36 8491						
4	0.07 758 1.4-4	2.26+1 4.26+2 5.86+2	4.0-8 9.0-7 9.8-7	16 27 4550						
5	0.02 95 5.7-4	2.05+0 9.87+1 3.58+2	3.2-8 5.6-7 7.6-7	11 20 15582						
6	0.05 997 5.5-4	2.32+1 1.04+3 3.60+3	8.4-7 2.1-7 <u>3.5-6</u>	10 23 <u>19159</u>						
7	0.001 107 1.1-6	1.02+0 2.85+1 1.30+1	5.9-8 6.9-9 9.5-7	17 22 826						
8	0.08 206 4.3-4	3.38+0 1.03+2 5.58+1	5.7-9 7.4-7 3.8-7	13 25 2842						

sorted ℓ_1 penalty

Fig. The computation time : SMOP & BMOP.

A non-polyhedral case

We consider the following group lasso penalty function

$$p(x) = \sum_{t=1}^{l} \sqrt{x_{2t-1}^2 + x_{2t}^2}, \quad x \in \mathbb{R}^{2l}.$$
 (23)

Table – The values of c.

	id×	c	nnz(×)	c_{LS}
	4	0.1	6	4.4-3
	5	0.1	50	2.4-2
	6	0.15	138	1.3-2
Test I	7	0.002	28	2.4-5
	8	0.15	66	8.4-3
	1	0.105	95	7.5-7
	3	0.08	403	4.3-7
	4	0.08	731	2.2-4
	5	0.02	120	9.1-4
Test II	6	0.05	372	6.3-4
	7	0.001	186	1.3-6
	8	0.08	260	4.9-4

Fig. The computation time : SMOP & BMOP.

A non-polyhedral case

Table – The performance of SMOP (A1), SSNAL-LSM (A2), SPGL1 (A3) and ADMM (A4), in solving the group lasso penalized problems with least-squares constraints (CP(ϱ)) with $\varrho = c ||b||$. The stopping tolerance is set to 10^{-6} .

	time (s)	η	outermost iter						
idx	A1 A2 A3 A4	A1 A2 A3 A4	A1 A2 A3 A4						
Test I									
4	3.75+0 1.16+2 8.49+2 3.60+3	1.3-7 3.1-7 6.37-7 7.2-5	11 21 3024 22125						
5	8.14-1 2.74+2 2.96+1 9.16+2	1.4-9 3.5-7 6.05-7 1.0-6	11 21 1319 38530						
6	5.19+0 1.46+3 1.70+2 3.02+3	3.2-10 4.5-7 5.98-7 9.8-7	10 22 1086 15768						
7	5.98-1 8.80+0 3.02+1 2.59+1	3.7-8 5.0-7 2.07-7 1.0-6	14 19 2102 1627						
8	6.88-1 1.41+2 8.30+0 1.19+2	1.8-8 2.6-7 2.46-7 9.6-7	9 22 334 6211						
		Test II							
1	3.29+0 4.33+1 3.18+3 1.12+3	2.7-7 2.7-7 9.8-7 1.0-6	24 29 55596 5826						
3	3.83+0 3.00+1 2.06+3 2.57+2	1.3-7 3.4-7 <u>3.8-6</u> 1.0-6	22 36 100000 13031						
4	2.97+1 2.42+3 1.19+3 5.86+2	5.2-7 9.6-9 8.6-7 7.4-7	13 27 4241 3401						
5	1.70+0 1.29+2 3.30+2 9.27+1	8.0-7 1.7-8 8.9-7 6.5-7	9 20 18001 3959						
6	2.51+1 1.39+3 3.60+3 3.60+3	1.3-8 1.4-7 <u>5.8-5</u> 2.6-7	11 22 20646 19075						
7	1.22+0 1.88+1 5.99+2 2.69+1	5.3-8 2.1-8 6.9-7 9.9-7	15 23 41578 1685						
8	5.75+0 1.47+2 1.14+2 1.94+2	2.5-7 3.7-7 4.4-7 9.8-7	15 25 4373 9974						

ℓ_1 penality cont.

Table – Comparison of computation time : SMOP to solve CP(ϱ) vs. SSNAL and the smoothing Newton algorithm (SmthN) to solve reduced $P_{LS}(\lambda^*)$ for some large scale instances. In this test, the stopping tolerance is 10^{-6} .

	id×	reduced n	SMOP	SSNAL	SmthN	SMOP/SSNAL	SMOP/SmthN
	1	339	1.95	0.70	0.12	2.78	16.02
	2	110	2.25	0.98	0.03	2.29	72.58
Test I	3	247	0.67	0.09	0.01	7.14	61.00
	4	405	1.75	0.78	0.08	2.23	21.81
Test II	1	796	2.03	2.36	0.14	0.86	14.50
	2	629	7.84	11.07	0.65	0.71	11.99
	3	517	0.77	0.14	0.03	5.50	24.84
	4	758	3.17	1.25	0.31	2.54	10.33

The reduced $P_{LS}(\lambda^*)$:

- 1. Obtain the non-zero index set I of the solution generated by SSNAL for the original problem ${\rm P}_{\rm LS}(\lambda^*).$
- 2. Remove all the columns from matrix A that correspond to the complement of index set I.

Outline

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $arphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Conclusion

Conclusion

• When $p(\cdot)$ is a gauge function, we prove that $\varphi(\cdot)$ is (strongly) semismooth for a wide class of instances of $p(\cdot)$.

▶ When $p(\cdot)$ is a polyhedral gauge function, we show that $\varphi(\cdot)$ is locally piecewise C^k on $(0, \lambda_{\infty})$ for any integer $k \ge 1$; and for any $\bar{\lambda} \in (0, \lambda_{\infty})$, v > 0 for any $v \in \partial \varphi(\bar{\lambda})$.

- Under the assumption that $p(\cdot)$ is a polyhedral gauge function, we show that the secant method converges at least 3-step Q-quadratically for solving (E_{φ}) , and if $\partial_{\rm B}\varphi(\lambda^*)$ is a singleton, the secant method converges superlinearly with Q-order at least $(1 + \sqrt{5})/2$.
- We target to address the computational challenges for solving (CP(*p*)) : Level-set approach + Secant method + adaptive sieving ("nonlinear column generation").

Reference

Qian Li, Defeng Sun, and Yancheng Yuan. "An efficient sieving based secant method for sparse optimization problems with least-squares constraints." arXiv preprint arXiv :2308.07812 (2023). *SIAM Journal on Optimization* (2024).

Thank you for your attention !

[Van den Berg-Friedlander 2008] Ewout Van den Berg, and Michael P. Friedlander. "Probing the Pareto frontier for basis pursuit solutions." Siam journal on scientific computing 31.2 (2008) : 890-912.

[Van den Berg-Friedlander 2011] Ewout Van den Berg, and Michael P. Friedlander. "Sparse optimization with least-squares constraints." SIAM Journal on Optimization 21.4 (2011) : 1201-1229.

[Li-Sun-Toh 2018] Xudong Li, Defeng Sun, and Kim-Chuan Toh. "On efficiently solving the subproblems of a level-set method for fused lasso problems." SIAM Journal on Optimization 28.2 (2018) : 1842-1866.

[Traub 1964] Joseph Frederick Traub. Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs, 1964.

[Potra-Qi-Sun 1998] Florian A. Potra, Liqun Qi, and Defeng Sun. "Secant methods for semismooth equations." Numerische Mathematik 80 (1998) : 305-324.

[Han-Sun 1997] Jiye Han, and Defeng Sun. "Newton and quasi-Newton methods for normal maps with polyhedral sets." Journal of optimization Theory and Applications 94.3 (1997) : 659-676.

[Yuan-Lin-Sun-Toh 2023] Yancheng Yuan, Meixia Lin, Defeng Sun, and Kim-Chuan Toh. "Adaptive sieving : A dimension reduction technique for sparse optimization problems." arXiv preprint arXiv :2306.17369 (2023).