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Abstract
For the zero-norm regularized problem, we verify that the penalty problem of its
equivalent MPEC reformulation is a global exact penalty, which implies a family
of equivalent surrogates. For a subfamily of these surrogates, the critical point set is
demonstrated to coincide with the d-directional stationary point set and when a critical
point has no too small nonzero component, it is a strongly local optimal solution of
the surrogate problem and the zero-norm regularized problem. We also develop a
proximal majorization-minimization (MM) method for solving the DC (difference of
convex functions) surrogates, and provide its global and linear convergence analysis.
For the limit of the generated sequence, the statistical error bound is established under a
mild condition, which implies its good quality from a statistical respective. Numerical
comparisons with ADMM for solving the DC surrogate and APG for solving its
partially smoothed form indicate that our proximalMMmethod armed with an inexact
dual PPA plus the semismooth Newton method (PMMSN for short) is remarkably
superior to ADMM and APG in terms of the quality of solutions and the CPU time.
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1 Introduction

Let A ∈ R
n×p and b ∈ R

n be the given data matrix and vector, and let ϑ : Rn →
[0,+∞] be a proper function such that [Im(A)− b] ∩ domϑ �= ∅. We are interested
in the zero-norm regularized nonsmooth loss minimization problem

min
x∈Rp

�ν,μ(x):=ϑ(Ax−b)+ ν‖x‖0 + (μ/2)‖x‖2, (1)

where ν > 0 is the regularization parameter, ‖ · ‖0 is the zero-norm (cardinality) of
vectors, andμ > 0 is a tiny constant. The term 1

2μ‖x‖2, due to the lower boundedness
of the function x 	→ ϑ(Ax−b) + ν‖x‖0, ensures that problem (1) has a nonempty
compact global optimal solution set.

Since the zero-norm is the root to promote sparsity, problem (1) has wide appli-
cations in a host of scientific and engineering fields such as regression and variable
selection in statistics (see, e.g., [21, 54]), compressed sensing [18] and source separa-
tion [9] in signal processing, feature selection and classification in machine learning
[8, 57], and so on. In particular, since ϑ is not required to be differentiable, problem (1)
often arises from robust models involving a piecewise linear-quadratic (PLQ) convex
loss ϑ(Ax−b) with ϑ(z) = 1

n

∑n
i=1 θ(zi ) where θ : R → [0,+∞]. For example,

when θ(t) = |t | for t ∈ R,

ϑ(Ax−b) = 1

n
‖Ax−b‖1, (2)

and (1) reduces to the sparsity regularized �1-loss model for robust sparse recovery
[59]; and when θ(t)= (τ−I{t≤0})t for t ∈ R with some τ ∈ (0, 1),

ϑ(Ax−b) = 1

n

n∑

i=1
(τ−I{(Ax−b)i≤0})(Ax−b)i , (3)

and it becomes the sparsity regularized check-loss model to monitor the heteroscedas-
ticity of high-dimensional data [55].

1.1 Existing related works

Problem (1) is generally NP-hard due to the combination of the zero-norm, and it is
impractical to seek a global optimizer via an algorithm with a polynomial-time com-
plexity. A common way to deal with this class of problems is to adopt the convex
relaxation technique to obtain a desirable solution in a statistical sense. The �1-norm
convex relaxation, as a popular relaxation method, has witnessed significant progress
in theory and computation since the early works [17, 54]. Although the �1-norm is
the convex envelope of the zero-norm on the �∞-norm unit ball, its ability to pro-
mote sparsity is weak especially in a complicated constraint set, say, the simplex set.
Inspired by this, many nonconvex surrogates have been proposed for the zero-norm
function, including the non-Lipschitz �p (0 < p < 1) surrogate [11, 12], smooth
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concave approximation [8, 47, 57], and the folded concave functions such as SCAD
and MCP [21, 64]. All of these surrogates are proposed from the primal perspective,
and moreover, the surrogate problems associated to the first two classes are only an
approximation to problem (1) and the approximation effect depends on whether p or
the smoothing parameter is close to 0.

Soubies et al. [52] ever proposed a class of exact continuous relaxations to the �2-�0
minimization, but their proof depends on the structure of the least-square loss and it is
unclear whether or not their results are applicable to model (1) with a nonsmooth loss.
For the nonsmooth loss as in (1), Bian and Chen [5] recently verified that the surrogate
problem associated to the capped �1-norm surrogate is an exact continuous relaxation,
but their proof fully exploits the structure of the capped �1-norm and is not applicable
to analyzing the exactness of other surrogates. Then, it is natural to ask whether
there is a unified mechanism to analyze the exactness or equivalence of nonconvex
surrogates. This work provides such a unified analysis technique by leveraging the
metric subregularity, a Lipschitz-like continuity, of the sparsity constrained system.

For zero-norm regularized smooth loss optimization problems, a large number of
algorithms have been developed by using the sufficient smoothness of the loss func-
tion and/or the closed form of the proximal operator of the zero-norm (see, e.g., [28,
35, 60, 65]). By contrast, the algorithms for zero-norm regularized nonsmooth loss
optimization problems receive less attention except [5, 61], in which the nonsmooth
difficulty of the loss function is overcome by the smoothing technique. As will be
shown by the numerical results in Sect. 5.2, an appropriate smoothing parameter is
hard to choose because it is very sensitive to the data, especially for those with a
highly-relevant covariance and a heavily-tailed noise. Another way to overcome the
nonsmooth difficulty of the loss function is to adopt the alternating direction of mul-
tiplier method (ADMM), but for zero-norm or its nonconvex surrogate regularized
nonsmooth loss problems, there is lack of convergence certificate for the ADMM,
and the existing convergence analysis in [7, 56] is inapplicable to it. Thus, to develop
an algorithm, which is efficient in practice and has a theoretical certificate, even for
problem (1) with a nonsmooth convex loss is imperative.

For optimization models involving a smooth loss and a nonconvex surrogate of
the zero-norm, there are some works to focus on the error bounds of their stationary
points to the true vector (see, e.g., [10, 36]) or the oracle property of a local optimizer
yielded by a specific algorithm [22]. However, for the models involving a nonsmooth
loss and a DC surrogate of zero-norm, to the best of our knowledge, there are no
work to investigate the statistical error bound of the stationary point yielded by an
algorithm. The model in [53] involves a square-root loss and a DC surrogate of zero-
norm, but the statistical error bound of the stationary point was not derived. For the
zero-norm regularized nonsmooth convex loss model, Bian and Chen [5] proposed a
smoothing proximal gradient algorithm to seek a lifted stationary point of the capped
�1-surrogate, but they did not provide a statistical error bound for the stationary point.
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1.2 Themain contributions

The first contribution of this work is to provide a unified mechanism to capture equiv-
alent surrogates for problem (1) from a primal-dual viewpoint. We achieve this goal
by leveraging its mathematical program with equilibrium constraint (MPEC) refor-
mulation and showing that the penalty problem induced by the equilibrium constraint
is a global exact penalty of the MPEC. The SCAD, MCP and capped �1 functions
are illustrated to be a member of this family. In particular, for a subfamily of these
surrogates, we demonstrate the strong local optimality of their critical points to the
surrogate problems and the zero-norm regularized problem. To reformulate the �0-
norm regularized problem as an MPEC is a common practice, just as in [4, 23] do for
the zero-norm minimization problem, but to verify that its penalty problem induced
by the equilibrium constraint is a global exact penalty is more troublesome than to do
for the latter, because the former involves the growth of an additional function. For the
zero-norm constrained problems, Gotoh et al. [25] recently presented an equivalent
DC surrogate by proving the penalty problem induced by the zero-norm constraint to
be exact in a global sense, but their exact penalty analysis technique is inapplicable
to our MPEC reformulation. Le Thi et al. [31] got an equivalent DC surrogate for the
zero-norm regularized problem from a primal-dual viewpoint, while their surrogate is
different from ours.

The second contribution is to develop a proximal MM method for solving the
equivalent DC surrogate models. Different from the work [53], our proximal MM
method is not a special case of DC algorithms [32, 43] because it is based on a tighter
majorization of the DC surrogate, and moreover, its linear convergence rate could be
achieved without any conditions provided that ϑ and φ (to induce the DC surrogate)
are PLQ functions definable in an o-minimal structure. From [2, Section 4], such PLQ
functions are extensive. In addition, there are huge literature on MMmethods and DC
algorithms for nonconvex and nonsmooth problems, but few of them discuss the local
optimality of the limit to the iterate sequence generated. It is shown that the limit of
the iterate sequence of our algorithm is a strongly local optimal solution to problem
(1) and its DC surrogate whenever its smallest nonzero component is not too small.

The last contribution, for the scenario where the data (b, A) comes from a noisy
linear observation model with respect to a true but unknown x∗ ∈ R

p, is to achieve a
non-asymptotic statistical error bound for the limit of the generated sequence to the
true x∗. This error bound not only implies the good quality of the obtained limit from
a statistical perspective, but also clarifies the relation between the sample size and the
sparsity of the true x∗.

For the proposedproximalMMarmedwith an inexact dual proximal point algorithm
(PPA) plus the powerful semismooth Newton to solve the subproblems, termed as
PMMSN, we conduct numerical experiments on synthetic and real data examples,
and compare its performance with that of ADMM for the DC surrogate problem and
the accelerated proximal gradient (APG) method for its partially smoothed form. The
results indicate that PMMSN has a significant superiority in the quality of solutions
and the CPU time, and is very robust for the data with a highly-relevant covariance
and a heavily-tailed noise.
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2 Notation and preliminaries

Throughout this paper, I and e denote an identity matrix and a vector of all ones
with dimension known from the context, and ‖ · ‖, ‖ · ‖1 and ‖ · ‖∞ denote the �2-
norm, �1-norm and �∞-norm of vectors, respectively. For a matrix X ∈ R

n×p, ‖X‖,
‖X‖∞ and�X�1 respectively denote the spectral norm, the elementwise maximum
norm and the column sum norm of X ; and for the given index sets I ⊆ {1, . . . , n}
and J ⊆ {1, . . . , p}, XI· and X ·J are the submatrix consisting of those rows Xi ·
for i ∈ I and those columns X · j for j ∈ J , respectively. For a set S, conv(S)
means the convex hull of S, IS means the characteristic function of S that takes 1
if x ∈ S and 0 otherwise, and δS denotes the indicator function of S that takes 0 if
x ∈ S and∞ otherwise. For a vector x ∈ R

p, |x |nz represents the smallest nonzero
entry of the vector |x |:=(|x1|, . . . , |xp|)T (also called the smallest nonzero entry of
x though not accurately), and |x |↓ is the vector obtained by arranging the entries of
|x | in a nonincreasing order. For given vector x ∈ R

p, dist(x, S)means the Euclidean
distance of x from a closed set S ⊆ R

p, and B∞(x, δ) and B(x, δ) for a δ > 0
denote the closed ball on the �∞-norm and the �2-norm centered at x with radius δ,
which are respectively simplified as B∞(δ) and B(δ) if x = 0. For a given p × p
positive definite matrix Q, ‖x‖Q :=√〈x, Qx〉 represents the norm associated to Q.
For an extended real-valued h : Rp → [−∞,+∞], h is said to be proper if its
domain dom h:={x ∈ R

p | h(x) < +∞} is nonempty, and its conjugate is defined by
h∗(z):= supx∈Rp

{〈x, z〉 − h(x)
}
. In the sequel, we often use

f (x):=ϑ(Ax−b) and fμ(x):= f (x)+ (μ/2)‖x‖2 for x ∈ R
p. (4)

2.1 Partial calmness of optimization problems

Let ϕ : Rp → (−∞,+∞] be a proper lower semicontinuous (lsc) function, h :
R

p → R be a continuous function, and � be a nonempty closed set of Rp. In order
to introduce the partial calmness of the optimization problem

(MP) min
z∈Rp

{
ϕ(z) s.t. h(z) = 0, z ∈ �},

we consider its following perturbation:

(MPε) min
z∈Rp

{
ϕ(z) s.t. h(z) = ε, z ∈ �},

where ε ∈ R is a parameter, and denote by Fε the feasible set of (MPε).

Definition 1 (see [62, Definition 3.1] or [63, Definition 2.1]) Problem (MP) is said to
be partially calm at a solution point z∗ if there exist ε> 0 and μ > 0 such that for all
ε ∈ [−ε, ε] and all z ∈ (z∗+ εB)∩Fε , one has ϕ(z)− ϕ(z∗)+μ|h(z)| ≥ 0, where B
denotes the unit ball of Rp cetered at the origin, and (MP) is said to be partially calm
over the global optimal solution set F∗ if it is partially calm at each z∗ ∈F∗.
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2.2 Calmness of a multifunction

Definition 2 (see [19, Section 3H]) Given a multifunction � : Rl ⇒ R
p, we say that

� is calm at a point x for z ∈ �(x) if there exist a constant κ ≥ 0 and neighborhoods
Nx of x and Nz of z such that for all x ∈ Nx ,

�(x) ∩Nz ⊆ �(x)+ κ‖x − x‖B.

Note that the neighborhoodNx of x inDefinition 2 can be removed.By [19, Exercise
3H.4], the calmness of � at x for z ∈ �(x) is equivalent to the metric subregularity
of its inverse mapping �−1 at z for x ∈ �−1(z), i.e., there exist a constant κ ≥ 0 and
a neighborhood Nz of z such that for all z ∈ Nz ,

dist(z,�(x)) ≤ κdist(x,�−1(z)).

2.3 Proximal mapping andMoreau envelope

For a proper lower semicontinuous (lsc) function h : Rp → (−∞,∞] and a parameter
γ > 0, we denote Pγ h and eγ h by the proximal mapping and Moreau envelope of h
associated to γ , which are respectively defined as

Pγ h(x):= argmin
z∈Rp

{ 1

2γ
‖z − x‖2 + h(z)

}
, eγ h(x):= min

z∈Rp

{ 1

2γ
‖z − x‖2 + h(z)

}
.

When h is convex, Pγ h is a Lipschitz mapping fromR
p toRp with Lipschitz constant

1, and eγ h is a smooth convex function with∇eγ h(x) = 1
γ
(x−Pγ h(x)).When γ = 1,

we replacePγ h withPh. The following lemma presents the expression of the proximal
operator of the weighted �1-norm.

Lemma 1 For any given ω ∈ R
p
+ and μ ≥ 0, let hω,μ(x):=‖ω ◦ x‖1 + 1

2μ‖x‖2 for
x ∈ R

p. The proximal operator of hω,μ associated to a parameter γ > 0 is given by

Pγ−1hω,μ(z)=
γ

γ+μ sign(z) ◦max(|z|−γ−1ω, 0) ∀z ∈ R
p.

2.4 Subderivatives and generalized subdifferentials

The second subserivative of an extended real-valued function plays a key role in
verifying the local optimality of a stationary point of a nonsmooth optimization prob-
lem, though its characterization is not an easy task. Here we introduce the notion of
subderivative and second subderivative.

Definition 3 ( [50, Definition 8.1 & 13.3]) For a function h : Rp → (−∞,∞], a point
x ∈ dom h and any v ∈ R

p, the subderivative function dh(x) : Rp → [−∞,∞] is
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defined by

dh(x)(w):= lim inf
τ↓0,w′→w

h(x + τw′)− h(x)

τ
,

while the second subderivative of h at x for v and w is defined by

d2h(x |v)(w):= lim inf
τ↓0,w′→w

h(x + τw′)− h(x)− τ 〈v,w′〉
1
2τ

2
.

Definition 4 ( [50, Definition 8.3]) Consider a function h : Rp → (−∞,∞] and a
point x ∈ dom h. The regular subdifferential of h at x , denoted by ∂̂h(x), is defined
as

∂̂h(x):=
{

v ∈ R
p | lim inf

x �=x ′→x

h(x ′)− h(x)− 〈v, x ′ − x〉
‖x ′ − x‖ ≥ 0

}

;

and the (limiting) subdifferential of h at x , denoted by ∂h(x), is defined as

∂h(x):=
{
v ∈ R

p | ∃ xk → x with h(xk)→ h(x) and vk ∈ ∂̂h(xk) with vk → v
}
.

Remark 1 At any x ∈ dom h, the inclusion ∂̂h(x) ⊆ ∂h(x) holds, and ∂̂h(x) is a
closed convex set, while ∂h(x) is closed but generally nonconvex. When h is convex,
they reduce to the subdifferential of h at x in the sense of [49]. A point x at which
0 ∈ ∂h(x) (respectively, 0 ∈ ∂̂h(x)) is called a limiting (respectively, regular) critical
point of h, denoted by crit h (respectively, ĉrit h). By Definition 4, obviously, a local
minimizer of h is a regular critical point.

2.5 Semismoothness of local Lipschitz mappings

Semismoothness was originally introduced byMifflin [38] for functionals, and Qi and
Sun [44] later developed the class of vector-valued semismooth functions. To introduce
the concept of semismoothness, for a locally Lipschitz mapping F : O⊆ R

n→R
m

whereO is an open set, we denote by ∂C F(x) the Clarke Jacobian of F at x ∈ O (see
[13] for its detailed discussion).

Definition 5 (see [44]) Let F : O ⊆ R
n → R

m be a local Lipschitz mapping on
an open set O. The mapping F is said to be semismooth at a point x ∈ O if F is
directionally differentiable at x and for any �x → 0 and any V ∈ ∂C F(x +�x),

F(x +�x)− F(x)− V�x = o(‖�x‖);

and F is said to be strongly semismooth at x if F is semismooth at x and for any
�x → 0,

F(x +�x)− F(x)− V�x = O(‖�x‖2).
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The mapping F is said to be a semismooth (respectively, strongly semismooth) on O
if it is semismooth (respectively, strongly semismooth) everywhere in O.

The proximal mapping of the function hω,μ in Lemma 1 is piecewise affine, so
it is strongly semismooth by [20, Proposition 7.4.7]. The following lemma provides
the characterization for its Clarke Jacobian. Since its proof is direct by an elementary
calculation, we omit the detail.

Lemma 2 For any given ω ∈ R
p
+ and μ ≥ 0, let hω,μ be the function in Lemma 1.

Then, at any given z ∈ R
p, the Clarke Jacobian of its proximal mapping associated

to γ > 0 has the form

∂C (Pγ−1hω,μ)(z) =
⎧
⎨

⎩
diag

(
ξ1, . . . , ξp

) |
ξi = γ

γ+μ if |zi | > γ−1ωi ,
ξi ∈

[
0, γ
γ+μ

]
if |zi | = γ−1ωi ,

ξi = 0 if |zi | < γ−1ωi

⎫
⎬

⎭
.

3 Equivalent surrogates

In this section, we derive a family of equivalent surrogates for problem (1) by leverag-
ing the global exact penalty for its MPEC reformulation, and for a subfamily of these
surrogates, investigate the local optimality of their critical points. In order to introduce
the MPEC reformulation of (1), letL denote the family of proper lsc functions φ that
is convex on [0, 1] and satisfies

int(dom φ) ⊇ [0, 1], t∗:= argmin
0≤t≤1

φ(t), φ(t∗) = 0 and φ(1) = 1. (5)

As will be illustrated later, the condition (5) is rather weak and L contains many
proper lsc functions φ. For each φ ∈ L , denote its convex truncation by

ψ(t):=
{
φ(t) if t ∈ [0, 1],
+∞ otherwise.

(6)

Pick an arbitrary φ ∈L . By equation (5), t∗ is the unique minimizer of φ on [0, 1]
with φ(t∗) = 0 and φ(1) = 1, which implies that for any z ∈ R

p,

‖z‖0 = min
w∈Rp

{∑p
i=1φ(wi ) s.t.

〈
e−w, |z|〉 = 0, 0 ≤ w ≤ e

}
.

Such a characterization for z ∈ R
p
+ with φ(t) ≡ t first appeared in [37], and it

immediately implies that problem (1) is equivalent to the following MPEC

min
x∈Rp,w∈[0,e]

{
fμ(x)+ ν∑p

i=1φ(wi ) s.t. 〈e−w, |x |〉 = 0
}
, (7)

in the sense that if (̂x, ŵ) is a global (or local) optimal solution of (7), then x̂ is
globally (or locally) optimal to (1); and if x̂ is globally (or locally) optimal to (1),
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(̂x,max(sign(|̂x |), t∗e) is a global (or local) optimal solution of (7). The equivalence
between (7) and (1) discloses that the difficulty of the zero-norm regularized problem
comes from the implicit constraint 〈e−w, |x |〉 = 0.

As well known, the handling of nonconvex constraints is numerically more trouble-
some than that of nonconvex cost functions. Hence, we are interested in the following
penalty problem of the MPEC (7):

min
x,w∈Rp

{
fμ(x)+ ν∑p

i=1ψ(wi )+ ρν〈e−w, |x |〉
}
, (8)

where ρ > 0 is the penalty parameter. In order to establish that the problem (8) is a
global exact penalty for (7), i.e., there exists ρ > 0 such that the problem (8) associated
to every ρ > ρ has the same global optimal solution set as the MPEC (7) does, we
need the following technical lemma, and the coerciveness of fμ and the discreteness
of the zero-norm accounts for this.

Lemma 3 LetX ∗ denote the global optimal solution set of the problem (1). Then, there
exists a constant α > 0 such that for all x ∈ X ∗, |x |nz > α.
Proof Suppose on the contradiction that the conclusion does not hold. There exists
a sequence {xk}k∈N ⊆ X ∗ such that for each k ∈ N, |xk |nz ≤ 1/k. Clearly, there
exist an index set K ⊆ N and an index j ∈ {1, 2, . . . , p} such that 0 < |xkj | ≤
1/k for all k ∈ K . Recall that X ∗ is compact due to the coerciveness of fμ. By
taking a subsequence if necessary, we may assume that {xk}k∈K is convergent, say,
limK�k→+∞ xk = x∗ ∈ X ∗. Together with 0 < |xkj | ≤ 1/k for all k ∈ K , we obtain

|x∗j | = 0. Thus, for all sufficiently large k ∈ K , ‖xk‖0 ≥ ‖x∗‖0 + 1. Since fμ is lsc,

for all sufficiently large k ∈ K , fμ(xk) ≥ fμ(x∗) − ν/2. From {xk}k∈N ⊆ X ∗ and
x∗ ∈ X ∗, we obtain

fμ(x
∗)+ ν‖x∗‖0 = fμ(x

k)+ ν‖xk‖0
≥ fμ(x

∗)− ν/2+ ν‖x∗‖0 + ν = fμ(x
∗)+ ν‖x∗‖0 + ν/2,

which is impossible. This shows that the desired conclusion holds. ��
Next under a rather weak assumption on the function ϑ , we establish the partial
calmness of theMPEC (7) on its global optimal solution set, which by [34, Proposition
2.1] implies that the penalty problem (8) is a global exact penalty. For the notion of
partial calmness, please refer to [34, 63].

Proposition 1 LetF∗ denote the global optimal solution set of theMPEC (7). Suppose
that the function ϑ has a polyhedral domain domϑ and is strictly continuous relative
to domϑ . Then, for each (̂x, ŵ) ∈ F∗, there exist δ > 0 and ρ̂ > 0 such that for all
(x, w) ∈ B((̂x, ŵ), δ) ∩ (dom f × [0, e]),

[
fμ(x)+ ν∑p

i=1ψ(wi )
]− [

fμ(̂x)+ ν∑p
i=1ψ(ŵi )

]+ ρ̂ν〈e − w, |x |〉 ≥ 0, (9)

and consequently, there exists ρ ≥ ρ̂ such that the problem (8) associated to every
ρ ≥ ρ has the same global optimal solution set as the MPEC (7) does.
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Proof By the given assumption and the definition of f in (4), clearly, f is strictly
continuous relative to its domain. Also, since domϑ is polyhedral, the function f also
has a polyhedral domain dom f . Let�(x, w):=x for (x, w) ∈ R

p×R
p, and let R > 0

be a constant such that B∞(R) ⊇ ⋃
x∈�(F∗) B(x, 1/2). Such R exists by recalling

that X ∗ = �(F∗) is nonempty and compact. For each k ∈ {1, 2, . . . , p}, define

Fk(τ ):=
{
x ∈ dom f ∩ B∞(R) | ‖x‖1 − ‖x‖(k) = τ

}
for τ ≥ 0,

where ‖ · ‖(k) denotes the Ky Fan k-norm of vectors. Since each Fk is a polyhedral
multifunction, i.e., its graph is the union of finitely many polyhedral convex sets, by
[51, Proposition 1] eachFk is calmat the origin for all z ∈ Fk(0). From the compactness
of dom f ∩ B∞(R) and [45, Theorem 3.1], for each k ∈ {1, 2, . . . , p}, there exists
γk > 0 such that for all z ∈ dom f ∩ B∞(R),

dist(z,Fk(0)) ≤ γk
[‖z‖1 − ‖z‖(k)

]
. (10)

Fix any (̂x, ŵ) ∈ F∗. Since f is strictly continuous relative to dom f , the function fμ
is strictly continuous relative to dom f . Then, there exists δ ∈ (0, 12 ) such that

| fμ(x ′)− fμ(x
′′) |≤ L fμ‖x ′ − x ′′‖ for all x ′, x ′′ ∈ B(̂x, δ) ∩ dom f . (11)

By Lemma 3, |̂x |nz > α. Let κ = ‖x̂‖0. From the continuity, for all x ∈ B(̂x, δ)

we have |x |↓κ > α (if necessary by reducing δ). Let ρ̂:=max
(φ′−(1)

α
,
γ φ′−(1)(1−t∗)L fμ

ν(1−t0)
)

for γ = max{γ1, . . . , γp}, where t0 ∈ [0, 1) is such that 1
1−t∗ ∈ ∂φ(t0) and its

existence is by [34, Lemma 1]. Pick any (x, w) ∈ B((̂x, ŵ), δ/2) ∩ (dom f × [0, e]).
Let J:={ j ∈ {1, . . . , p}|ρ̂|x |↓j > φ′−(1)

}
and r :=|J |. Recall that x̂ ∈ �(F∗). By the

definition of B∞(R), x ∈ dom f ∩ B∞(R). By invoking (10) with k = r and z = x ,
there exists x ρ̂ ∈Fr (0) with ‖x − x ρ̂‖ = dist(x,Fr (0)) such that

‖x − x ρ̂‖ ≤ γ [‖x‖1 − ‖x‖(r)
] = γ∑p

j=r+1|x |↓j . (12)

Since ρ̂ ≥ φ′−(1)
α

, clearly, κ ≤ r . Together with κ = ‖x̂‖0 and (̂x, ŵ) ∈ F∗, we have
x̂ ∈Fr (0), and consequently, ‖x ρ̂ − x̂‖ ≤ ‖x ρ̂ − x‖ + ‖x − x̂‖ ≤ 2‖x − x̂‖ ≤ δ. By
(11),

| fμ(x)− fμ(x
ρ̂ ) |≤ L fμ‖x − x ρ̂‖. (13)

Note that w ∈ [0, e] implied by (x, w) ∈ dom f × [0, e]. It is immediate to obtain
that

∑p
i=1φ(w

↓
i )+ ρ̂

(‖x‖1− 〈w↓, |x |↓〉
) ≥∑p

i=1 min
t∈[0,1]

{
φ(t)+ ρ̂|x |↓i (1− t)

}
.

Write J1:=
{
j | 1

1−t∗ ≤ ρ̂|x |↓j ≤ φ′−(1)
}
and J2:=

{
j | 0 ≤ ρ̂|x |↓j < 1

1−t∗
}
. For the

minimization problem on the right hand side of the last equation, by invoking [34,
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Lemma 1] with ω = |x |↓j for each j , it is immediate to obtain that

∑p
i=1φ(w

↓
i )+ ρ̂

(‖x‖1− 〈w↓, |x |↓〉
)

≥ ‖x ρ̂‖0 + ρ̂(1− t0)

φ′−(1)(1− t∗)
∑

j∈J1
|x |↓j + ρ̂(1− t0)

∑

j∈J2
|x |↓j

≥ ‖x ρ̂‖0 + ρ̂(1− t0)

φ′−(1)(1− t∗)
∑

j∈J1∪J2
|x |↓j = ‖x ρ̂‖0 +

ρ̂(1− t0)

φ′−(1)(1− t∗)

p∑

j=r+1
|x |↓j

≥ ‖x ρ̂‖0 + ρ̂(1− t0)

γ φ′−(1)(1− t∗)
‖x − x ρ̂‖ ≥ ‖x ρ̂‖0 + ν−1

[
fμ(x

ρ̂ )− fμ(x)
]

where the first inequality is also using ‖x ρ̂‖0 = r implied by x ρ̂ ∈ Fr (0), the second
one is due to−1 = φ(t∗)−φ(1) ≥ φ′−(1)(t∗−1), the third one is due to (12), and the
last one is using the definition of ρ̂ and (13). Since 〈w↓, |x |↓〉 ≥ 〈w, |x |〉, we have

fμ(x)+ ν∑p
i=1φ(wi )+ ρ̂ν

(‖x‖1− 〈w, |x |〉
) ≥ fμ(x

ρ̂ )+ ν‖x ρ̂‖0.

Now take wρ̂i = 1 for i ∈ supp(x ρ̂ ) and wρ̂i = t∗ for i /∈ supp(x ρ̂ ). It is easy to check

that (x ρ̂ , wρ̂) is a feasible point of (7) with
∑p

i=1 φ(w
ρ̂
i ) = ‖x ρ̂‖0. Then, we have

fμ(x ρ̂ )+∑p
i=1φ(w

ρ̂
i ) ≥ fμ(̂x)+∑p

i=1φ(ŵi ). Together with the last inequality,

fμ(x)+ ν∑p
i=1φ(wi )+ ρ̂ν

(‖x‖1− 〈w, |x |〉
) ≥ fμ(̂x)+∑p

i=1φ(ŵi ).

By the arbitrariness of (̂x, ŵ) in F∗ and the expression of ψ , we obtain the first part.
The second part holds by combining the first part with [34, Proposition 2.1]. ��
Remark 2 When replacing the function x 	→ ϑ(Ax − b) in (1) with a general proper
function f̃ : R

p → (−∞,+∞], which has a polyhedral domain and is strictly
continuous relative to its domain, the conclusion of Proposition 1 still holds. For
example, f̃ = h + δ� where � ⊆ R

p is a polyhedral set and h : Rp → R is strictly
continuous relative to �, by comparing Proposition 1 with [34, Theorem 3.2], we see
that the former not only weakens the Lipschitz continuity of f̃ on � to be its strict
continuity relative to �, but also removes the restricted assumption on the structure
of �.

The penalty problem (8), comparedwith (7), is easier to operate because its noncon-
vexity is caused by the coupled term 〈e−w, |x |〉 rather than the equilibrium constraint,
and moreover, by the conjugate of ψ , the optimal value of the minimization problem
in (8) with respect tow is−ν∑p

i=1 ψ∗(ρ|xi |). Consequently, the penalty problem (8)
can be compactly written as

min
x∈Rp

�ρ,ν,μ(x):= fμ(x)+ ρν
(‖x‖1 − gρ(x)

)
(14)

with gρ(x):=ρ−1∑p
i=1ψ∗(ρ|xi |) for x ∈ R

p. Combining Proposition 1 with the
equivalence between (7) and (1), we immediately have the following result.
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Theorem 2 If ϑ has a polyhedral domain domϑ and is strictly continuous relative to
domϑ , then the problem (14) associated to any ρ ≥ ρ has the same global optimal
solution set as (1) does, i.e.,�ρ,ν,μ for each ρ ≥ ρ is an equivalent surrogate of�ν,μ.

Notice that ψ∗ is a nondecreasing finite convex function on R because by [49,
Section 24] the range of ∂ψ∗ is contained in dom∂ψ = [0, 1]. Hence, the function
t 	→ ψ∗(ρ|t |) associated to every ρ > 0 is a finite convex function. Next we illustrate
that the function x 	→ ρν(‖x‖1− gρ(x)) covers some common surrogates of the
zero-norm such as the capped �1-norm, SCAD and MCP.

Example 1 Let φ(t) = t for t ∈ R. One can check that φ ∈ L with t∗ = 0 and
ψ∗(s) = max(s −1, 0) for s ∈ R. Now the function x 	→ ‖x‖1−gρ(x) is precisely
the capped �1-norm, and when ϑ satisfies the assumption of Theorem 2, the function
�ρ,ν,μ associated to each ρ > ρ is an equivalent surrogate of the function �ν,μ.
Compared with [5, Theorem 2.4], Theorem 2 removes the Lipschitz continuity of f
on its domain but requires the strict continuity of f and the coerciveness of fμ.

Example 2 Let φ(t) = a2
4 t

2 − a2
2 t + at + (a−2)2

4 (a > 2) for t ∈ R. One can check
that φ ∈L with t∗ = a−2

a and the conjugate ψ∗ of ψ takes the following form

ψ∗(s) =

⎧
⎪⎨

⎪⎩

− (a−2)24 if s ≤ a − a2
2 ,

1
a2
(
a(a−2)

2 +s)2− (a−2)2
4 if a− a2

2 < s ≤ a,
s − 1 if s > a

for s ∈ R.

Now a
2λ[|t |−ρ−1ψ∗(ρ|t |)]with ρ = 1

λ
is the MCP function p(t;λ) in [64], and when

ϑ satisfies the assumption of Theorem 2, the function�ρ,ν,μ associated to each ρ > ρ
is an equivalent surrogate of the function �ν,μ.

Example 3 Let φ(t) = a−1
a+1 t

2 + 2
a+1 t (a > 1) for t ∈ R. Then t∗ = 0, t0 = 1

2 and

ψ∗(s) =

⎧
⎪⎨

⎪⎩

0 if s ≤ 2
a+1 ,

((a+1)s−2)2
4(a2−1) if 2

a+1 < s ≤ 2a
a+1 ,

s − 1 if s > 2a
a+1

for s ∈ R. (15)

Now λ[|t |−ρ−1ψ∗(ρ|t |)]with ρ = 2
(a+1)λ is exactly the SCAD function pλ(t) in [21],

and when ϑ satisfies the assumption of Theorem 2, the function �ρ,ν,μ associated to
every ρ ≥ ρ is an equivalent surrogate of �ν,μ.

In the sequel, we denote byLσ,γ the set consisting of those φ ∈ L that are strongly
convex on [0, 1] with modulus σ and satisfies φ(0) = 0 and φ′−(0) ≥ γ for some
γ > 0. Clearly, the function φ in Example 2 and 3 belongs to Lσ,γ . By Lemma 7 in
“Appendix A”, the associated gρ for every ρ > 0 is continuously differentiable on Rp

and at any x ∈ R
p, ∇gρ(x) = wρ(x) ◦ sign(x) with

wρ(x):=
(
(ψ∗)′(ρ|x1|), . . . , (ψ∗)′(ρ|xp|)

)T
, (16)
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where wρ is Lipschitz continuous with modulus ρ/σ . The following proposition
summarizes some desirable properties of �ρ,ν,μ; see “Appendix A” for its proof.

Proposition 3 Suppose that ϑ is a convex function with a polyhedral domain domϑ
and is strictly continuous relative to domϑ . Then, for any given φ ∈ Lσ,γ and ρ > 0,
the following statements hold.

(i) �ρ,ν,μ is a nonnegative and coercive DC function, and at any x ∈ dom f ,

∂̂�ρ,ν,μ(x) =∂�ρ,ν,μ(x) = AT∂ϑ(Ax− b)+ ρν[∂‖x‖1−∇gρ(x)
]+ μx .

(ii) The set crit�ρ,ν,μ coincides with the d-stationary point set of (14).
(iii) Every x ∈ crit�ρ,ν,μ with |x |nz≥φ′+(1)/ρ is a strongly local optimal solution of

(14), i.e., there exist ε > 0 and c0 > 0 such that for all x ∈ B(x, ε),

�ρ,ν,μ(x) ≥ �ρ,ν,μ(x)+ c0‖x − x‖2.

(iv) Every x ∈ crit�ρ,ν,μ with |x |nz ≥ φ′+(1)/ρ belongs to ĉrit�ν,μ = crit�ν,μ,
which is also a strongly local optimal solution set of the problem (1).

When x ∈ crit�ρ,ν,μ is sparse enough and ρ is chosen to be suitably large, it is
highly possible for |x |nz ≥ φ′+(1)/ρ to hold, and now every stationary point x of (14)
is a strongly local optimal solution to problems (14) and (1). It is worth pointing out
that when φ ∈ L \Lσ,γ , for example, the function φ in Example 1, the stationary
point of (14) may be a strongly local optimal solution to problems (14) and (1) by the
recent work [14, 15].

4 Proximal MMmethod

In this section, we develop a tailored proximal MMmethod for seeking a critical point
of the surrogate problem (14) under the following assumption.

Assumption 1 ϑ is a convex function with a polyhedral domain domϑ and is strictly
continuous relative to domϑ .

Assumption 1 implies that problem (14) is a DC program. Fix any x ′ ∈ R
p. For

any x ∈ R
p, the convexity and smoothness of the function ψ∗ implies that

ρ−1
∑p

i=1ψ
∗(ρ|xi |) ≥ ρ−1∑p

i=1ψ
∗(ρ|x ′i |)+ 〈wρ(x ′), |x | − |x ′|〉, (17)

where wρ : Rp → R
p is the mapping in (16). By the expression of �ρ,ν,μ,

�ρ,ν,μ(x) ≤ �ρ,ν,μ(x, x ′):=fμ(x)+ ρν
[‖x‖1−〈wρ(x ′), |x |〉

]+ Rρ,ν,μ(x
′)

where Rρ,ν,μ(x ′) = ρν[〈wρ(x ′), |x ′|〉−gρ(x ′)]. This, together with �ρ,ν,μ(x ′, x ′) =
�ρ,ν,μ(x ′), means that �ρ,ν,μ(·, x ′) is a majorization of the function �ρ,ν,μ at x ′.
This majorization is tighter than the one in [53] which was obtained by the convexity
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of gρ . Indeed, since range(∂ψ∗) ⊆ [0, 1], we havewρ(x ′) ≥ 0, which along with (16)
implies that 〈wρ(x ′), |x |〉 ≥ 〈∇gρ(x ′), x〉, and consequently,

�ρ,ν,μ(x, x
′) ≤ �̃ρ,ν,μ(x, x ′):= fμ(x)+ ρν[‖x‖1−〈∇gρ(x ′), x〉] + Rρ,ν,μ(x

′).

The majorization �̃ρ,ν,μ(·, x ′) is precisely the one used in [53]. Our proximal MM
method is designed by minimizing a proximal version of �ρ,ν,μ(·, x ′).

Algorithm 1 (Proximal MM method for solving (14))
Require: λ̃ > 0, γ̃1,0 > 0, γ̃2,0 > 0, x−1 ∈ dom f . To seek a starting point

x0 ≈ argmin
x∈Rp

{
f (x)+ λ̃‖x‖1 + γ̃1,0

2
‖x‖2 + γ̃2,0

2
‖Ax‖2

}
. (18)

1: Choose φ ∈Lσ,γ , ρ ≥ 1, γ1 > 0, γ2 > 0, � ∈ (0, 1], 0 < γ1,0 ≤ γ̃1,0 and 0 < γ2,0 ≤ γ̃2,0. Set

λ = ρν and B = γ1 I+γ2ATA.
2: for k = 0, 1, 2, . . . do
3: Compute vk = e − wρ(xk ).
4: Choose an error vector δk ∈ R

p with ‖δk‖ ≤ ‖B1/2(xk−xk−1)‖√
2‖B−1/2‖ .

5: Set Bk = γ1,k I+γ2,k ATA and compute the optimal solution xk+1 to

min
x∈Rp

{
f (x)+ λ〈vk , |x |〉 + μ

2
‖x‖2 + 1

2
‖x−xk‖2Bk − 〈δ

k , x − xk 〉
}
. (19)

6: Let γ1,k+1 = max(γ1, �γ1,k ) and γ2,k+1 = max(γ2, �γ2,k ).
7: end for

Remark 3 (a) As well known, for nonconvex optimization problems, the choice of
the starting point is crucial to the quality of the limit of the sequence generated from
this point. Inspired by the good performance of the �1-norm regularized minimization
problem, we choose a starting point x0 by solving the problem (18) inexactly. Such an
initial point, aswill be shown in Sect. 4.3, is good in a statistical sensewhen appropriate
γ̃1,0 and γ̃2,0 are used. The inexactness of x0 means that there exists an error vector
δ̃0∈ R

p with ‖̃δ0‖∞ ≤ ε̃0 for some ε̃0 > 0 such that

x0 = argmin
x∈Rp

{
f (x)+ λ̃‖x‖1 + γ̃1,0

2
‖x‖2 + γ̃2,0

2
‖Ax‖2 − 〈̃δ0, x〉

}
. (20)

(b) From (16), obviously, wρ(xk) �= ∇gρ(xk), which implies that Algorithm 1 does
not belong to theDCA framework proposed in [32, 43] even ifϑ is convex. By contrast,
the proximal MM in [53] is a DC algorithm. The proximal term 1

2‖x − xk‖2Bk in the
subproblem plays a twofold role: one is to ensure that the subproblem (19) is solvable
and the other, as will be shown in the sequel, is to guarantee the decreasing of the
objective value sequence of (14) and then its global convergence. The subproblem
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(19) is seeking an inexact solution to the following strongly convex program

min
x∈Rp

{
f (x)+ λ〈vk, |x |〉 + μ

2
‖x‖2 + 1

2
‖x−xk‖2Bk

}
.

The inexactness means δk ∈ ∂ f (xk+1)+ λ∂〈vk, | · |〉(xk+1)+Bk(xk+1−xk)+ μxk+1.
Since the error δk only depends on the past two iterates, such an inexact solution xk+1
is available from a specific algorithm. In Sect. 4.3, we develop an efficient inexact dual
PPA plus the powerful semismooth Newton method for computing xk+1.
(c) We suggest that the parameter ρ is chosen to be α0

‖x0‖∞ for a suitable α0 > 0.

Indeed, by the expression of wρ in (16) and the range of ∂ψ∗ ⊆ [0, 1], we have

vk =
(
1− (ψ∗)′

( α0|xk1 |
‖x0‖∞

)
, . . . , 1− (ψ∗)′

( α0|xkp|
‖x0‖∞

))T ∈ [0, e].

Note that ψ∗ is a nondecreasing finite convex function on R. Such a choice of ρ
ensures that those very small xki (likely corresponding to zero components) become
zero quickly because a weight close to 1 is imposed on |xi |, while those very large
xki (likely corresponding to nonzero components) continue to keep large because a
weight close to 0 is imposed on |xi |.

4.1 Convergence analysis of Algorithm 1

By the steps of Algorithm 1 and Remark 3 (b), the sequence {xk}k∈N is well defined.
To analyze its convergence, we define the potential function

�ρ,ν,μ(x, y):=�ρ,ν,μ(x)+ 1

4
‖x − y‖2B ∀x, y ∈ R

p.

The following lemma provides the properties of �ρ,ν,μ on the sequence {xk}k∈N.

Lemma 4 Let {xk}k∈N be the sequence generated by Algorithm 1. Then,

(i) for each k ∈ N, �ρ,ν,μ(xk+1, xk) ≤ �ρ,ν,μ(xk, xk−1)− 1
4‖xk+1−xk‖2B;

(ii) for each k ∈ N, there exists ζ k ∈ ∂�ρ,ν,μ(xk, xk−1) with ‖ζ k‖≤ b1‖xk −xk−1‖+
b2‖xk−1−xk−2‖, where b1 and b2 are positive constants independent of k.

Lemma 4 (i) implies that the sequence {�ρ,ν,μ(xk, xk−1)}k∈N is nonincreasing,
while by Proposition 3 the function �ρ,ν,μ is lower bounded. Thus, the sequence
{�ρ,ν,μ(xk, xk−1)}k∈N is convergent, and we denote by � ∗ its limit.

Proof (i)ByStep 2 ofAlgorithm1, {xk}k∈N ⊆ dom f . By invoking (17)with x = xk+1
and x ′ = xk yields that

gρ(x
k+1)− 〈

wρ(x
k), |xk+1|〉 ≥ gρ(x

k)− 〈
wρ(x

k), |xk |〉.
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Note that the objective function of (19) is a sum of a convex function and a strongly
convex quadratic function. From the definition of xk+1 and xk, xk+1 ∈ dom f ,

f (xk)+ λ〈vk, |xk |〉 + μ
2
‖xk‖2 ≥ f (xk+1)+ λ〈vk, |xk+1|〉 + μ

2
‖xk+1‖2

+ ‖xk+1−xk‖2Bk + 〈δk, xk−xk+1〉.

Combining the last two inequalities with the expression of �ρ,ν,μ and λ = ρν yields

�ρ,ν,μ(x
k) ≥ �ρ,ν,μ(xk+1)+ 〈δk, xk − xk+1〉 + ‖xk+1−xk‖2Bk
≥ �ρ,ν,μ(xk+1)+ 〈δk, xk − xk+1〉 + ‖xk+1−xk‖2B
≥ �ρ,ν,μ(xk+1)− 1

2
‖B−1/2δk‖2 − 1

2
‖B1/2(xk+1−xk)‖2 + ‖xk+1−xk‖2B

≥ �ρ,ν,μ(xk+1)− 1

4
‖xk − xk−1‖2B +

1

2
‖xk+1−xk‖2B

where the second inequality is due to the positive semidefiniteness of Bk − B, the
third one is using the Cauchy-Schwartz inequality, and the last one is due to the upper
bound for ‖δk‖. Along with the definition of �ρ,ν,μ, we get the desired inequality.
(ii) By the definition of xk in (19) and [49, Theorem 23.8], for each k ∈ N,

0 ∈ ∂ f (xk)+ μxk + λ[vk−11 ∂|xk1 | × · · · × vk−1p ∂|xkp|
]+ Bk−1(xk−xk−1)− δk−1.

In addition, from equation (16) and Proposition 3 (i), it follows that

∂�ρ,ν,μ(x
k) = ∂ f (xk)+ μxk + λ[∂|xk1 | × · · · × ∂|xkp|

]− λwρ(xk) ◦ sign(xk).

Note that ∂|xki | = {sign(xki )} if xki �= 0 and ∂|xki | = [−1, 1] if xki = 0. Then, we have

δk−1−Bk−1(xk−xk−1)+ λ[wρ(xk−1)− wρ(xk)] ◦ sign(xk) ∈ ∂�ρ,ν,μ(xk).

Letuk:=δk−1−Bk−1(xk−xk−1)+λ[wρ(xk−1)−wρ(xk)]◦sign(xk). Then, by combining
uk ∈ ∂�ρ,ν,μ(xk) with the definition of �ρ,ν,μ, it is not hard to verify that ζ k :=(uk+
B(xk−xk−1);B(xk−xk−1)) ∈ ∂�ρ,ν,μ(xk, xk−1) with

‖ζ k‖ ≤ 2‖B‖‖xk−xk−1‖ + ‖δk−1‖ + ‖Bk−1‖‖xk−xk−1‖
+ λ‖[wρ(xk−1)−wρ(xk)] ◦ sign(xk)‖.

Recall that wρ is Lipschitz continuous with modulus ρ/σ . From (16), it follows that

‖[wρ(xk−1)−wρ(xk)] ◦ sign(xk)‖ ≤ ‖wρ(xk−1)−wρ(xk)‖ ≤ (ρ/σ)‖xk−1−xk‖.
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Note that ‖Bk−1‖ ≤ ‖B0‖ with B0:=γ1,0 I+γ2,0ATA. From ‖δk−1‖ ≤ ‖xk−1−xk−2‖√
2‖B−1/2‖ ,

‖ζ k‖ ≤ (2‖B‖+‖B0‖ + λρ/σ)‖xk−xk−1‖ + 1√
2‖B−1/2‖‖x

k−1−xk−2‖.

The desired result follows with b1 = 2‖B‖+‖B0‖ + λρ
σ

and b2 = 1√
2‖B−1/2‖ . ��

Lemma 5 Let �(x0) denote the cluster point set of the sequence {xk}k∈N and define
the set �:={(x, x) | x ∈ �(x0)}. Then, the following assertions hold.

(i) �(x0) is a nonempty compact set and �(x0) ⊆ crit�ρ,ν,μ;
(ii) � ⊆ crit�ρ,ν,μ and limk→∞ dist((xk, xk−1),�) = 0;
(iii) the function �ρ,ν,μ is finite and keeps the constant on the set �.

Proof (i) Since {(xk, xk−1)} ⊆{(x, y) ∈ R
p × R

p |�ρ,ν,μ(x, y) ≤ �ρ,ν,μ(x0, x−1)}
by Lemma 4 (i), the boundedness of {xk}k∈N is implied by the coerciveness
of �ρ,ν,μ. This means that �(x0) is a nonempty compact set. Pick any x ∈
�(x0). Then there exists a subsequence {xkq }q∈N such that limq→∞ xkq = x .
By Lemma 4 (i), it is easy to obtain limq→∞ xkq−1 = x . We next argue that
limq→∞�ρ,ν,μ(xkq ) = �ρ,ν,μ(x). From the lower semicontinuity of �ρ,ν,μ, clearly,
lim infq→∞�ρ,ν,μ(xkq ) ≥ �ρ,ν,μ(x). In addition, from the definition of xk in Step 2
and x ∈ dom f , it follows that

fμ(x
kq )+ λ〈vkq−1, |xkq |〉 + 1

2
‖xkq−xkq−1‖2Bkq−1 − 〈δkq−1, xkq − xkq−1〉

≤ fμ(x)+ λ〈vkq−1, |x |〉 + 1

2
‖x−xkq−1‖2Bkq−1 − 〈δkq−1, x − xkq−1〉

which, by the definition of �ρ,ν,μ and λ = ρν, is equivalent to saying that

�ρ,ν,μ(x
kq )− λ〈wρ(xkq−1), |xkq |〉 + λgρ(xkq )+ 1

2
‖xkq−xkq−1‖2Bkq−1

≤ �ρ,ν,μ(x)− λ〈wρ(xkq−1), |x |〉 + λgρ(x)+ 1

2
‖x−xkq−1‖2Bkq−1+〈δkq−1, xkq−x〉.

Passing the limit q → ∞ to this inequality and using the continuity of wρ and gρ
and the boundedness of {Bk}k∈N, we obtain lim supq→∞�ρ,ν,μ(xkq ) ≤ �ρ,ν,μ(x).
Consequently, the stated limit holds. By the proof of Lemma4 (ii), ukq ∈ ∂�ρ,ν,μ(xkq ),
and moreover, from the definition of ukq , it is easy to verify that limq→∞ ukq = 0.
Together with limq→∞ xkq = x and limq→∞�ρ,ν,μ(xkq ) = �ρ,ν,μ(x), we obtain
0 ∈ ∂�ρ,ν,μ(x), i.e. x ∈ crit�ρ,ν,μ. Consequently, �(x0) ⊆ crit�ρ,ν,μ.
(ii)-(iii) Part (ii) is immediate by part (i) and the expression of�ρ,ν,μ. For part (iii), by
picking any (x, x) ∈ �, there exists a subsequence {xkq }q∈N such that limq→∞ xkq =
x . By Lemma 4 (i), limq→∞�ρ,ν,μ(xkq ) = � ∗ for some � ∗ ≥ 0. In addition,
from the expression of �ρ,ν,μ and limq→∞ xkq−1 = x , it follows that �ρ,ν,μ(x, x) =
limq→∞�ρ,ν,μ(xkq ). Thus, �ρ,ν,μ(x, x) = � ∗. ��
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When �ρ,ν,μ is a KL function, �ρ,ν,μ is also a KL function, and if �ρ,ν,μ has the
KL property of exponent 1/2 at x ∈ dom�ρ,ν,μ, then by the proof of [33, Theorem
3.6], it is easy to verify that �ρ,ν,μ has the KL property of exponent 1/2 at (x, x) ∈
dom�ρ,ν,μ. Thus, by using Lemma 4-5 and following the similar arguments to those
for [6, Theorem 1] and [1, Theorem 2], we can achieve the following convergence
results although the subgradient lower bound in Lemma 4 (ii) has a different form the
one used in [6, Theorem 1] and [1, Theorem 2].

Theorem 4 Let {xk}k∈N be the sequence generated by Algorithm 1. The following
assertions hold:

(i) If �ρ,ν,μ is a KL function, then {xk}k∈N is convergent, and its limit, say x, is a
strongly local optimal solution of (14) and (1) whenever |x |nz ≥ φ′+(1)/ρ.

(ii) If �ρ,ν,μ has the KL property of exponent 1/2 at x, then the sequence {xk}k∈N
converges to x in a R-linear rate.

Remark 4 By [2, Section 4.3], there are many types of ϑ and φ ∈ Lσ,γ such that the
associated �ρ,ν,μ is a KL function. For example, if ϑ and φ ∈ Lσ,γ are definable in
an o-minimal structure over R, then so is �ρ,ν,μ and hence is a KL function.

Suppose thatϑ and φ ∈Lσ,γ are PLQ functions definable in an o-minimal structure
over R. Then the associated �ρ,ν,μ is a PLQ KL function, which means that its sub-
differential mapping is a polyhedral multifunction and hence is metrically subregular
by [51, Proposition 1], and moreover, it is not hard to verify that Assumption 3.1 of
[41] holds when �ρ,ν,μ is a KL function. By [41, Theorem 3.2 (ii)], the associated
�ρ,ν,μ is a KL function of exponent 1/2. Clearly, the functions ϑ defined in (2) or (3),
and the φ from Example 2 and 3 are such convex functions.

4.2 Statistical error bound of the limit

This section focuses on the scenario where each row aTi of A follows the normal
distribution N (0,  ) and b =(b1, . . . , bn)T is from a linear observation model

bi = aTi x
∗ +�i , i = 1, 2, . . . , n, (21)

where x∗ ∈ dom f is the true but unknown vector with sparsity s∗ � p, and � =
(�1, . . . ,�n)

T �= 0 is the noise vector. We shall verify that the limit x of the sequence
{xk}k∈N is good from the statistical perspective by establishing its error bound to the
true x∗. This requires the following assumption onϑ , which is satisfied by the functions
ϑ defined in (2) and (3).

Assumption 2 ϑ(z) ≡ 1
n

∑n
i=1 θ(zi ) for a PLQ convex function θ : R→ R+, where

θ(0) = 0, θ2 is strongly convex with modulus τ > 0, and there exists τ̃ > 0 such that

|η| ≤ τ̃ for all η ∈ ∂θ(t) and all t ∈ R. (22)

Since we are interested in the high-dimensional case, i.e. n < p, the sample
covariance matrix 1

n A
TA is not positive definite, but it may be positive definite

123



Zero-norm regularized problems: equivalent surrogates, proximal… 645

on a subset C of R
p. For a given index set S ⊂ {1, . . . , p}, the sample covari-

ance matrix 1
n A

TA is said to satisfy the restricted eigenvalue (RE) condition over
C={x ∈ R

p | ‖xSc‖1 ≤ 3‖xS‖1} with parameter κ > 0 and Sc:={1, . . . , p}\S if

1

2n
‖Ax‖2 ≥ κ‖x‖2 for all x ∈ C.

Let S∗ represent the support of the true vector x∗ in model (21). In the sequel, we need
a RE condition of 1

n A
TA over a set C(S∗) with parameter κ > 0, where

C(S∗):=
⋃

S∗⊂S,|S|≤1.5s∗

{
x ∈ R

p : ‖xSc‖1 ≤ 3‖xS‖1
}

comprises those vector x with small components x j for j /∈ S∗. By [46, Corollary 1], if
 satisfies the RE condition over C(S∗)with parameter κ > 0 (for example, is pos-
itive definite), then for n > α

max1≤ j≤p  j j
κ

s∗ log p, the matrix 1
n A

TA satisfies the RE
condition over C(S∗) of parameter

√
2κ/8 with probability at least 1−α′ exp(−α′′n),

where α, α′ and α′′ are the universal positive constants. This means that, for those A
with aTi ∼ N (0,  ) for a positive definite  , the matrx 1

n A
TA for an appropriately

large n satisfies the RE condition over C(S∗) with a high probability.
by Lemma 9 in “Appendix B”, we achieve the following error bound result.

Theorem 5 Suppose that 1
n A

TA satisfies the RE condition of parameter κ > 0 over

C(S∗), and that the sample size n satisfies n > 72τ̃ 2 s∗‖A‖∞�AI·�1
τκ−2μτ̃(27 s∗‖A‖∞‖x∗‖∞−‖�‖∞) for

‖�‖∞ < 27s∗‖A‖∞‖x∗‖∞ with I = supp(�). If the chosen λ belongs to the
interval

[16τ̃

n
�AI·�1 +12μ‖x∗‖∞, 2μτ̃‖�‖∞ + τκ − 4τ̃‖A‖∞(2τ̃n−1�AI·�1 +1.5μ‖x∗‖∞)s∗

4τ̃‖A‖∞s∗
]
,

then the limit x of the sequence {xk}k∈N with |xi | ≤ γ
2 for i /∈ S∗ satisfies

‖x − x∗‖ ≤ 2τ̃‖�‖∞
(
λ+ 2τ̃n−1�AI·�1 +μ‖x∗‖∞

)√
s∗

2μτ̃‖�‖∞ + τκ − 4τ̃‖A‖∞
(
λ+ 2τ̃n−1�AI·�1 +μ‖x∗‖∞

)
s∗
.(23)

Theorem 5 states that, when solving the surrogate problem (14) for an appropriate
λ = ρν with Algorithm 1, the limit x of the generated sequence with |xi | ≤ γ /2
for i /∈ S∗ has the error bound in (23). The requirement on x is rather mild and is
more reasonable than the one used in [10, Assumption 3.7] for smooth loss functions
because it allows x to have more small nonzero entries than the true x∗. From (23),
we see that as the sample size n increases, the error bound of x to x∗ becomes better,
and when the data (b, A) from (21) for� with a higher sparsity or a smaller ‖�‖∞,
the error bound is also better.

Proof Since xk → x as k → ∞ and γ1,k ∈ [γ1, γ1,0] and γ2,k ∈ [γ2, γ2,0], by the

definition of ξ k in (B8) and ‖δk−1‖ ≤ ‖B1/2(xk−1−xk−2)‖√
2‖B−1/2‖ , we have ξ k → −μx∗. Then
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there exists k̂ ∈ N such that for all k ≥ k̂, μ2 ‖x‖∗∞ < ‖ξ k‖∞ <
3μ
2 ‖x∗‖∞. From

xk → x ,there exists k̃ ∈ N such that for all k ≥ k̃ and each i ∈ {1, 2, . . . , n},

|xki | − |xi | ≤ |xki − xi | ≤ γ /3.

This, by the assumption on x , implies that |xki | ≤ 5γ
6 for i /∈ S∗. By the proof of

Lemma 7 and the expression of wρ(xk), we have vki = 1 for each i ∈ (S∗)c when
k ≥ k̃. Set k:=max(̂k, k̃). Then, for all k ≥ k+1, Sk−1 ≡ S∗ satisfies the assumption
of Lemma 9. Since ‖vk−1S∗ ‖∞ ≤ 1 and 1

2μ‖x‖∗∞ < ‖ξ k‖∞ < 3
2μ‖x∗‖∞ for all

k ≥ k + 1, the choice of the parameter λ implies that for all k ≥ k + 1,

16τ̃

n
�AI·�1 +8‖ξ k‖∞ ≤ λ < 2μτ̃‖�‖∞ + τκ − 4τ̃‖A‖∞(2τ̃n−1 � AI· �1 +‖ξ k‖∞)|Sk−1|

4τ̃‖A‖∞‖vk−1S∗ ‖∞|Sk−1|
.

From Lemma 9, we immediately obtain the following inequality

‖xk−x∗‖ ≤ 2τ̃‖�‖∞
(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)√|Sk−1|
2μτ̃‖�‖∞ + τκ − 4τ̃‖A‖∞

(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)|Sk−1|

≤ 2τ̃‖�‖∞
(
λ+ 2τ̃n−1�AI·�1 +‖ξ k‖∞

)√
s∗

2μτ̃‖�‖∞ + τκ − 4τ̃‖A‖∞
(
λ+ 2τ̃n−1�AI·�1 +‖ξ k‖∞

)
s∗
.

Taking the limit k →∞ to the both sides and using ξ k → μx∗ yields the result. ��

Remark 5 Let n = 72τ̃ 2 s∗‖A‖∞�AI·�1
τκ−2μτ̃(27 s∗‖A‖∞‖x∗‖∞−‖�‖∞) . When n > n, by recalling that

μ > 0 is a tiny constant, the choice interval of λ is nonempty and will become larger
as n increases. Obviously, the threshold n of the sample size increases as the sparsity
of � becomes worse. Similar to [36] for the smooth loss, our choice interval of λ
involves ‖�‖∞ and a restriction on the sparsity of� . As the sparsity of� increases,
the value of λ becomes smaller and the error bound of x to the true x∗ becomes better.
Similar to the �1-regularized squared-root loss in [3], the parameter λ is required to
lie in an interval depending on the sparsity s∗, and a large s∗ implies a small interval
of λ.

The limit x of the sequence {xk}k∈N depends on the starting point. For the starting
point x0 used in Algorithm 1, the following proposition states that it satisfies the error
bound ‖x0 − x∗‖ ≤ α√s∗ for a certain constant α > 0 related to γ̃1,0 and γ̃2,0. Its
proof is included in “Appendix B”.

Proposition 6 Suppose that the inexactness of x0 is defined in the sense of (20), and

that λ̃ ≥ 2( τ̃n�A�1+γ̃1,0‖x∗‖∞ + γ̃2,0‖ATAx∗‖∞+ ε̃0). Then, ‖x0− x∗‖ ≤ 3̃λ
√
s∗

2γ̃1,0
.

4.3 Dual PPA plus semismooth Newtonmethod

The practical efficiency of Algorithm 1 depends on whether the strongly convex sub-
problem (19) is well solved. Since it involves two nonsmooth terms, ADMM becomes
a conventional solver for it. However, it is extremely time-consuming for ADMM to
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solve those subproblems with smaller γ1,k and γ2,k , especially under the scenarios
where ATA has a large spectral norm, because the strong convexity of (19) becomes
worse and worse as the proximal parameters γ1,k and γ2,k decrease. Inspired by this,
we develop a powerful dual PPA armed with the semismooth Newton method to solve
the subproblem (19).

By introducing a variable z ∈ R
p, the subproblem (19) can be rewritten as

min
x∈Rp,z∈Rp

ϑ(z)+ hk(x)+ γ1,k
2
‖x−xk‖2 + γ2,k

2
‖z−(Axk−b)‖2−〈δk, x − xk〉

s.t. Ax − b − z = 0 with hk(x):=λ‖vk ◦ x‖1 + μ
2
‖x‖2, (24)

whose dual problem, after an elementary calculation, takes the following form

min
u∈Rn

‖u‖2
2γ2,k

− e
γ−12,k
ϑ
(
Axk−b + u

γ2,k

)
− e

γ−11,k
hk
(
xk − ATu−δk

γ1,k

)
+ ‖A

Tu−δk‖2
2γ1,k

.(25)

Clearly, the strong duality holds for problems (24) and (25). It is worth emphasizing
that a direct application of the semismooth Newton method to (25) will fail since
its generalized Hessian may be singular. Hence, we propose the following inexact
PPA armed with the semismooth Newton method, where �k represents the objective
function of the dual problem (25).

Algorithm A Inexact PPA with semismooth Newton (dPPASN)
Require: Fix a k ∈ N. Choose τ ≥ 0, τ0 > 0 and an initial u0 ∈ R

n . Set j = 0.
1: while the stopping conditions are not satisfied do
2: Compute the following u j+1 with the semismooth Newton method

u j+1 ≈ min
u∈Rn

ϒk, j (u):=�k (u)+
τ j

2
‖u − u j‖2. (26)

3: Update τ j+1 ↓ τ . Let j ← j + 1, and then go to Step 1.
4: end while

By [48, Section 3] we use the following criterion for the inexactness in (26):

‖∇ϒk, j (u
j+1)‖ ≤ α jτj‖u j+1 − u j‖ with

∑∞
j=0 α j <∞.

For the global and linear convergence analysis of Algorithm A under this criterion,
the reader can refer to the papers [16, 48].

Solving the subproblem (26) is equivalent to seeking the root of the system∇ϒk, j =
0. Since the mapping ∇ϒk, j : Rn → R

n is Lipschitz continuous, we define the
generalized Hessian of ϒk, j at u by ∂2ϒk, j (u):=∂C∇ϒk, j (u). By [27, Theorem 2.2],
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∂2ϒk, j (u)d = ∂̂2ϒk, j (u)d for all d ∈ R
n with

∂̂2ϒk, j (u)=τj I +
∂CPγ−12,k

ϑ
(
Axk− b+ u

γ2,k

)

γ2,k
+

A∂CPγ−11,k
hk
(
xk− ATu−δk

γ1,k

)
AT

γ1,k
.

By mimicking the proof in [40, Section 3.3.4], every U ∈ ∂CPγ−12,k
ϑ
(
Axk− b+ u

γ2,k

)

is symmetric and positive semidefinite, while by Lemma 2 every V ∈ ∂CPγ−11,k
hk
(
xk−

ATu−δk
γ1,k

)
is a positive semidefinite diagonal matrix. Along with τ j > 0 for each j ∈ N,

thematrix τ j I+γ−12,k U+γ−11,k AVA
T is positive definite, so every element in ∂̂2ϒk, j (u)

is nonsingular. Thus, the following semismooth Newton method can be employed to
seek the inexact u j+1 in (26), whose global and local convergence analysis can be
found in [66, Theorem 3.3−3.4].

Algorithm A.1 Semismooth Newton method
Require: Fix k, j ∈ N. Choose η, β∈ (0, 1), ς ∈ (0, 1], 0 < c1 < c2 <

1
2 . Let u

0 = u j and set l = 0.
1: while the stopping conditions are not satisfied do

2: Choose Ul ∈∂CPγ−12,k
ϑ
(
Axk− b+ ul

γ2,k

)
and V l ∈ ∂CPγ−11,k

hk
(
xk− ATul−δk

γ1,k

)
.

3: Solve the following linear system exactly or by an iterative method

Wld = −∇ϒk, j (u
l ) with Wl = τ j I + γ−12,k U

l + γ−11,k AV
l AT

to find dl such that ‖Wldl + ∇ϒk, j (u
l )‖ ≤ min(η, ‖∇ϒk, j (u

l )‖1+ς ).
4: Set αl = βml , where ml is the smallest nonnegative integer m satisfying

ϒk, j (u
l+βmdl ) ≤ ϒk, j (u

l )+ c1β
m 〈∇ϒk, j (u

l ), dl 〉
|〈∇ϒk, j (u

l+βmdl ), dl 〉| ≤ c2|〈∇ϒk, j (u
l ), dl 〉|.

5: Set ul+1 = ul + αl dl . Let l ← l + 1, and then go to Step 1.
6: end while

In the sequel, Algorithm 1 armed with dPPASN is termed as PMMSN. To close this
subsection,we take a look at the stopping criterion for PMMSN.Lethλ,μ(x):=λ‖x‖1+
μ
2 ‖x‖2 with λ = ρν for x ∈ R

p. By Proposition 3 (i), a vector x ∈ R
p is a critical

point of �ρ,ν,μ if and only if there exists u ∈ R
n such that the triple (x, z, u) with

z = Ax−b satisfies the following system

0 ∈ ∂ϑ(z)− u, 0 ∈ ATu − λwρ(x) ◦ sign(x)+ ∂hλ,μ(x) and Ax − b − z = 0.

which by the proximal mappings of ϑ and hλ,μ can be equivalently written as

z − Pϑ(z + u) = 0, x − Phλ,μ(x−ATu + λwρ(x) ◦ sign(x)) = 0 and Ax − b − z = 0.
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In view of this, we terminate Algorithm 1 at (xk, zk, uk) when k ≥ kmax or

Ek :=‖[R
k
1; Rk

2; Axk−b−zk]‖
1+ ‖b‖ ≤ tol (27)

with Rk
1:=zk−Pϑ(zk+uk) and Rk

2:=xk−Phλ,μ(xk− ATuk+λwρ(xk) ◦ sign(xk)).
Here, zk = Axk − b and uk is the inexact solution to (25) given by dPPASN.

5 Numerical experiments

We test the performance of PMMSN and compare its performancewith that of ADMM
and accelerated proximal gradient (APG) for solving the DC surrogate problem (14).
Among others, APG is applied to the partially smoothed version of problem (14). Such
two methods are very common to solve some structured nonconvex and nonsmooth
problems.All numerical tests are performed inMATLABona laptop computer running
on 64-bit Windows Operating System with an Intel(R) Core(TM) i7-8565U CPU
1.80GHz and 8 GB memory.

5.1 ADMM and APG for surrogate problem

For any given ν > 0, μ > 0, ρ > 0, let gρ,λ,μ(x):=λ(‖x‖1 −gρ(x)) + μ
2 ‖x‖2 with

λ = ρν for x ∈ R
p. Observe that problem (14) is equivalent to

min
x,s∈Rp,z∈Rn

{
ϑ(z)+ gρ,λ,μ(s) s.t. Ax − z − b = 0, x − s = 0

}
, (28)

and the proximal mapping of gρ,λ,μ has a closed form. It is natural to apply the
classical ADMM [24] to solving the problem (28). For a given β > 0, the augmented
Lagrangian function of problem (28) is defined by

Lβ(x, z, s; u, v):=ϑ(z)+ gρ,λ,μ(s)+ 〈u, Ax − b − z〉 + 〈v, x − s〉
+ β

2

[‖Ax − b − z‖2 + ‖x − s‖2].

The iteration steps of the ADMM for solving (14) are described as follows.
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Algorithm 2 (ADMM for surrogate problem (14))
Require: Choose ρ ≥ 1, β > 0 and an initial (z0, s0, u0, v0). Let λ = ρν.
1: for k = 0, 1, 2, . . . do
2: Compute the optimal solution of the following problems

{
xk+1 = argminx∈Rp Lβ(x, z

k , sk ; uk , vk ); (29a)
(zk+1, sk+1) = argminz∈Rn ,s∈Rp Lβ(x

k+1, z, s; uk , vk ) (29b).

3: Let uk+1 = uk + β(Axk+1− zk+1− b) and vk+1 = vk + β(xk+1 − sk+1).
4: end for

Remark 6 (a) By the expression of Lβ , an elementary calculation yields that

xk+1 = (I + ATA)−1
[
sk + AT(b + zk − uk/β)− vk/β],

zk+1 = Pβ−1ϑ(Axk+1− b + β−1uk) and sk+1 ∈ Pβ−1gρ,λ,μ
(
xk+1 + vk/β). (30)

Since the proximal mapping of gρ,λ,μ has a closed form, the main cost of ADMM in
each step is to solve system (30). When n is small or medium-scale, one can use the
direct method which, by the Sherman-Morrison-Woodbury formula, is equivalent to
requiring a Cholesky decomposition I + AAT; when n is large-scale, one may use
an iterative method such as the conjugate gradient to get xk+1. For Algorithm 2, we
terminate it at the iterate (xk, zk, sk, uk, vk)when k ≥ kmax, or the primal infeasibility
pinfk ≤ ε1admm and the relative KKT residual Errk ≤ ε2admm where

pinfk :=
√

‖Axk−zk−b‖2 + ‖xk − sk‖2,

Errk :=
√
‖sk − Pgρ,λ,μ(sk + vk)‖2 + ‖zk − Pϑ(zk+ uk)‖2 + ‖Axk−zk−b‖2

1+ ‖b‖ .

(b) To the best of our knowledge, there is no convergence certificate on ADMM for
the DC problem (28) due to the nonsmoothness of ϑ , and the convergence results in
[56] are inapplicable to it. Nevertheless, as will be shown in Sect. 5.2, this method still
works for our test examples.

The APG for the problem (14) is developed by its partially smoothed form

min
x∈Rp

{
eεϑ(Ax − b)+ λ(‖x‖1 − ϕρ,λ(x))+ μ

2
‖x‖2

}
, (31)

where eεϑ is the Moreau envelope of ϑ w.r.t. parameter ε > 0, and ϕρ,λ is same as in
the proof of Proposition 3 (iii). Since eεϑ is smooth with Lipschitz gradient and the
proximal mapping of ϕρ,λ has a closed form, one may apply Nesterov’s APG [39] for
solving (31). The iterates ofAPGare as follows,where fε,μ(x):=eεϑ(Ax−b)+μ

2 ‖x‖2
and L is the Lipschitz modulus of ∇ fε,μ.
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Algorithm 3 (APG for DC surrogate problem (14))
Require: Choose ρ ≥ 1, ε > 0 and an initial x0. Let λ = ρν. Set t−1 = t0 = 1.
1: for k = 0, 1, 2, . . . do
2: Let yk = xk + tk−1−1

tk
(xk − xk−1) and compute

xk+1 = argmin
x∈Rp

{
〈∇ fε,μ(y

k ), x − yk 〉 + (L/2)‖x − yk‖2 + ϕρ,λ(x)
}
.

3: Set tk+1 = 1
2 (1+

√
1+ 4t2k ).

4: end for

For the convergence analysis of APG under the above nonconvex and nonsmooth
setting, the reader may refer to [58]. For Algorithm 3, we terminate at xk when

‖xk − Pϕρ,λ(xk − AT∇eεϑ(Axk−b)− μxk)‖
1+ ‖b‖ ≤ εapg. (32)

5.2 Implementation details of three solvers

We choose ϑ(z) = 1
n

∑n
i=1 θ(zi ) with θ(t) = |t | to test the performance of PMMSN,

ADMM and APG for solving the surrogate problem (14) associated to φ in Example 3
for a = 4.0. For such ϑ and φ, the assumptions of Theorems 2 and 4 are satisfied
and Assumption 2 in Sect. 4.2 also holds. We measure the performance of a solver in
terms of the approximate sparsity and relative �2-error of its output xout, the objective
value of (14) at xout, and the CPU time, where the approximate sparsity and relative
�2-error of xout is defined as

Nnz(x
out):=

p∑

i=1
I
{|xouti | >10−8‖xout‖∞

}
and L2err:=‖x

out−x∗‖
‖x∗‖ .

We terminate Algorithm 1 at xk when condition (27) is satisfied for tol = 10−6
and Nnz(xk) = Nnz(xk−1) = Nnz(xk−2); terminate ADMM at xk when Errk ≤
10−4, pinfk ≤ 10−4 and Nnz(xk) = · · · = Nnz(xk−49); and terminate APG at xk

when the criterion (32) holds with εapg = 10−5 and Nnz(xk) = · · · = Nnz(xk−49).
Since the approximate sparsity yielded by ADMM and APG has a worse stability, we
terminate the two solvers when the approximate sparsity keeps unchanged in the past
50 steps instead of 2 steps as for Algorithm 1. The three solvers are also terminated
when k > kmax, where kmax = 100, 25000 and 20000 are respectively used for
Algorithm 1, ADMM and APG.

During the testing, we chooseμ = 10−8, ρ = 2 and the parameter ν (or λ = ρν) is
specified in the examples. The parameters ofAlgorithm1 are choose as follows: γ̃1,0 =
γ1,0 = 10−3, γ̃2,0 = γ2,0 = 10−4, and γ1 = γ2 = 10−6. For ADMM, we choose

β = 1. The starting point of ADMM is chosen to be (z0, s0, u0, v0) = (−b, 0, 0, 0),
and that of APG is chosen to be x0 = 0.
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Fig. 1 The relative �2-error of three solvers under different sparsity rate (n − |I|)/n and λ

For the smoothing parameter ε in (31), preliminary tests indicate that, when ε
increases, the sparsity and relative �2-error of the output xε for APG become better
and keep unchanged once ε is over a threshold; while the loss 1

n ‖Axε − b‖1 first
increases and then decreases a certain level and keeps it unchanged. In view of this,
we regard the smallest one among those ε for which xε has the sparsity closest to the
sparsity of the true x∗ for synthetic data (respectively, the output of PMMSN for real
data) as the best, by noting that such xε usually has a favorable �2-error andmodel (31)
with a smaller ε is closer to (14). We search such a suboptimal ε∗ from an appropriate
interval by comparing the sparsity of xε corresponding to 20 ε’s. The search of such
ε∗, albeit impracticality, is just for numerical comparisons.

5.3 Numerical comparisons on synthetic data

We test the performance of three solvers on synthetic data (b, A), where b is obtained
from the linear observation model (21) with each aTi ∼N (0,  ) and a noise vector�
with i.i.d. nonzero entries. The covariance matrix  , the true x∗ and the distribution
of the nonzero entries of � are specified below.

5.3.1 Performance under different sparsity of$

We use the example in [26] for testing, which is generated randomly as follows.

Example 4 Take (n, p) = (200, 1000), i j = 0.8|i− j | and �I ∼ N (0, 2I ). The true
x∗ has the form (2, 0, 1.5, 0, 0.8, 0, 0, 1, 0, 1.75, 0, 0, 0.75, 0, 0, 0.3, 0, . . . , 0)T.

The left subfigure of Fig. 1plots the average relative �2-error of three solvers for solving
10 test problems under different sparsity rate of the noise vector� . PMMSN is solving
the problem (14) with λ = max(10−4, 1

2p � A�1), ADMM is solving (28) with the
same λ, and APG is solving the partially smoothed form (31) with the same λ and
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ε∗ = 1.5. We see that the average relative �2-error of three solvers decreases as the
sparsity rate increases, which is consistent with the conclusion of Theorem 5, and the
average �2-errors of three solvers are comparable under different sparsity rate for this
example.

5.3.2 Performance under different �

We test the performance of three solvers under different λ by using the following
example from [26], which involves a heavily-tailed noise.

Example 5 Be same as Example 4 except that �I = ‖Ax∗‖
3‖ξI‖ ξI with |I| = "0.5n#,

where all entries of ξI obey the Cauchy distribution of density d(u) = 1
π(1+u2) .

The right subfigure of Fig. 1 plots the average relative �2-error curve of three solvers
under different λ, where ADMM is solving (28) with the same λ, and APG is solving
the partially smoothed form (31) with the same λ and ε∗ = 1.5.We see that the average
relative �2-error of three solvers have an arc curve as λ increases in [0.01, 0.5], and
the relative �2-error of PMMSN and ADMM is lower than that of APG. This means
that if the sparsity of � is well controlled, there exists an interval of λ in which the
error bound of the outputs of three solvers has a small variation, and the interval for
PMMSN and ADMM is larger than the one for APG.

5.3.3 Performance on other sparse noises

We test the performance of three solvers for other types of sparse noises via 25 exam-
ples, generated with p = 5000, s∗ = "√p/2# and n = "2 s∗ ln p#. The sparsity of
� is set to be |I| = "0.3n# and the nonzero entries of x∗ follow N (0, 4). The noise
� comes from the distributions used in [26], including (1) the normal distribution
N (0, 102) (2) the scaled Student’s t-distribution with 4 degrees of freedom

√
2 × t4

(3) the Cauchy distribution with density d(u) = 1
π(1+u2) (4) the mixture normal dis-

tribution N (0, σ 2) with σ ∼Unif(1, 5), denoted by MN2 (5) the Laplace distribution
with density d(u) = 0.5 exp(−|u|). The covariance matrix  includes (1)  = I
(2)  = (0.5|i− j |) (3)  = (0.8|i− j |) (4)  = (α + (1 −α)I{i= j}) for α = 0.5 (5)
 = (α + (1−α)I{i= j}) for α = 0.8.

Table 1 reports the average result of 10 test problems for each case with λ =
λc max(10−4,�A �1 /p), where a=PMMSN, b=ADMM and c=APG, Nz denotes
the average approximate sparsity of xout, Obj means the average objective value of
(14),FP andFZ represent the average number of false positives and false zeros of xout,
respectively, and ε∗ columns list the suboptimal ε used for APG.We see that PMMSN
yields the lowest objective value and relative �2-error and the best (FP,FZ) for all
examples, and the average sparsity of its output equals that of x∗ for all examples
except ( ,�) = (3, 1); while ADMM has a comparable performance with APG in
terms of the relative �2-error and the objective value.We find that APG yields theworst
sparsity and (FP,FZ) for those examples with the covariance matrix  from (4)–(5)
or noise � from the Cauchy distribution because the parameter ε is very sensitive to
the data and the suboptimal ε∗ is not suitable for all 10 test problems. This shows that
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replacing ϑ with its smooth approximation eεϑ is not effective for highly-relevant  
and heavily-tailed sparse noises, though ε is elaborately selected. In addition, PMMSN
requires the least CPU time that is at most a fiftieth of the CPU time for ADMM and
a fifth of the CPU time for APG.

5.4 Numerical comparisons on real data

This part uses the LIBSVM datasets from https://www.csie.ntu.edu.tw to test the effi-
ciency of PMMSN for large scale problems. For those data sets with a few features,
such as pyrim, abalone, bodyfat, housing, space ga, we follow the same technique
as in [53] to expand their original features by using polynomial basis functions over
those features. For example, the last digit in pyrim5 indicates that a polynomial of
order 5 is used to generate the basis function. Such a naming convention is also appli-
cable to the other expanded data sets. These data sets are quite difficult in terms of
the dimension and the largest eigenvalues of ATA. Table 2reports the results of three
solvers with λ specified in the third column. We see that the output of PMMSN has
the lowest objective value for ten examples, and for abalone7, housing7 and mpg7
its objective value is much less than that of the output yielded by ADMM and APG;
while the output of ADMM has much worse objective value than that of APG since
the maximum number of iterates 25000 is not enough for these examples. The CPU
time taken by PMMSN is less than one-third of the CPU time taken by APG and
one-fiftieth of the CPU time taken by ADMM for all examples except E2006.train
and E2006.test.with ADMM, APG has a little better performance and takes much less
CPU time, but its performance depends much on the smoothing parameter ε that is
very sensitive to those data with a highly-relevant covariancematrix or a heavily-tailed
sparse noise. From the numerical results on synthetic examples, we see that when the
sparsity of � attains a certain level, say, |I| ≤ 0.6n for the examples in Table 1,
the relative �2-error has an order about 10−10, close to the exact recovery. Then, it is
natural to ask for which kind of covariances and noises, the exact recovery of the limit
x can be achieved by controlling the sparsity of� . We leave this question for a future
topic.

6 Conclusions

For the zero-norm regularized problem, we verified that the penalty problem of its
equivalent MPEC reformulation is a global exact penalty, which implies a family of
equivalent DC surrogates. For a subfamily of these DC surrogates, we showed that
the critical point set coincides with the d-directional stationary point set, and when
a critical point has no too small nonzero component, it is a strongly local optimal
solution of the surrogate problem and the zero-norm regularized problem. We also
developed a proximal MM method for solving these DC surrogates, and provided its
theoretical certificates by establishing the global convergence and the local R-linear
rate of the generated iterate sequence. In particular, for the data (b, A) from a linear
observationmodel, the statistical error boundwas also achieved for the limit to the true
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vector. Numerical comparisons with ADMM and APG show that the proximal MM
method armed with dPPASN has a remarkable superiority in the quality of solutions
and the CPU time, and is very robust for A with a large spectral norm and b corrupted
by the heavily-tailed noise. It is worth pointing out that our global exact penalty result
and the proposed proximal MM method are applicable to the function ϑ = h + δ�,
where h : Rp → R is a finite convex function and � is a general polyhedral set{
x ∈ R

p |Cx − d ≥ 0
}
.
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Appendix A: Proof of Proposition 3

The following two technical lemmas are need for the proof of Proposition 3.

Lemma 6 Fix any ν > 0 and μ > 0. Let hν(x):=ν‖x‖0 for x ∈ R
p. If ϑ is regular

and strictly continuous relative to domϑ , then for any x ∈ dom f and ζ ∈ R
p,

∂̂�ν,μ(x) = ∂�ν,μ(x) = ∂ fμ(x)+ ∂hν(x), (A1)

d̂�ν,μ(x)(ζ ) = d�ν,μ(x)(ζ ) = d fμ(x)(ζ )+ dhν(x)(ζ ). (A2)

Proof Fix any x ∈ dom f and ζ ∈ R
p. Since ϑ is strictly continuous relative to domϑ ,

by the expression of fμ in (4), the function fμ can be rewritten as f̃μ+δdom f where f̃μ
is a finite strictly continuous function onRp. Clearly, f̃μ is regular by the regularity of
ϑ , and δdom f is also regular by the polyhedrality of domϑ . By invoking [50, Exercise
10.10] and the first inclusion of [50, Corollary 10.9], it is not hard to obtain that

∂ f̃μ(x)+ ∂̂(δdom f +hν)(x) ⊆ ∂̂�ν,μ(x) ⊆ ∂�ν,μ(x) ⊆ ∂ f̃μ(x)+ ∂(δdom f +hν)(x).

Since epi hν is a union of finitely many polyhedral sets and dom f is polyhedral,
from [29, Page 213] it follows that ∂(δdom f + hν)(x) ⊆ Ndom f (x) + ∂hν(x) and
∂∞(δdom f + hν)(x) ⊆ Ndom f (x)+ ∂∞hν(x). The first inclusion, along with the first
inclusion of [50, Corollary 10.9] and the regularity of δdom f and hν , implies that

Ndom f (x)+ ∂hν(x) ⊆ ∂̂(δdom f + hν)(x) ⊆ ∂(δdom f + hν)(x) ⊆ Ndom f (x)+ ∂hν(x).
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The regularity of hν is implied by [30, Theorem 1]. The last two equations imply the
first equality in (A1). By the strict continuity of f̃μ and [50, Corollary 10.9],

d�ν,μ(x)(ζ ) ≥ d f̃μ(x)(ζ )+dδdom f (x)(ζ )+dhν(x)(ζ ) = d fμ(x)(ζ )+ dhν(x)(ζ ),

d̂�ν,μ(x)(ζ ) ≤ d̂ f̃μ(x)(ζ )+d̂(δdom f +hν)(x)(ζ )

≤ d̂ f̃μ(x)(ζ )+ d̂δdom f (x)(ζ )+ d̂hν(x)(ζ )

= d f̃μ(x)(ζ )+ dδdom f (x)(ζ )+ dhν(x)(ζ )

= d fμ(x)(ζ )+ dhν(x)(ζ ) (A3)

where the second inequality in (A3) is due to ∂∞(δdom f +hν)(x) ⊆ Ndom f (x) +
∂∞hν(x) and [50, Exercise 8.23], and the first equality in (A3) is due to the regular-
ity of f̃μ, hν and dom f . Note that d̂�ν,μ(x)(ζ ) ≥ d�ν,μ(x)(ζ ). From the last two
inequality, we obtain the second equality in (A1). The proof is completed. ��
Lemma 7 Pick anyφ ∈Lσ,γ . The associated function gρ for anyρ > 0 is continuously
differentiable on R

p.

Proof Recall that ψ∗ is a finite nondecreasing convex function on R. If in addition
φ is strongly convex on [0, 1] with modulus σ , then by [49, Theorem 26.3] and [50,
Proposition 12.60],ψ∗ is smooth onR and (ψ∗)′ is Lipschitz continuous with constant
1/σ . Thus, by the expression of gρ , it suffices to argue that h(t):=ρ−1ψ∗(ρ|t |) for
t ∈ R is continuously differentiable at t = 0. Indeed, by the assumption on φ, it is
easy to verify that ψ∗(s) = 0 for all s ∈ [0, γ ]. Then, for all |t | ≤ γ , h(t) = 0.
Together with h(0) = 0, h is differentiable at t = 0 with h′(0) = 0. ��
Proof (i) Since the range of ∂ψ∗ is contained in dom∂ψ = [0, 1], for any x ∈ R

p it
holds that ‖x‖1− gρ(x) ≥ 0. Together with the nonnegativity and coerciveness of fμ,
it follows that�ρ,ν,μ is nonnegative and coercive. Fix any x ∈ dom f . From Lemma 7
and [50, Exericse 8.8], ∂̂�ρ,ν,μ(x) = ∂�ρ,ν,μ(x) = ∂( fμ+ρν‖ · ‖1)(x)−ρν∇gρ(x).
Recall that [Im(A)−b]∩domϑ �= ∅. By the convexity of ϑ and [49, Theorem 23.9],

∂( fμ+ρν‖ · ‖1)(x) = AT∂ϑ(Ax − b)+ μx + ρν∂‖x‖1.

The characterization on the regular and limiting subdifferentials of�ρ,ν,μ then holds.
(ii) By the definition of d-stationary point for DC program (see [42, Section 3]), a
point x ∈ dom f is a d-stationary point of (14) iff ρν∇gρ(x) ∈ ∂( fμ+ρν‖ · ‖1)(x),
which by part (i) is equivalent to saying that x ∈ dom f is a limiting critical point of
�ρ,ν,μ.
(iii) By [50, Theorem 13.24 (c)], it suffices to argue that d2�ρ,ν,μ(x |0)(ζ ) > 0 for all
ζ �= 0. Fix any ζ ∈ R

p\{0}. Let ϕρ,λ(x):=λ[‖x‖1−gρ(x)] with λ = ρν for x ∈ R
p.

Clearly, ϕρ,λ is Lipschitz continuous and regular by the smoothness of gρ . Note that
�ρ,ν,μ= fμ + ϕρ,λ. By invoking [50, Proposition 13.19], it follows that

d2�ρ,ν,μ(x |0)(ζ )≥ sup
u∈∂ fμ(x),v∈∂ϕρ,λ(x)

{
d2 fμ(x | u)(ζ )+ d2ϕρ,λ(x |v)(ζ ) s.t. u + v = 0

}
. (A4)
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Recall that fμ is strongly convex with modulus μ. By Definition 3, we have that

d2 fμ(x | u)(ζ ) ≥ μ‖ζ‖2 > 0 ∀u ∈ ∂ fμ(x). (A5)

Fix any v ∈ ∂ϕρ,λ(x). Since ϕρ,λ is Lipschitz and directionally differentiable,

〈v, ζ 〉 ≤ dϕρ,λ(x)(ζ ) = ϕ′ρ,λ(x, ζ ) = λ(‖ · ‖1)′(x, ζ )− λ〈∇gρ(x), ζ 〉.

By [50, Proposition 13.5], d2ϕρ,λ(x |v)(ζ ) = +∞ when dϕρ,λ(x)(ζ ) > 〈v, ζ 〉. This,
together with (A4)-(A5), implies that d2�ρ,ν,μ(x |0)(ζ ) > 0, so it suffices to consider
that ϕ′ρ,λ(x; ζ ) = 〈v, ζ 〉. In this case, from Definition 3 it follows that

d2ϕρ,λ(x |v)(ζ ) = lim inf
τ↓0
ζ ′→ζ

ϕρ,λ(x + τζ ′)−ϕρ,λ(x)−τϕ′ρ,λ(x, ζ ′)
1
2τ

2

= λ lim inf
τ↓0
ζ ′→ζ

−gρ(x+τζ ′)+ gρ(x)+ τ 〈∇gρ(x), ζ ′〉
1
2τ

2
, (A6)

where the second equality is because ‖x+τζ ′‖1−‖x‖1−τ(‖·‖1)′(x, ζ ′) = 0 for any
τ > 0 small enough. Let h(t):=ρ−1ψ∗(ρ|t |) for t ∈ R. Clearly, gρ(z) =∑p

i=1 h(zi )
for z ∈ R

p. When i /∈ supp(x), from the proof of Lemma 7, for all τ > 0 small
enough, we have h(xi+τζ ′i )− h(xi )− τh′(xi )ζ ′i = 0. When i ∈ supp(x), by noting
that ψ∗(s) = s − φ(1) for all s ≥ φ′+(1) and using the assumption |x |nz ≥ φ′+(1)/ρ,

h(xi+τζ ′i )− h(xi )− τh′(xi )ζ ′i = 0 = |xi+τζ ′i | − xi − τ sign(xi )ζ ′i = 0

for all sufficiently τ > 0. This means that, for all τ > 0 small enough,

−gρ(x + τζ ′)+ gρ(x)+ τ 〈∇gρ(x), ζ ′〉 = 0.

By combining this with (A6), we obtain from (A4)-(A5) that d2�ρ,ν,μ(x |0)(ζ ) > 0.
(iv) By Lemma 6, ĉrit�ν,μ = crit�ν,μ. We next argue that x ∈ ĉrit�ν,μ. Since
x ∈ crit�ρ,ν,μ, from part (i) it follows that

0 ∈ AT∂ϑ(Ax− b)+ μx + ρν[(1−(wρ(x))1)∂|x1| × · · · × (1−(wρ(x))p)∂|x p|
]

where [wρ(x)]i = (ψ∗)′(ρ|xi |) for i = 1, 2, . . . , p. By the definition of ψ∗, it is easy
to deduce that ψ∗(s) = s − φ(1) for all s ≥ φ′+(1). Together with |x |nz ≥ φ′+(1)/ρ,
it holds that [wρ(x)]i = (ψ∗)′(ρ|xi |) = 1 for all i ∈ supp(x). From [30, Theorem 1],
we know that ∂̂‖x‖0 = {v ∈ R

p | vi = 0 for i ∈ supp(x)}. This means that

ρν
[
(1−(wρ(x))1)∂|x1| × · · · × (1−(wρ(x))p)∂|x p|

] ⊆ ν∂̂‖x‖0.

From the last two equations, 0 ∈ AT∂ϑ(Ax− b)+ μx + ∂̂‖x‖0 = ∂̂�ν,μ(x), where
the equality is by Lemma 6. This means that x ∈ ĉrit�ν,μ. For the rest, it suffices to
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argue that every point in crit�ν,μ is a strongly local optimal solution of (1). Pick any
x ∈ crit�ν,μ. We only need to argue that d2�ν,μ(x |0)(ζ ) > 0 for all ζ �= 0. Fix any
0 �= ζ ∈ R

p. By combining Lemma 6 with [50, Proposition 13.19], it holds that

d2�ν,μ(x |0)(ζ )≥ sup
u∈∂ fμ(x),v∈∂hν (x)

{
d2 fμ(x |u)(ζ )+d2hν(x |v)(ζ ) s.t. u + v = 0

}
(A7)

where hν is same as in Lemma 6. Fix any v ∈ ∂hν(x). Let J:={1, . . . , p}\supp(x).
Then, 〈v, ζ 〉 = 〈vJ , ζJ 〉. A simple calculation yields dhν(x)(ζ ) = ∑

i∈J δ{0}(ζi ).
This means that dhν(x)(ζ ) ≥ 〈v, ζ 〉. When dhν(x)(ζ ) > 〈v, ζ 〉, by [50, Proposition
13.5] we have d2hν(x |ξ)(ζ ) = +∞. This along with (A5) and (A7) means that
d2�ν,μ(x |0)(ζ ) > 0, so it suffices to consider the case dhν(x)(ζ ) = 〈v, ζ 〉. For this
case, from dhν(x)(ζ ) =∑

i∈J δ{0}(ζi ), we have ζJ = 0. Consequently,

d2hν(x |v)(ζ ) = lim inf
τ↓0,ζ ′→ζ

hν(x +τζ ′)−hν(x)− τ 〈vJ , ζ ′J 〉
1
2τ

2

= lim inf
τ↓0,ζ ′

J
→ζJ

∑
i∈J [sign(τ |ζ ′i |)−τviζ ′i ]

1
2τ

2
≥ 0.

This along with (A5) and (A7) implies that d2�ν,μ(x |0)(ζ ) > 0. ��

Appendix B: Proof of results in Sect. 4.2

In this section, let x∗ be the true vector in model (21), and for each k ∈ N write

yk:=Axk− b, �xk:=xk − x∗ and ξ k:=Bk−1(xk−1− xk)+ δk−1 − μx∗. (B8)

By Assumption 2 and [50, Theorem 10.49], for any t ∈ R we have ∂(θ2)(t) =
2D∗θ(t)(θ(t)) where D∗θ(t) : R ⇒ R is the coderivative of θ at t . Together with [50,
Proposition 9.24(b)], D∗θ(t)(θ(t)) = ∂(θ(t)θ)(t). Thus,

∂(θ2)(t) =
{ {0} if θ(t) = 0;
2θ(t)∂θ(t) otherwise

for any t ∈ R. (B9)

By using (B9) and the above notation, we can establish the following lemma.

Lemma 8 Suppose that for a certain k ≥ 1 there exists an index set Sk−1 ⊇ S∗
satisfying mini∈(Sk−1)c vk−1i ≥ 1/2. Let I:={i ∈ {1, . . . , n} | �i �= 0}. Then, when
λ ≥ 16τ̃n−1�AI·�1 +8‖ξ k‖∞, it holds that

∥
∥�xk

(Sk−1)c‖1 ≤ 3‖�xk
Sk−1‖1.

Proof From x∗ ∈ dom f and the definition of xk in Step 2, it is not difficult to obtain

f (x∗)+ μ
2
‖x∗‖2 + λ〈vk−1, |x∗|〉 + 1

2
‖x∗−xk−1‖2Bk−1
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≥ f (xk)+ μ
2
‖xk‖2 + λ〈vk−1, |xk |〉 + 1

2
‖xk−xk−1‖2Bk−1

+ 1

2
〈x∗−xk, (μI+Bk−1)(x∗−xk)〉 + 〈δk−1, x∗−xk〉,

where the strong convexity of the objective function of (19) is used. After a suitable
rearrangement for the last inequality, we obtain

f (xk)− f (x∗)+ μ‖�xk‖2 ≤ λ〈vk−1, |x∗| − |xk |〉 + 〈ξ k, xk− x∗〉. (B10)

For each k ∈ N, let Jk:=
{
i /∈ I | yki �= 0

}
. By the expression of ϑ and� = b− Ax∗,

ϑ(Axk− b)− ϑ(Ax∗− b)

= 1

n

[ ∑

i∈Jk

θ2(yki )− θ2(�i )

θ(yki )+ θ(�i )
+
∑

i∈I

θ2(yki )− θ2(�i )

θ(yki )+ θ(�i )

]

≥ 1

n

[ ∑

i∈Jk

θ2(yki )− θ2(�i )

τ̃‖yk‖∞ +
∑

i∈I

θ2(yki )− θ2(�i )

θ(yki )+ θ(�i )

]

. (B11)

where the inequality is since θ(yi ) ≤ τ̃‖y‖∞ for i = 1, . . . , n, implied by θ(0) = 0
and (22). Fix any ηi ∈ ∂(θ2)(�i ). Since θ2 is strongly convex with modulus τ , we
have

θ2(yki )− θ2(�i ) ≥ ηi (yki −�i )+ 0.5τ(yki −�i )
2 for i = 1, . . . , n. (B12)

Along with (B9), for each i ∈ Jk , ηi = 0 and θ2(yki )− θ2(�i ) ≥ τ
2 (y

k
i −�i )

2, and
consequently,

∑

i∈Jk

θ2(yki )− θ2(�i )

τ̃‖yk‖∞ ≥ τ

2τ̃

∑

i∈Jk

(yki −�i )
2

‖yk‖∞ .

For each i ∈ I, write ỹki := ηi

θ(yki )+θ(�i )
. From (B9) and (22), it is not hard to obtain

|̃yki | ≤ 2τ̃ for all i ∈ I. Together with (B12), � = b − Ax∗ and θ(yki ) ≤ τ̃‖yk‖∞,

∑

i∈I

θ2(yki )− θ2(�i )

θ(yki )+ θ(�i )
≥
∑

i∈I
ỹki (y

k
i −�i )+ τ

2

∑

i∈I

(yki −�i )
2

θ(yki )+ θ(�i )

≥ −2τ̃‖[A(xk− x∗)]I‖1 + τ2
∑

i∈I

(yki −�i )
2

τ̃ (‖yk‖∞+‖�‖∞) .

Substituting the last two inequalities into (B11) and using the definition of f yields

f (xk)− f (x∗) = ϑ(Axk− b)− ϑ(Ax∗− b)
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≥ −2τ̃

n
‖[A(xk− x∗)]I‖1 + τ‖A(xk− x∗)‖2

2nτ̃ (‖yk‖∞+‖�‖∞) .

Write ϒk := τ‖A(xk−x∗)‖2
2nτ̃ (‖yk‖∞+‖�‖∞) . By combining this inequality and (B10), we get

μ‖�xk‖2 + ϒk ≤ λ〈vk−1, |x∗| − |xk |〉 + 2τ̃n−1
∥
∥[A(xk− x∗)]I

∥
∥
1 + 〈ξ k, xk− x∗〉

≤ λ
(∑

i∈S∗v
k−1
i |�xki | −

∑
i∈(Sk−1)cv

k−1
i |�xki |

)

+ (
2τ̃n−1�AI·�1 +‖ξ k‖∞

)(‖�xkSk−1‖1 + ‖�xk
(Sk−1)c‖1

)
. (B13)

Since Sk−1 ⊇ S∗ and vk−1i ∈ [0.5, 1] for i ∈ (Sk−1)c, from the last inequality we
have

μ‖�xk‖2 + ϒk ≤∑
i∈Sk−1

(
λvk−1i + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)|�xki |
+∑

i∈(Sk−1)c
(
n−1�AI·�1 +‖ξ k‖∞ − λ/2

)|�xki |
= (
λ+ 2τ̃n−1�AI·�1 +‖ξ k‖∞

)∥
∥�xkSk−1

∥
∥
1

+ (
2τ̃n−1�AI·�1 +‖ξ k‖∞− 0.5λ

)∥
∥�xk

(Sk−1)c
∥
∥
1.

From the nonnegativity of the left hand side and the given assumption on λ, we have

∥
∥�xk

(Sk−1)c
∥
∥
1 ≤

λ+ 2τ̃n−1�AI·�1 +‖ξ k‖∞
0.5λ− 2τ̃n−1�AI·�1 −‖ξ k‖∞

∥
∥�xkSk−1

∥
∥
1 ≤ 3

∥
∥�xkSk−1

∥
∥
1.

This implies that the desired result holds. The proof is completed. ��
By invoking (B13) and Lemma 8, we can obtain the following conclusion.

Lemma 9 Suppose that ATA/n satisfies the RE condition of parameter κ > 0 on
C(S∗), and that for some k ≥ 1 there is an index set Sk−1 ⊇ S∗ and |Sk−1| ≤ 1.5s∗
such that mini∈(Sk−1)c vk−1i ≥ 1

2 . Let I:={i | �i �= 0}. If λ is chosen such that

16τ̃n−1�AI·�1 +8‖ξ k‖∞ ≤ λ < 2μτ̃‖�‖∞+τκ−4τ̃‖A‖∞(2τ̃n−1�AI·�1+‖ξ k‖∞)|Sk−1|
4τ̃‖A‖∞‖vk−1S∗ ‖∞|Sk−1| ,

∥
∥�xk

∥
∥ ≤ 2τ̃‖�‖∞

(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)√|Sk−1|
2μτ̃‖�‖∞ + τκ − 4τ̃‖A‖∞

(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)|Sk−1| .

Proof Note that ‖yk‖∞+‖�‖∞ = ‖�−A�xk‖∞+‖�‖∞ ≤ ‖A�xk‖∞+2‖�‖∞.
Then

τ‖A(xk − x∗)‖2
2nτ̃ (‖zk‖∞ + ‖�‖∞) ≥

τ‖A�xk‖2
2nτ̃ (‖A�xk‖∞ + 2‖�‖∞) :=ϒ̃

k .

Together with inequality (B13) and vk−1i ∈ [0.5, 1] for i ∈ (Sk−1)c, it follows that

μ‖�xk‖2 + ϒ̃k ≤ λ∑i∈S∗v
k−1
i |�xki | − (λ/2)

∑
i∈(Sk−1)c |�xki |
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+ (
2τ̃n−1�AI·�1 +‖ξ k‖∞

)(‖�xkSk−1‖1 + ‖�xk
(Sk−1)c‖1

)

≤ (
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)‖�xkSk−1‖1

where the second inequality is due to λ ≥ 16τ̃n−1�AI·�1 +8‖ξ k‖∞. By Lemma 8,
‖�xk

(Sk−1)c‖1 ≤ 3‖�xk
Sk−1‖1, which means that �xk ∈ C(S∗). From the assumption

on 1
n A

TA, we have ‖A�xk‖2 ≥ 2nκ‖�xk‖2. Then, it holds that

μ‖�xk‖2 + τκ‖�xk‖2
τ̃ (‖A�xk‖∞+ 2‖�‖∞)

≤
(
λ‖vk−1S∗ ‖∞ +

2τ̃

n
�AI·�1 +‖ξ k‖∞

)∥
∥�xkSk−1

∥
∥
1.

Multiplying the both sides of this inequality with τ̃ (‖A�xk‖∞+2‖�‖∞) yields that
[
μτ̃(‖A�xk‖∞ + 2‖�‖∞)+ τκ

]‖�xk‖2
≤ τ̃‖A�xk‖∞

(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)∥
∥�xkSk−1

∥
∥
1

+ 2τ̃‖�‖∞
(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)∥
∥�xkSk−1

∥
∥
1.

Note that ‖A�xk‖∞ ≤ ‖A‖∞‖�xk‖1. Together with ‖�xk
(Sk−1)c‖1 ≤ 3‖�xk

Sk−1‖1,
‖A�xk‖∞ ≤ 4‖A‖∞‖�xk

Sk−1‖1, so the right hand side of the last inequality satisfies

RHS ≤ 4τ̃‖A‖∞
(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)|Sk−1|∥∥�xkSk−1
∥
∥2

+ 2τ̃‖�‖∞
(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)√|Sk−1|∥∥�xkSk−1
∥
∥.

From the last two equations, a suitable rearrangement yields that
[
2μτ̃‖�‖∞ + τκ − 4τ̃‖A‖∞

(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)|Sk−1|
]
‖�xk‖2

≤ 2τ̃‖�‖∞
(
λ‖vk−1S∗ ‖∞ + 2τ̃n−1�AI·�1 +‖ξ k‖∞

)√|Sk−1|∥∥�xkSk−1
∥
∥,

which along with λ < 2μτ̃‖�‖∞+τκ−4τ̃‖A‖∞(2τ̃n−1�AI·�1+‖ξ k‖∞)|Sk−1|
4τ̃‖A‖∞‖vk−1S∗ ‖∞|Sk−1|

implies the

desired result. The proof is then completed. ��

B.1 Proof of Proposition 6:

Let �x0:=x0 − x∗. From x∗ ∈ dom f and the strong convexity of (20),

f (x∗)+ λ̃‖x∗‖1 + γ̃1,0
2
‖x∗‖2 + γ̃2,0

2
‖Ax∗‖2

≥ f (x0)+ λ̃‖x0‖1 + γ̃1,0
2
‖x0‖2 + γ̃2,0

2
‖Bx0‖2
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+ 〈̃δ0, x∗−x0〉 + 1

2
〈(x∗−x0), (γ̃1,0 I+γ̃20ATA)(x∗−x0)〉.

From ϑ(z) = 1
n

∑n
i=1 θ(zi ) and Assumption 2, f (x∗) − f (x0) ≤ τ̃

n ‖A(x∗−x0)‖1.
Notice that ‖x0‖2 − ‖x∗‖2 = ‖x0−x∗‖2 + 2〈x0 − x∗, x∗〉. Together with the last
inequality and ‖̃δ0‖∞ ≤ ε̃0, it follows that

‖�x0‖2
γ̃1,0 I+γ̃2,0ATA ≤ λ̃(‖x∗‖1− ‖x0‖1)+ n−1τ̃‖A(x∗−x0)‖1

+ 〈x0− x∗, δ̃0+ γ̃2,0ATAx∗− γ̃1,0x∗〉
≤ (
λ̃+ τ̃n−1�A�1 +γ̃1,0‖x∗‖∞ + γ̃2,0‖ATAx∗‖∞ + ε̃0

)‖�x0S∗‖1
+ (
τ̃n−1�A�1 +γ̃1,0‖x∗‖∞ + γ̃2,0‖ATAx∗‖∞ + ε̃0 − λ̃

)‖�x0(S∗)c‖1.

By the assumption on λ̃ and the nonnegativity of ‖�x0‖2
γ̃1,0 I+γ̃2,0ATA

, we get

‖�x0(S∗)c‖1 ≤ 3‖�x0S∗‖1. Substituting this into the last inequality yields

‖�x0‖2
γ̃1,0 I+γ̃2,0ATA

≤ (
λ̃+ τ̃n−1�A�1 +γ̃1,0‖x∗‖∞ + γ̃2,0‖ATAx∗‖∞ + ε̃0

)∥
∥�x0S∗

∥
∥
1

≤ 3̃λ
√
s∗

2

∥
∥�x0

∥
∥

which implies that the desired conclusion holds. The proof is completed. ��
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