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Abstract
In this paper, we study the Aubin property of the Karush-Kuhn-Tucker solution
mapping for the nonlinear semidefinite programming (NLSDP) problem at a locally
optimal solution. In the literature, it is known that the Aubin property implies the
constraint nondegeneracy by Fusek (SIAM J. Optim. 23:1041–1061, 2013) and
the second-order sufficient condition by Ding et al. (SIAM J. Optim. 27:67–90,
2017). Based on the Mordukhovich criterion, here we further prove that the strong
second-order sufficient condition is also necessary for the Aubin property to hold.
Consequently, several equivalent conditions including the strong regularity are estab-
lished for NLSDP’s Aubin property. Together with the recent progress made by Chen
et al. (SIAM J. Optim. 35:712–738, 2025) on the equivalence between the Aubin
property and the strong regularity for nonlinear second-order cone programming, this
paper constitutes a significant step forward in characterizing the Aubin property for
general non-polyhedral C2-cone reducible constrained optimization problems.
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1 Introduction

Consider the constrained optimization problem

min
x∈X

f (x) s.t. G(x) ∈ K, (1.1)

where X and Y are two finite-dimensional real Hilbert spaces each endowed with an
inner product 〈·, ·〉 and its induced norm ‖ · ‖, f : X → R and G : X → Y are
twice continuously differentiable functions, and K ⊆ Y is a closed convex set. The
Lagrangian function of (1.1) is defined by

L(x, y) := f (x)+ 〈y,G(x)〉, (x; y) ∈ X × Y . (1.2)

Here and throughout this paper, the notation (·; ·) signifies the arrangement of two
vectors or linear operators symbolically column-wise. Then the first-order optimality
condition of (1.1) is characterized by the Karush-Kuhn-Tucker (KKT) system

0 = ∇xL(x, y) and y ∈ NK(G(x)), (1.3)

where ∇xL(x, y) denotes the adjoint of L′x (x, y), the partial derivative of L with
respect to x ∈ X , and NK denotes the normal cone of K in convex analysis [40]. For
any solution (x̄; ȳ) ∈ X × Y of the KKT system (1.3), we say that x̄ is a stationary
point of (1.1) and ȳ is a (Lagrange) multiplier at x̄ . The set of all multipliers at x̄ is
denoted by M(x̄).

The canonically perturbed version [6, Section 5.1.3] of (1.1) is given by

min
x∈X

f (x)− 〈a, x〉 s.t. G(x)+ b ∈ K, (1.4)

where a ∈ X and b ∈ Y are the perturbation parameters. WithL being the Lagrangian
function defined by (1.2), the KKT system of (1.4), as a perturbed KKT system of
(1.1), is given by

a = ∇xL(x, y) and y ∈ NK(G(x)+ b). (1.5)

Then, one can associate (1.5) with the solution mapping

SKKT(a, b) := {(x; y) | a = ∇xL(x, y), y ∈ NK(G(x)+ b)}. (1.6)

As a core research topic in perturbation analysis of optimization problems, how the
solution set SKKT(a, b) of (1.5) varies along with (a; b) around the origin has been
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studied for a long time [6, 14, 15, 21, 24, 34, 43]. In a landmark paper of Robinson [37],
the definition of strong regularity was introduced to extend the inverse and implicit
function theorems to generalized equations. Note that the KKT system (1.3) can be
equivalently reformulated to the generalized equation

0 ∈ Φ(x, y) :=
(∇xL(x, y)
−G(x)

)
+

( {0}
N−1

K (y)

)
. (1.7)

Then, we say that (x̄; ȳ) ∈ X × Y is a strongly regular solution of (1.7) (or the KKT
system (1.3)) if the inverse of the set-valued mapping

Φ(x, y) :=
(∇2

xxL(x̄, ȳ)(x − x̄)+∇G(x̄)(y − ȳ)
−G(x̄)− G ′(x̄)(x − x̄)

)
+

( {0}
N−1

K (y)

)

has a Lipschitz continuous single-valued localization around (0; 0) ∈ X×Y for (x̄; ȳ),
where ∇2

xxL is the partial Hessian of L with respect to x . According to [12], such a
strong regularity condition is equivalent to the condition that the solution mapping
SKKT has a Lipschitz continuous single-valued localization around ((0; 0); (x̄; ȳ)),
or equivalently, the mapping Φ in (1.7) is strongly metrically regular at (x̄; ȳ) for
(0; 0). Another significant yet less restrictive concept in studying the variation of
SKKT(a, b) with respect to the perturbation is the Aubin property (cf. [43, Section
9F] or [14, Section 3E] for a systematic introduction), which was originally called the
“pseudo-Lipschitzian” property by Aubin [1]. The Aubin property of SKKT holds at
(0; 0) ∈ X × Y for (x̄; ȳ) ∈ SKKT(0, 0) if there exist a constant κ > 0 and open
neighborhoods U of (0; 0) and V of (x̄; ȳ) such that

SKKT(a
′, b′) ∩ V ⊆ SKKT(a, b)+ κ‖(a′; b′)− (a; b)‖BX×Y ∀ (a; b), (a′; b′) ∈ U ,

where BX×Y denotes the closed unit ball in X × Y centered at the origin. It is easy
to see from the definition that the Aubin property of SKKT holds at (0; 0) for (x̄; ȳ)
if (x̄; ȳ) is a strongly regular solution to (1.3). Moreover, such an Aubin property
is equivalent to the metric regularity or the linear openness of Φ at (x̄; ȳ) (e.g. [43,
Theorem 9.43]).

Since the solution mapping SKKT is implicitly defined, verifying both the strong
regularity and theAubinproperty from their definitions is generally unachievable.Con-
sequently, characterizations for the two conditions have evolved into a central topic in
optimization theory and variational analysis. For conventional nonlinear programming
withK in (1.1) being a convex polyhedral cone, such characterizations have been well
established for about three decades. Specifically, Robinson [37] defined the strong
second-order sufficient condition (SSOSC) for the nonlinear programming problem.
Moreover, at a stationary point x̄ satisfying the linear independence constraint quali-
fication (LICQ), he also showed in [37, Theorem 4.1] that the KKT system is strongly
regular at (x̄; ȳ) ∈ SKKT if the SSOSC holds at (x̄; ȳ). At the same time, Kojima [27]
introduced the concept of strong stability to stationary points of the nonlinear pro-
gramming problem, and showed in [27, Theorems 6.4 & 6.5] that for a locally optimal
solution satisfying the LICQ, it is strongly stable if and only if the SSOSC holds. It was
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later revealed by Jongen et al. [23, Section 3] that the strong regularity and the strong
stability are equivalent for stationary points of nonlinear programmingwhere theLICQ
holds. Furthermore, the strong regularitywas characterized byKummer [28] based on a
generalized “implicit function theorem” on nonsmooth equations, and onemay refer to
[22] and [26] for a related approach, especially [26, Theorem4.3] for a survey of equiv-
alent characterizations. By combining the results of [37], [27], and [26], one has that at
a locally optimal solution of the nonlinear programming problem, the strong regularity
is equivalent to the condition that both the SSOSC and the LICQ hold (cf. [7, Remark
4.11]). Such a result is also available in [7, Theorem 4.10] and [6, Proposition 5.38].
In addition to these equivalent characterizations of the strong regularity, a surprising
result ofDontchev andRockafellar [13, Theorems 1, 4,& 5] for the nonlinear program-
ming problem is that the Aubin property of SKKT at (0; 0) for (x̄; ȳ) ∈ SKKT(0, 0),
with x̄ being a locally optimal solution, implies the strong regularity of theKKT system
(1.3) at (x̄; ȳ). Consequently, a comprehensive class of equivalent characterizations
of the Aubin property for the nonlinear programming problem was achieved.

When the set K in (1.1) is no longer a polyhedral set, characterizing these two
concepts becomes much more involved. A more realistic setting is that K is C2-cone
reducible (cf. [6, Definition 3.135]), which is practical enough for encompassingmany
important classes of optimization problems, including the nonlinear programming, the
nonlinear second-order cone programming (NLSOCP), and the nonlinear semidefinite
programming (NLSDP) [44]. In this setting, the perturbation analysis of problem
(1.1) has been extensively studied [3–5, 11, 45, 46], and characterizing the strong
regularity via second-order optimality conditions has been recognized as a prominent
topic. Although deriving an equivalent characterization of the strong regularity akin
to [6, Proposition 5.38] for problem (1.1) in its general form has not been achieved,
achievements have been made for the most representative classes of problems with
significant importance in the form of (1.1).

According to [6, Theorem 5.24], the strong regularity of the KKT system (1.3) at a
solution (x̄; ȳ) implies that the constraint nondegeneracy condition holds at x̄ (or x̄ is
nondegenerate, cf. (2.13)).With the help of this result, Bonnans andRamírez [5] estab-
lished a counterpart of [6, Proposition 5.38] for the NLSOCP problem. For the NLSDP
problem, Sun [45] defined the SSOSC by introducing an approximation set, and finally
obtained a collection of equivalent characterizations of the strong regularity condition,
including the SSOSC accompanied by the constraint nondegeneracy. These results
properly extend the characterizations of the strong regularity from the conventional
nonlinear programming to problem (1.1) with K being a non-polyhedral set. Never-
theless, for both the NLSOCP and the NLSDP problems, obtaining such an extension
for characterizing the Aubin property has been an open question for a long time.

The first step to address this issue was achieved by Outrata and Ramírez [33] (and
the erratum by Opazo, Outrata, and Ramírez [32]). They proved that, for a nondegen-
erate locally optimal solution x̄ of the NLSOCP problem (i.e., (1.1) with K being the
Cartesian product of second-order cones), the Aubin property of a solution mapping
(akin to (3.1)) at 0 ∈ X for x̄ implies the SSOSC, but under an assumption regard-
ing the strict complementarity. Recently, Chen et al. [8] finalized this conclusion by
removing these assumptions and showed that, with ȳ ∈M(x̄), the Aubin property of
SKKT at (0; 0) for (x̄; ȳ) is equivalent to the strong regularity of (x̄; ȳ) to the KKT sys-
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tem, thus constituting for the NLSOCP a counterpart of the seminal result of Dontchev
and Rockafellar [13]. As a result, an extension of the characterizations for the Aubin
property is realized from the nonlinear programming problem to the NLSOCP prob-
lem. Generally, if K is a C2-cone reducible set, another recent work [19, Theorem
5.14] utilized an assumption on relative interiors of subdifferential mappings to prove
the equivalence between the Aubin property of SKKT and the strong regularity of the
KKT system, but such an assumption is exactly the strict complementarity condition
when applied to the desired NLSDP problem.

In this paper, we study the characterizations of the Aubin property for the KKT
solution mapping of the NLSDP problem

min
x∈X

f (x) s.t. h(x) = 0, g j (x) ∈ S p j
+ , j = 1, . . . , J , (1.8)

where h : X → Rm and g j : X → S p j , j = 1, . . . , J are twice continuously
differentiable functions, S p j is the linear space of p j × p j real symmetric matrices
endowed with the inner product 〈A, B〉 := trace(AB) for A, B ∈ S p j , where trace(·)
denotes the sum of the diagonal elements, and S p j

+ is the closed convex cone of all
positive semidefinite matrices in S p j . When J = 1 in (1.8), the strong regularity of the
corresponding KKT system is equivalent to the SSOSC together with the constraint
nondegeneracy [45, Theorem 4.1]. For the case that J > 1, it is easy to see from the
analysis in [45] that such an equivalence still holds. Moreover, in the case that J = 1,
Fusek [16] showed that the Aubin property at (0; 0) for a solution (x̄; ȳ) implies the
constraint nondegeneracy at x̄ . Such a result was later extended byKlatte and Kummer
[25] to the general case of problem (1.1).

The main contribution of this paper is that, at a locally optimal solution x̄ of (1.8)
with ȳ ∈M(x̄), we prove that the Aubin property of SKKT at (0; 0) for (x̄; ȳ) implies
the SSOSC.We achieve this by designing an auxiliary optimization problem and fully
exploiting its properties, and using the Mordukhovich criterion for characterizing the
Aubin property [29]. We should emphasize that the key tools we used in this paper are
essentially different from those in [8] for the NLSOCP. Specifically, the main progress
in [8] is based on a lemma of alternative choices on cones, and the fact that the spectral
factorization associated with second-order cones admits only two “eigenvalues” is
indispensable. This approach can be used here when max j {p j } ≤ 3, but does not
apply to the general cases. Consequently, it is not hard to see that the tools in [8] are
far from sufficient for deriving a counterpart of its main result in the setting of the
NLSDP problem (1.8). Based on the equivalence between the Aubin property and the
strong regularity established in this paper, we finally obtain a comprehensive collection
of equivalent characterizations of the Aubin property for the NLSDP problem (1.8).

The remaining parts of this paper are organized as follows. Section2 introduces
the notation, the definitions, and the preliminary results used throughout this paper. In
Sect. 3, we study the implications of the Aubin property of the solution mapping SKKT
for NLSDP, especially the SSOSC. The characterizations of the Aubin property of
SKKT for NLSDP are given in Sect. 4. We conclude this paper with some discussions
in Sect. 5.
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2 Notation and preliminaries

Let E andF be two finite-dimensional real Hilbert spaces each endowed with an inner
product 〈·, ·〉 and its induced norm ‖ · ‖. The inner product on E × F is defined by
〈(z1; z′1), (z2; z′2)〉 := 〈z1, z2〉 + 〈z′1, z′2〉 for all (z1; z′1), (z2; z′2) ∈ E × F , and the
norm ‖ · ‖ on E×F is induced by this inner product. For a vector z ∈ E (or a subspace
E0 ⊆ E), z⊥ (or E⊥0 ) denotes its orthogonal complement in E . Given a set of vectors
{z1, . . . , zr } ⊂ E , we use span {z1, . . . , zr } to denote the linear subspace it spans.
Given a cone C ⊆ E , C◦ := {v ∈ E | 〈v, z〉 ≤ 0 ∀ z ∈ C} is the polar cone of
C . For a linear operator A : E → F , we use A∗, rge(A) and ker(A) to denote its
adjoint, range space, and null space, respectively. Note that rge(A) = (ker(A∗))⊥.
For a continuously differentiable function ψ : E → F , we use ψ ′(z) to denote the
Fréchet derivative or the Jacobian of ψ at z ∈ E , and define ∇ψ(z) := (ψ ′(z))∗.

Given amatrix A ∈ Rl×q , we use Aik to denote the entry at the i-th row and the k-th
column of A, and use Ak to denote the k-th column of A. The transpose of A is denoted
by A�. When l = q, we use A−1 to denote the inverse of A if it is nonsingular. Given
a subset S ⊆ {1, . . . , q}, we use |S| to denote its cardinality and use AS to denote
the sub-matrix of A by eliminating all the columns that are not indexed by S from A.
For the given index sets I ⊆ {1, . . . , l} and S ⊆ {1, . . . , q}, we use AI S to denote
the |I | × |S| sub-matrix of A by removing all the rows and columns not in I and S,
respectively. Given twomatrices A, B ∈ Rl×q , A◦B denotes their Hadamard product.
The inner product of A, B is defined by 〈A, B〉 := trace(A�B), and ‖A‖ := √〈A, A〉
is the Frobenius norm. We use E to denote an all-ones matrix, whose dimension will
be specified from the context. For a matrix A ∈ S p, we use A � 0 (or A � 0) to
say that A is positive definite (or positive semidefinite). Moreover, A ≺ 0 (or A � 0)
means that −A � 0 (or −A � 0).

Given a set C ⊆ E , we use lin(C) to denote the largest linear subspace contained in
C (the lineality space ofC), aff(C) to denote the smallest linear subspace that contains
C (the affine hull of C), intC to denote its topological interior, and clC to denote the
closure of C . The paratingent cone of C at z̄ is defined by

T P
C (z̄) := lim sup

z
C→z̄,t↘0

C − z

t
,

where “lim sup” is the outer limit in Painlevé-Kuratowski convergence for subsets,

and z
C→ z̄ means that z → z̄ with z ∈ C . The regular (Fréchet) normal cone of C at

z̄ ∈ C is defined by

N̂C (z̄) := {v ∈ E | 〈v, z − z̄〉 ≤ o(‖z − z̄‖) ∀ z ∈ C},

and the limiting (Mordukhovich) normal cone of C at z̄ ∈ C is defined by

NC (z̄) := lim sup
z
C→z̄

N̂C (z).
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When C is a closed convex set, N̂C (z̄) coincides with NC (z̄), and both of them are
simply called the normal cone of C at z̄ (in convex analysis [40]), i.e.,

NC (z̄) =
{
{v ∈ E | 〈v, z − z̄〉 ≤ 0 ∀z ∈ C}, if z̄ ∈ C,

∅, otherwise.

When C is a closed convex set, the tangent cone TC (z̄) of C at z̄ ∈ C can be defined
by TC (z̄) := (NC (z̄))◦ (cf. [43, Example 6.24]).

Given a function ψ : E → (−∞,∞]with z̄ ∈ E such that ψ(z̄) is finite, according
to [43, Theorem 8.9], the (limiting) subdifferential of ψ at z̄ is defined by

∂ψ(z̄) := {v | (v;−1) ∈ Nepiψ(z̄;ψ(z̄))}, (2.1)

where epiψ := {(z; t) | t ≥ ψ(z)} is the epigraph of ψ .
Given a set-valued mappingΨ : E ⇒ F , we use gphΨ⊆E×F to denote the graph

of Ψ , i.e.,
gphΨ := {(z;w) ∈ E × F | w ∈ Ψ (z)}.

The strict graphical (paratingent) derivative of Ψ at (z̄; w̄) ∈ gphΨ is defined by

D∗Ψ (z̄, w̄)(u) := {v ∈ F | (u; v) ∈ T P
gphΨ (z̄; w̄)}, u ∈ E . (2.2)

Meanwhile, the limiting coderivative of Ψ at (z̄; w̄) ∈ gphΨ is defined by

D∗Ψ (z̄, w̄)(v) := {u ∈ E | (u;−v) ∈ NgphΨ (z̄; w̄)}, v ∈ F . (2.3)

The set-valued mapping Ψ : E ⇒ F is said to have the Aubin property at z̄ ∈ E for
w̄ ∈ Ψ (z̄) if there exist a constant κ > 0 and open neighborhoods U of z̄ and V of w̄
such that

Ψ (z) ∩ V ⊆ Ψ (z′)+ κ‖z − z′‖BF ∀ z, z′ ∈ U ,

whereBF is the closed unit ball inF centered at the origin. Moreover, such an Aubin
property has been equivalently characterized by the Mordukhovich criterion [29].
Specifically, under the assumption that gphΨ is locally closed around (z̄; w̄) ∈ gphΨ ,
the Aubin property of Ψ holds at z̄ for w̄ if and only if D∗Ψ (z̄, w̄)(0) = {0}.

2.1 Coderivative related to positive semidefinite cone

This subsection briefly introduces the explicit formula of the limiting coderivative of
the normal cone mapping to S p

+, which was calculated by Ding et al. [10]. Let A ∈ S p

be given. It admits an eigenvalue decomposition in the form of

A = PΛP� = P

⎛
⎝Λαα

0ββ
Λγγ

⎞
⎠ P� with P = (Pα, Pβ, Pγ ), (2.4)
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where P ∈ Rp×p is an orthogonal matrix and Λ is a diagonal matrix with non-
increasing diagonal elements λ1, . . . , λp (the eigenvalues of A) such that Λαα � 0
and Λγγ ≺ 0. Here α, β and γ are three sets of indices with the cardinalities |α|,
|β| and |γ |. One has Pα ∈ Rp×|α|, Pβ ∈ Rp×|β| and Pγ ∈ Rp×|γ |. We use ΠS p

+(A)

to denote the metric projection of A to the cone S p
+ (under the Frobenius norm). For

convenience, we denote A+ := ΠS p
+(A) and A− := A − A+ ∈ −S p

+. Then, it is
obvious that |α| and |γ | are the ranks of A+ and A−, respectively. Recall that S p

+ is a
closed convex cone, and one has

TS p
+(A+) = {Z ∈ S p | P�β∪γ Z Pβ∪γ � 0}.

Consequently, it holds that

lin
(
TS p

+(A+)
) = {Z ∈ S p | P�β Z Pβ = 0, P�β Z Pγ = 0, P�γ Z Pγ = 0}.

Note that (A+, A−) ∈ gphNS p
+ , and in the following we will introduce the explicit

formulation of the coderivative D∗NS p
+(A+, A−). For this purpose, denote the set of

all partitions of the index set β byPβ and letR|β|≥ be the set of all the vectors inR|β|
whose components are arranged in non-increasing order, i.e.,

R
|β|
≥ := {z ∈ R|β| | z1 ≥ z2 ≥ · · · ≥ z|β|}.

For any z ∈ R
|β|
≥ , one can define D(z) ∈ R|β|×|β| as the matrix whose elements

(D(z))ik , i, k ∈ {1, . . . , |β|}, are given by

(D(z))ik :=

⎧⎪⎪⎨
⎪⎪⎩

max{zi , 0} −max{zk, 0}
zi − zk

∈ [0, 1], if zi �= zk,

1, if zi = zk > 0,

0, if zi = zk ≤ 0.

Define the set

Υ|β| :=
{
Z ∈ S |β| | Z = lim

k→∞ D(zk), zk → 0, zk ∈ R
|β|
≥

}
⊆ S |β|. (2.5)

Let Ξ1 ∈ Υ|β|. Then, there exists a partition π(β) := (β+, β0, β−) ∈Pβ such that

Ξ1 =
⎛
⎜⎝

Eβ+β+ Eβ+β0 (Ξ1)β+β−
E�β+β0 0 0

(Ξ1)
�
β+β− 0 0

⎞
⎟⎠ , (2.6)
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where each element of (Ξ1)β+β− belongs to the interval [0, 1]. Moreover, based on
Ξ1 one can define the matrix

Ξ2 :=
⎛
⎝ 0 0 Eβ+β− − (Ξ1)β+β−

0 0 Eβ0β−
(Eβ+β− − (Ξ1)β+β−)

� E�β0β− Eβ−β−

⎞
⎠ . (2.7)

Building upon the above definitions, the coderivative of NS p
+ can be explicitly given

in the following result.

Lemma 2.1 [10, Theorem 3.1 & Proposition 3.3] Suppose that A ∈ S p has the
eigenvalue decomposition in (2.4). Then, U ∈ D∗NS p

+(A+, A−)(V ) if and only if

U = P

⎛
⎝ 0 0 Ũαγ

0 Ũββ Ũβγ

Ũγα Ũγβ Ũγ γ

⎞
⎠ P� and V = P

⎛
⎝Ṽαα Ṽαβ Ṽαγ
Ṽβα Ṽββ 0
Ṽγα 0 0

⎞
⎠ P� (2.8)

with

Ũββ ∈ D∗NS |β|+ (0, 0)(Ṽββ) and Σαγ ◦ Ũαγ − (Eαγ −Σαγ ) ◦ Ṽαγ = 0, (2.9)

where Ũ := P�U P ∈ S p, Ṽ := P�V P ∈ S p, andΣ ∈ Rp×p is the matrix defined
by

Σik := max{λi , 0} −max{λk, 0}
λi − λk

, i, k ∈ {1, . . . , p},

where 0/0 is defined to be 1. In addition, Ũββ ∈ D∗NS |β|+ (0, 0)(Ṽββ) holds if and only

if there exist a matrix Ξ1 ∈ Υ|β| in (2.5) and an orthogonal matrix O ∈ R|β|×|β| such
that

Ξ1 ◦ O�ŨββO = Ξ2 ◦ O�ṼββO, O�β0ŨββOβ0 � 0, and O�β0 ṼββOβ0 � 0,
(2.10)

where (β+, β0, β−) ∈ P(β) is a partition such that Ξ1 takes the form of (2.6) and
Ξ2 is given by (2.7).

We make the following remarks on Lemma 2.1.

Remark 2.1 According to the definitions of A+ and A−, from (2.4) one can see that
the index set β corresponds to the failure of the strict complementarity. Specifically,
the fact that A+ ∈ S p

+, A− ∈ S p
− and 〈A+, A−〉 = 0 constitutes a complementarity

condition, and this complementarity is strict if A is not singular. When |β| �= 0, an
extensive non-smooth analysis should be imposed to establish the relation between
Ũββ and Ṽββ in (2.8), resulting in a more complicated coderivative inclusion (2.9)
than the relationship for the other matrix pairs.
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Remark 2.2 For the case that A = 0 in Lemma 2.1, one has |β| = p. Thus, by taking P
as the identity matrix, one can get Ṽββ = V . In addition, one can further take β+ = β

and β− = β0 = ∅ to get a partition of β. In this case, from (2.6) and (2.7) one has
Ξ1 = Eββ and Ξ2 = 0 ∈ S |β|. Then, one has that (2.10) holds with Ũββ := 0 ∈ S |β|
for any orthogonal matrix O ∈ R|β|×|β|. Consequently, one has 0 ∈ D∗NS p

+(0, 0)(V )
for any V ∈ S p.

Furthermore, to understand Lemma 2.1 more intuitively, one can consider the fol-
lowing example, which is constructed from [10, Example 7.1].

Example 1 Consider the matrix

A =
⎛
⎝ 0 −2 −1
−2 0 −1
−1 −1 −1

⎞
⎠ with A+ =

⎛
⎝ 1 −1 0
−1 1 0
0 0 0

⎞
⎠ and A− =

⎛
⎝−1 −1 −1−1 −1 −1
−1 −1 −1

⎞
⎠ .

We have

A = P

⎛
⎝2 0 0
0 0 0
0 0 −3

⎞
⎠ P� with P =

⎛
⎜⎝

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3

⎞
⎟⎠ ,

and that the index sets of positive, zero, and negative eigenvalues are given by α = {1},
β = {2}, and γ = {3}. Also, we haveΣ13 = 2

5 . Since |β| = 1 and O ∈ {1,−1}, three
cases should be considered:

(1) β = β+, Ξ1 = 1, and Ξ2 = 0. One has Ũ22 = 0.
(2) β = β0 and Ξ1 = Ξ2 = 0. From (2.10) one has Ũ22 ≤ 0 and Ṽ22 ≤ 0.
(3) β = β−, Ξ1 = 0, and Ξ2 = 1. One has Ṽ22 = 0.

Therefore, U ∈ D∗NS3+(A+, A−)(V ) if and only if

V = P

⎛
⎝Ṽ11 Ṽ12 Ṽ13
Ṽ21 Ṽ22 0
Ṽ31 0 0

⎞
⎠ P� and U = P

⎛
⎝ 0 0 Ũ13

0 Ũ22 Ũ23

Ũ31 Ũ32 Ũγ γ

⎞
⎠ P�

with 2Ũ13 = 3Ṽ13 and (Ũ22; Ṽ22) ∈ (R× {0}) ∪ ({0} ×R) ∪ (R− ×R−).

2.2 Second-order sufficient conditions

In this subsection, we briefly introduce the second-order (sufficient) optimality con-
ditions of the NLSDP problem (1.8), which can be viewed as an extension of the
discussions in [45].

Let x̄ be a stationary point of the NLSDP (1.8) and ȳ = (ζ̄ ; Γ̄1; . . . ; Γ̄J ) ∈M(x̄)
be a multiplier at x̄ , where ζ̄ ∈ Rm and Γ̄ j ∈ S p j for all j = 1, . . . , J . From the KKT
system (1.3) we know that g j (x̄) ∈ S p j

+ and Γ̄ j ∈ NS p j
+
(g j (x̄)). For convenience,

define

g(x̄) := (g1(x); . . . ; gJ (x̄)) and A j := g j (x̄)+ Γ̄ j , j = 1, . . . , J .
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Then one has (A j )+ = g j (x̄) and (A j )− = Γ̄ j . One also has the eigenvalue decom-
position A j = PjΛ

j P�j as in (2.4) with Pj = ((Pj )α j , (Pj )β j , (Pj )γ j ) being the

corresponding orthogonal matrix and Λ j being the corresponding diagonal matrix of
eigenvalues.

Recall that at a stationary point x ∈ X of (1.1) with M(x) being nonempty, the
critical cone at x is defined by

C(x) := {d ∈ X | G ′(x)d ∈ TK(G(x)), f ′(x)d = 0}.

Then, following the discussions in [45, Section 3], the critical cone of (1.8) at x̄ can
be explicitly given as

C(x̄) = {
d | h′(x̄)d = 0, g′j (x̄)d ∈ C(A j ;S p j

+ ), j = 1, . . . , J
}
, (2.11)

where for each j = 1, . . . , J ,

C(A j ;S
p j
+ ) := T

S
p j
+

(
g j (x̄)

) ∩ Γ̄⊥j = {
Z ∈ S p j | (Pj )

�
β j

Z(Pj )β j � 0, (Pj )
�
β j

Z(Pj )γ j = 0, (Pj )
�
γ j

Z(Pj )γ j = 0
}
.

(2.12)
According to [6, Section 4.6.1], for a feasible point x ∈ X of (1.1), it is called
nondegenerate [38], or the constraint nondegeneracy [39] is called to hold at x , if

G ′(x)X + lin(TK(G(x))) = Y . (2.13)

Then for the NLSDP (1.8), the constraint nondegeneracy condition (2.13) at x̄ can be
written as

(
h′(x̄)
g′(x̄)

)
X +

( {0}∏J
j=1 lin

(
TS p j

+
(g j (x̄))

)
)
=

(
Rm∏J
j=1 S p j

)
. (2.14)

Note that (2.14) implies thatM(x̄) is a singleton, i.e., ȳ is the unique multiplier at x̄ .
In this case, by following the proof of [45, Proposition 3.1] one can get from (2.11)
that

aff(C(x̄)) = {d ∈ X | h′(x̄)d = 0, g′j (x̄)d ∈ aff(C(A j ;S p j
+ )), j = 1, . . . , J }

=
{
d ∈ X

∣∣∣∣ h′(x̄)d = 0, (Pj )
�
β j
(g′j (x̄)d)(Pj )γ j = 0,

(Pj )
�
γ j
(g′j (x̄)d)(Pj )γ j = 0, j = 1, . . . , J

}
.

(2.15)
Next, we discuss the second-order optimality conditions for (1.8). With x̄ being a

stationary point of (1.8) and ȳ = (ζ̄ ; Γ̄1; . . . ; Γ̄J ) ∈M(x̄), we define the self-adjoint
linear operator Q : X → X by

〈d,Qd〉 = 〈d,∇2
xxL(x̄, ȳ)d〉 − 2

J∑
j=1
〈Γ̄ j , (g

′
j (x̄)d)(g j (x̄))

†(g′j (x̄)d)〉, d ∈ X ,

(2.16)
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where (g j (x̄))† denotes the Moore-Penrose pseudoinverse of g j (x̄) for all j =
1, . . . , J . Based on (2.16), the second-order sufficient condition and the strong second-
order sufficient condition (SSOSC) for (1.8) are defined as follows.

Definition 2.1 Let x̄ be a stationary point of (1.8) with ȳ = (ζ̄ ; Γ̄1; . . . ; Γ̄J ) ∈M(x̄)
and C(x̄) be the critical cone at x̄ . Let Q : X → X be the self-adjoint linear operator
defined by (2.16). We say that the second-order sufficient condition holds at (x̄; ȳ) if

〈d,Qd〉 > 0 ∀d ∈ C(x̄)\{0}. (2.17)

Moreover, we say that the SSOSC holds at (x̄; ȳ) if

〈d,Qd〉 > 0 ∀d ∈ aff(C(x̄))\{0}. (2.18)

Remark 2.3 In Definition 2.1, the second-order sufficient condition given by (2.17)
comes from [4], while the SSOSC is a straightforward extension and simplification of
[45, Definition 3.2] from the case that J = 1 to the general setting. It is the same as
[45, Definition 3.2] when J = 1 and the constraint nondegeneracy holds.

The following result on the relationship between theAubin property ofSKKT and the
second-order sufficient condition (2.17) comes from [11, Corollary 25]. It constitutes
the starting point of our analysis.

Lemma 2.2 Let x̄ be a locally optimal solution to (1.8) with ȳ ∈M(x̄). Suppose that
theAubin property of SKKT in (1.6) holds at (0; 0) for (x̄; ȳ). Then, x̄ is nondegenerate,
in the sense that (2.14) holds, and the second-order sufficient condition (2.17) in
Definition 2.1 holds with Q being defined in (2.16).

2.3 Technical lemmas

In this part, we provide three technical lemmas for our discussions. These results are
not specialized only for the problems considered here. The first lemma is about the
polar cone.

Lemma 2.3 [43, Corollary 11.25(d)] LetH : E → F be a linear operator and K ⊆ F
be a closed nonempty convex cone. Then the set C := {z ∈ E | Hz ∈ K } is also a
closed convex cone and one has

C◦ = cl {H∗v | v ∈ K ◦},

where the closure operation is superfluous if 0 is in the interior of {K − rge(H)}.
The following lemma gives a variational characterization of self-adjoint positive

definite operators. One can also see [20, Proposition 3.1] for a more straightforward
proof based on the Moreau decomposition.
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Lemma 2.4 [18, Theorem 3.6] Let H : E → E be an invertible self-adjoint linear
operator and C be a closed convex cone in E . Then

〈z,Hz〉 > 0 ∀z ∈ E\{0} ⇔
{
〈z,Hz〉 > 0 ∀z ∈ C\{0} and
〈z,H−1z〉 > 0 ∀z ∈ C◦\{0}.

The following lemma discusses Robinson’s constraint qualification [36] of a special
constraint system. Recall that for the general constraint system G(x) ∈ K in (1.1), we
say that Robinson’s constraint qualification holds at a point x ∈ X such thatG(x) ∈ K
if 0 ∈ int {G(x)+G ′(x)X −K}. According to [6, Proposition 2.97 & Corollary 2.98],
this constraint qualification is equivalent to

G ′(x)X + TK(G(x)) = Y .

Moreover, if Robinson’s constraint qualification holds at a locally optimal solution
x̄ of (1.1), then the set of multipliers M(x̄) is non-empty, convex and compact [6,
Theorem 3.9].

Lemma 2.5 Let H : E → F be a linear operator and K ⊆ F be a nonempty closed
convex cone. Then, Robinson’s constraint qualification holds at any feasible point to
the constraint system

z −H∗v = 0,
1

2
(‖v‖2 − 1) = 0, and v ∈ K . (2.19)

Proof Suppose that (z̄; v̄) ∈ E × F is a given feasible point to the constraint system
(2.19). Let (Δz; δ;Δv) ∈ E ×R× F be arbitrarily chosen. To show that Robinson’s
constraint qualification holds at (z̄; v̄) we need to find z ∈ E , v ∈ F and u ∈ TK (v̄)
such that

⎧⎨
⎩

z −H∗v = Δz, (2.20a)

〈v̄, v〉 = δ, (2.20b)

v + u = Δv. (2.20c)

Since K is a closed convex cone, from [43, Example 6.24] we know that NK (v̄) =
(TK (v̄))◦. Then by Moreau’s decomposition theorem [40, Theorem 31.5] we know
that one can uniquely decompose Δv by Δv = Δ′v +Δ′′v such that

Δ′v ∈ TK (v̄), Δ′′v ∈ NK (v̄), and 〈Δ′v,Δ′′v〉 = 0.

One can take v0 := Δ′′v ∈ NK (v̄) and u0 := Δ′v ∈ TK (v̄), so that v0 + u0 = Δv .
Moreover, it is easy to see from v̄ ∈ K that

λv̄ ∈ TK (v̄) with λ := 〈v̄, v0〉 − δ.

Then, by letting v := v0 − λv̄ and u := u0 + λv̄ one has u ∈ TK (v̄) and that (2.20c)
holds. Moreover, since ‖v̄‖ = 1, we have 〈v̄, v〉 = 〈v̄, v0−λv̄〉 = 〈v̄, v0〉−λ = δ, so
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that (2.20b) is valid. Then, letting z := Δz +H∗v, we have that (2.20a) holds. This
completes the proof. ��

3 Implications of the Aubin property for NLSDP

In this section, we study the implications of theAubin property of the solutionmapping
SKKT in (1.6) for the NLSDP problem (1.8). Throughout this section, we set G(x) :=
(h(x); g(x)) = (h(x); g1(x); . . . ; gJ (x)), Y := Rm × ∏J

j=1 S p j and K := {0 ∈
Rm} × ∏J

j=1 S
p j
+ in (1.1). Moreover, we make no distinction between the general

constraint optimization problem (1.1) and the NLSDP problem (1.8) for convenience.

3.1 A reductionmethod for NLSDP

This part exploits the Aubin property of the solution mapping SKKT in (1.6). Note
that if SKKT in (1.6) has the Aubin property at (0; 0) ∈ X × Y for (x̄; ȳ), the tilt
perturbation solution mapping SGE, defined by

SGE(a) := {x ∈ X | a ∈ ∇ f (x)+∇G(x)NK(G(x))}, (3.1)

also has the Aubin property at 0 ∈ X for x̄ [7, Proposition 4.82]. Moreover, according
to the Mordukhovich criterion [29], the latter Aubin property holds if and only if

D∗SGE(0, x̄)(0) = {0}.

Next, we use a reduction method to get more accessible results from the original
formula of the Mordukhovich criterion. Since K is C2-cone reducible at every y ∈
K, one can utilize the second-order chain rule developed in [33, Theorem 7], as a
generalization of [31, Theorem 3.4], to get the following result.

Lemma 3.1 Let x̄ be a stationary point of (1.8) with ȳ ∈ M(x̄). Suppose that x̄ is
nondegenerate, i.e., (2.14) holds. Then one has

D∗SGE(0, x̄)(0) =
{
−d | 0 ∈ ∇2

xxL(x̄, ȳ)d +∇G(x̄)D∗NK(G(x̄), ȳ)(G ′(x̄)d)
}
.

Proof The proof follows directly from [33, Theorem 20], in which K was assumed to
be a second-order cone, but it still holds when K is a general closed convex set. ��

Next, we apply Lemmas 2.1 and 3.1 to the NLSDP problem (1.8) to obtain the
following result.

Proposition 3.1 Let x̄ be a nondegenerate stationary point of (1.8) such that
ȳ = (ζ̄ ; Γ̄1; . . . ; Γ̄J ) ∈ M(x̄). For j ∈ {1, . . . , J }, define A j := g j (x̄) + Γ̄ j

and write its eigenvalue decomposition A j = PjΛ
j P�j as in (2.4) with Pj =(

(Pj )α j , (Pj )β j , (Pj )γ j

)
being the corresponding orthogonal matrix and Λ j being
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the corresponding diagonal matrix of eigenvalues. Then, the mapping SGE defined by
(3.1) has the Aubin property at 0 for x̄ if and only if

Qd /∈ rge(∇h(x̄))−
{ J∑

j=1
∇g j (x̄)(Pj )β j∪γ j

⎛
⎝ Ũ j

β jβ j
Ũ j
β jγ j

(Ũ j
β jγ j

)� Ũ j
γ jγ j

⎞
⎠ (Pj )

�
β j∪γ j

∣∣∣∣
Ũ j
β jβ j

∈ D∗NS |β j |+
(0, 0)

(
(Pj )

�
β j
(g′j (x̄)d)(Pj )β j

)

∀Ũ j
β jγ j

∈ R|β j |×|γ j |, Ũ j
γ jγ j ∈ S |γ j |, j = 1, . . . , J

}
∀d ∈ aff(C(x̄))\{0},

(3.2)
where Q is the linear operator defined by (2.16).

Proof From Lemma 3.1 we know that the mapping SGE defined by (3.1) has the Aubin
property at 0 for x̄ if and only if

∇2
xxL(x̄, ȳ)d /∈ −∇h(x̄)D∗N{0}(h(x̄), ζ̄ )(h′(x̄)d)

−∑J
j=1 ∇g j (x̄)D∗NS p j

+
(g j (x̄), Γ̄ j )(g′j (x̄)d) ∀ 0 �= d ∈ X .

(3.3)
In the following, we will reformulate the right-hand side of (3.3) into an explicit form
by using specific formulas of coderivatives for normal cones. On the one hand, since
h(x̄) = 0, it is easy to see from the definition of the coderivative in (2.3) that

D∗N{0}(h(x̄), ζ̄ )(h′(x̄)d) =
{
Rm, if h′(x̄)d = 0,

∅, otherwise.

On the other hand, for all j = 1, . . . , J , by applying Lemma 2.1 to A := A j =
g j (x̄)+Γ̄ j and V := V j := g′j (x̄)d we know thatU j ∈ D∗NS p j

+
(g j (x̄), Γ̄ j )(g′j (x̄)d)

holds if and only ifU := U j and V can be expressed as in (2.8) with α := α j , β := β j

and γ := γ j such that (2.9) holds. Since x̄ is nondegenerate, from the formula of
aff(C(x̄)) given in (2.15) one can see that (3.3) holds if and only if

∇2
xxL(x̄, ȳ)d /∈ rge(∇h(x̄))−

J∑
j=1
∇g j (x̄)U

j
d ∀d ∈ aff(C(x̄))\{0}, (3.4)

where with Ṽ j
α jγ j := (Pj )

�
α j
(g′j (x̄)d)(Pj )γ j and Ṽ

j
β jβ j

:= (Pj )
�
β j
(g′j (x̄)d)(Pj )β j , the

set U j
d is defined by

U
j
d :=

{
Pj

⎛
⎜⎝

0 0 Ũ j
α jγ j

0 Ũ j
β jβ j

Ũ j
β jγ j

(Ũ j
α jγ j )

� (Ũ j
β jγ j

)� Ũ j
γ jγ j

⎞
⎟⎠ P�j

∣∣∣∣
Ũ j
β jβ j

∈ D∗NS |β j |+
(0, 0)(Ṽ j

β jβ j
),

Σ
j
α jγ j ◦ Ũ j

α jγ j = (Eα jγ j −Σ
j
α jγ j ) ◦ Ṽ j

α jγ j

}
, j = 1, . . . , J ,
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in which the matrix Σ j is defined by

Σ
j
ik :=

max{λ j
i , 0} −max{λ j

k , 0}
λ
j
i − λ

j
k

, i, k ∈ {1, . . . , p j }, j = 1, . . . , J , (3.5)

where 0/0 is defined to be 1 and each λ j
i is the i-th diagonal element ofΛ j . Note that

for any U j ∈ U
j
d , j = 1, . . . , J , it holds that

U j = Pj

⎛
⎜⎝

0 0 Ũ j
α jγ j

0 Ũ j
β jβ j

Ũ j
β jγ j

(Ũ j
α jγ j )

� (Ũ j
β jγ j

)� Ũ j
γ jγ j

⎞
⎟⎠ P�j

and Σ j
α jγ j ◦ Ũ j

α jγ j = (Eα jγ j −Σα jγ j ) ◦ Ṽ j
α jγ j . Then, from the definition of Σ j

α jγ j in
(3.5) one can see that for any i ∈ α j and k ∈ γ j it holds that

λ
j
i

λ
j
i − λ

j
k

Ũ j
ik +

λ
j
k

λ
j
i − λ

j
k

Ṽ j
ik = 0.

Consequently, one has λ j
i Ũ

j
ik + λ

j
k Ṽ

j
ik = 0. Therefore, it holds that

Ũ j
α jγ j

+ (Λ j
α jα j

)−1Ṽ j
α jγ j

Λ j
γ jγ j

= 0, j = 1, . . . , J . (3.6)

Next, we provide an equivalent reformulation of the last term1 in (2.16) for defining
the linear operatorQ, for the purpose of studying the left-hand side of (3.2). Note that
for any d ∈ X one has g′j (x̄)d ∈ S p j and (g j (x̄))† ∈ S p j . Therefore, it holds that

2
〈
Γ̄ j , (g′j (x̄)d)(g j (x̄))†(g′j (x̄)d)

〉
= 〈

Γ̄ j (g′j (x̄)d)(g j (x̄))†, g′j (x̄)d
〉+ 〈

(g j (x̄))†(g′j (x̄)d)Γ̄ j , g′j (x̄)d
〉
,

= 〈∇g j (x̄)
(
Γ̄ j (g′j (x̄)d)(g j (x̄))† + (g j (x̄))†(g′j (x̄)d)Γ̄ j

)
, d

〉 ∀ j = 1, . . . , J .
(3.7)

One can see from the eigenvalue decomposition of g j (x̄)+ Γ̄ j = A j = PjΛ
j P�j and

Ṽ j
α jγ j = (Pj )

�
α j
(g′j (x̄)d)(Pj )γ j that

1 This term was known as the “sigma term” (cf. [5, p. 177]).
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(g j (x̄))†(g′j (x̄)d)Γ̄ j = Pj

⎛
⎝(Λ

j
α jα j )

−1
0
0

⎞
⎠ P�j (g′j (x̄)d)Pj

⎛
⎝0

0
Λ

j
γ jγ j

⎞
⎠ P�j

= Pj

⎛
⎝0 0 (Λ j

α jα j )
−1Ṽ j

α jγ jΛ
j
γ jγ j

0 0 0
0 0 0

⎞
⎠ P�j = Pj

⎛
⎝0 0 −Ũ j

α jγ j

0 0 0
0 0 0

⎞
⎠ P�j ,

(3.8)
where the last equality comes from (3.6). Similarly, one also has that

Γ̄ j (g
′
j (x̄)d)(g j (x̄))

† = Pj

⎛
⎝ 0 0 0

0 0 0
−(Ũ j

α jγ j )
� 0 0

⎞
⎠ P�j . (3.9)

Then, by putting (3.7), (3.8) and (3.9) together, one can see that

2〈Γ̄ j , (g′j (x̄)d)(g j (x̄))†(g′j (x̄)d)〉 =
〈
∇g j (x̄)Pj

⎛
⎜⎝

0 0 −Ũ j
α jγ j

0 0 0
−(Ũ j

α jγ j )
� 0 0

⎞
⎟⎠ P�j , d

〉
.

(3.10)
Now, one can see from the definition of Q in (2.16) and (3.10) that (3.2) holds if and
only if (3.4) holds. This completes the proof. ��

Proposition 3.1 may seem complicated and confusing, but in fact, it represents the
first step of our reduction method. Taking a look at (3.2), only the β j and γ j parts
remain, and we have reduced the α j part in g j (x̄) + Γ̄ j . When the assumptions in
Proposition 3.1 hold, one can further define the linear operator B : X → Rm ×∏J

j=1(R|β j |×|γ j | × S |γ j |) by

Bd :=

⎛
⎜⎜⎜⎜⎝

h′(x̄)d(
2P�β1 [g′1(x̄)d]Pγ1; P�γ1 [g′1(x̄)d]Pγ1

)
...(

2P�βJ
[g′J (x̄)d]PγJ ; P�γJ [g′J (x̄)d]PγJ

)

⎞
⎟⎟⎟⎟⎠ , d ∈ X . (3.11)

From (2.15) one can see that ker(B) = aff(C(x̄)), which is a finite-dimensional sub-
space ofX . Let r be the dimension of ker(B). Then, a collection of linearly independent
vectors ω1, . . . , ωr ∈ X can be found such that span{ω1, . . . , ωr } = ker(B). More-
over, one can define the linear operator W : Rr → ker(B) via

Wν =
r∑

i=1
νiωi , ν = (ν1; . . . ; νr ) ∈ Rr . (3.12)

Consequently, rge(W) = ker(B) = aff(C(x̄)). Based on the definition ofW in (3.12)
we have the following result from Proposition 3.1.
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Proposition 3.2 Suppose that the conditions of Proposition 3.1 are satisfied. LetQ be
the linear operator defined by (2.16) andW be the linear operator defined by (3.12).
Then, the mapping SGE defined by (3.1) has the Aubin property at 0 for x̄ if and only
if

W∗QWν /∈
{
−

J∑
j=1

W∗∇g j (x̄)(Pj )β j Ũ
j
β jβ j

(Pj )
�
β j

∣∣ Ũβ jβ j ∈ D∗NS |β j |+
(0, 0)((Pj )

�
β j
(g′j (x̄)Wν)(Pj )β j )

}
∀ν ∈ Rr\{0}.

(3.13)

Proof From proposition 3.1 we know that the the mapping SGE defined by (3.1) for
the NLSDP problem (1.8) has the Aubin property at 0 for x̄ if and only if (3.2) holds.
Note that W in (3.12) is well-defined and rge(W) = aff(C(x̄)). Therefore, such an
Aubin property of SGE holds if and only if

QWν /∈ rge(∇h(x̄))−
{ J∑

j=1
∇g j (x̄)(Pj )β j∪γ j

⎛
⎝ Ũ j

β jβ j
Ũ j
β jγ j

(Ũ j
β jγ j

)� Ũ j
γ jγ j

⎞
⎠ (Pj )

�
β j∪γ j

∣∣∣∣
Ũ j
β jβ j

∈ D∗NS |β j |+
(0, 0)

(
(Pj )

�
β j
(g′j (x̄)Wν)(Pj )β j

)
∀ Ũ j

β jγ j
∈ R|β j |×|γ j |, Ũ j

γ jγ j ∈ S |γ j |, j = 1, . . . , J

}
∀ν ∈ Rr\{0}.

(3.14)
Consequently, it is sufficient to prove that (3.14) and (3.13) are equivalent.

First, suppose that (3.13) does not hold, i.e., there exists a nonzero vector ν̄ ∈ Rr

such that

W∗QW ν̄ = −
J∑

j=1
W∗∇g j (x̄)(Pj )β j Ũ

j
β jβ j

(Pj )
�
β j

(3.15)

with

Ũβ jβ j ∈ D∗NS |β j |+
(0, 0)((Pj )

�
β j
(g′j (x̄)Wν)(Pj )β j ), j = 1, . . . , J .

Denote μ̄ := QW ν̄. From (3.15) one has

μ̄+
J∑

j=1
∇g j (x̄)(Pj )β j Ũ

j
β jβ j

(Pj )
�
β j
∈ ker(W∗). (3.16)

Recall that the linear operator B in (3.11) is well-defined and

ker(W∗) = (rge(W))⊥ =(ker(B))⊥ = rge(B∗).
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Thus, we calculate rge(B∗) to further reformulate (3.16). Note that for any d ∈ X ,
ξ ∈ Rm , U j

β jγ j
∈ R|β j |×|γ j |, U j

γ jγ j ∈ S |γ j |, j = 1, . . . , J , it holds from (3.11) that

〈
B∗

(
ξ ; (

U 1
β1γ1

;U 1
γ1γ1

); · · · ; (
U J
βJ γJ

;U J
γJ γJ

))
, d

〉

=
〈(
ξ ; (

U 1
β1γ1

;U 1
γ1γ1

); · · · ; (
U J
βJ γJ

;U J
γJ γJ

))
,Bd

〉

= 〈ξ, h′(x̄)d〉
+

J∑
j=1

〈
U j
β jγ j

, 2(Pj )
�
β j
[g′j (x̄)d](Pj )γ j

〉
+

J∑
j=1

〈
U j
γ jγ j

, (Pj )
�
γ j
[g′j (x̄)d](Pj )γ j

〉

= 〈∇h(x̄)ξ, d〉
+2

J∑
j=1

〈
(Pj )β j U

j
β jγ j

(Pj )
�
γ j
, g′j (x̄)d

〉
+

J∑
j=1

〈
(Pj )γ j U

j
γ jγ j

(Pj )
�
γ j
, g′j (x̄)d

〉
.

We know that g′j (x̄)d is symmetric for all j = 1, . . . J . Therefore, one has

〈
B∗

(
ξ ; (

U 1
β1γ1

;U 1
γ1γ1

); · · · ; (
U J
βJ γJ

;U J
γJ γJ

))
, d

〉

= 〈∇h(x̄)ξ, d〉 +
J∑

j=1

〈
(Pj )γ j (U

j
β jγ j

)�(Pj )
�
β j
, g′j (x̄)d

〉

+
J∑

j=1

〈
(Pj )β j U

j
β jγ j

(Pj )
�
γ j
, g′j (x̄)d

〉
+

J∑
j=1

〈
(Pj )γ j U

j
γ jγ j

(Pj )
�
γ j
, g′j (x̄)d

〉

=
〈
∇h(x̄)ξ +

J∑
j=1
∇g j (x̄)(Pj )γ j (U

j
β jγ j

)�(Pj )
�
β j

+
J∑

j=1
∇g j (x̄)(Pj )β j U

j
β jγ j

(Pj )
�
γ j
+

J∑
j=1
∇g j (x̄)(Pj )γ j U

j
γ jγ j

(Pj )
�
γ j
, d

〉
.

(3.17)
Then by combining (3.16) and the formula of rge(B∗) ≡ ker(W∗) given by (3.17)
one can get

μ̄ ∈ rge
(∇h(x̄))−

{ J∑
j=1
∇g j (x̄)(Pj )β j∪γ j

⎛
⎝ Ũ j

β jβ j
Ũ j
β jγ j

(Ũ j
β jγ j

)� Ũ j
γ jγ j

⎞
⎠ (Pj )

�
β j∪γ j

∣∣∣∣
Ũ j
β jβ j

∈ D∗NS |β j |+
(0, 0)

(
(Pj )

�
β j
(g′j (x̄)W ν̄)(Pj )β j

)
∀ Ũ j

β jγ j
∈ R|β j |×|γ j |, Ũ j

γ jγ j ∈ S |γ j |, j = 1, . . . , J

}
,

which contradicts (3.14) since μ̄ = QW ν̄. Therefore, (3.14) implies (3.13).
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Next, suppose that (3.14) does not hold, i.e., there exist two vectors ν̃ ∈ Rr and
ξ ∈ Rm , the matrices

Ũ j
β jγ j

∈ R|β j |×|γ j |, Ũ j
γ jγ j

∈ S |γ j |, j = 1, . . . , J ,

and the matrices

Ũ j
β jβ j

∈ D∗NS |β j |+
(0, 0)

(
(Pj )

�
β j
(g′j (x̄)W ν̃)(Pj )β j

)
, j = 1, . . . , J ,

such that

QW ν̃ = ∇h(x̄)ξ −
J∑

j=1
∇g j (x̄)(Pj )β j∪γ j

⎛
⎝ Ũ j

β jβ j
Ũ j
β jγ j

(Ũ j
β jγ j

)� Ũ j
γ jγ j

⎞
⎠ (Pj )

�
β j∪γ j

.

Note that for any vector ν ∈ Rr , it holds that Wν ∈ ker(B) = aff(C(x̄)). Then by
using (2.15) one has for all ν ∈ Rr it holds that

〈ν,W∗QW ν̃〉
= 〈ν,W∗∇h(x̄)ξ 〉

−∑J
j=1

〈
ν,W∗∇g j (x̄)(Pj )β j∪γ j

(
Ũ j
β jβ j

Ũ j
β jγ j

(Ũ j
β jγ j

)� Ũ j
γ jγ j

)
(Pj )

�
β j∪γ j

〉

= 〈h′(x̄)Wν, ξ 〉

−∑J
j=1

〈
(Pj )

�
β j∪γ j

(g′j (x̄)Wν)(Pj )β j∪γ j ,

⎛
⎝ Ũ j

β jβ j
Ũ j
β jγ j

(Ũ j
β jγ j

)� Ũ j
γ jγ j

⎞
⎠

〉

= −∑J
j=1

〈
(Pj )

�
β j
(g′j (x̄)Wν)(Pj )β j , Ũ

j
β jβ j

〉

= −∑J
j=1

〈
ν,W∗∇g j (x̄)(Pj )β j Ũ

j
β jβ j

(Pj )
�
β j

〉
,

which means that W∗QW ν̃ = −∑J
j=1W∗∇g j (x̄)(Pj )β j Ũ

j
β jβ j

(Pj )
�
β j
. Therefore,

(3.13) also implies (3.14). Consequently, (3.13) is equivalent to (3.14), which com-
pletes the proof. ��

Propositions 3.1 and 3.2 constitute the reduction method by reformulating theMor-
dukhovich criterion to characterize the Aubin property of SGE defined by (3.1) to that
given by (3.13), in which only the indices β j are involved while the indices α j and
γ j are eliminated. Such a reduction provides a more accessible form of the Aubin
property, which is convenient for the discussions on obtaining the SSOSC from the
second-order sufficient condition. Before that, we provide a useful result based on
Proposition 3.2.
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Corollary 3.1 Under the conditions of Proposition 3.2, the linear operator W∗QW
is a nonsingular matrix in Sr .

Proof Note thatW∗QW ∈ Sr holds by definition. Suppose on the contrary that there
exists a nonzero vector ν̄ ∈ Rr such thatW∗QW ν̄ = 0. According to the discussions
in Remark 2.2 one can set

Ũ j
β jβ j

:= 0 ∈ D∗NS |β j |+
(0, 0)((Pj )

�
β j
(g′j (x̄)W ν̄)(Pj )β j ), j = 1, . . . , J .

As a result, one hasW∗QW ν̄ = 0 = −∑J
j=1W∗∇g j (x̄)(Pj )β j Ũ

j
β jβ j

(Pj )
�
β j
, which

contradicts (3.13). Consequently, W∗QW is not singular. ��

3.2 Aubin property implies SSOSC

Note that Proposition 3.2 in the previous subsection provides a characterization of the
Aubin property of the mapping SGE defined by (3.1) using only the indices β j . In
this part, our objective is to utilize (3.13) and the second-order sufficient condition in
(2.17) (as a consequence of the Aubin property of SKKT for locally optimal solutions
by Lemma 2.2) to derive the SSOSC in (2.18). For this purpose, we need to first
reformulate the two second-order optimality conditions to pave the way for using
Proposition 3.2.

Under the conditions of Proposition 3.2, define a linear operatorA : Rr → S |β1| ×
· · · × S |βJ | by

Aν := (A1ν; . . . ;AJ ν), (3.18)

where the linear operators A j : Rr → S |β j |, j = 1, . . . , J , are given by

A jν := (Pj )
�
β j
(g′j (x̄)Wν)(Pj )β j , ν ∈ Rr .

Then, one can define the closed convex cone Ω ⊆ Rr by

Ω := {ν ∈ Rr |A jν � 0, j = 1, . . . , J }.

Note that x̄ is nondegenerate, and the linear operators B in (3.11) andW in (3.12) are
well defined with rge(W) = ker(B) = aff(C(x̄)). Thus, for any d ∈ aff(C(x̄)) there
exists a vector ν ∈ Rr such that d = Wν. Consequently, the SSOSC (2.18) can be
equivalently written as

〈ν,W∗QWν〉 > 0 ∀ν ∈ Rr\{0}. (3.19)
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Moreover, recall from (2.11), (2.12) and (2.15) that

C(x̄) =

⎧⎪⎨
⎪⎩d ∈ X

∣∣∣∣
h′(x̄)d = 0, (Pj )

�
β j
(g′j (x̄)d)(Pj )β j � 0,

(Pj )
�
β j
(g′j (x̄)d)(Pj )γ j = 0,

(Pj )
�
γ j
(g′j (x̄)d)(Pj )γ j = 0, j = 1, . . . , J

⎫⎪⎬
⎪⎭

=
{
d ∈ X

∣∣ d ∈ aff(C(x̄)), (Pj )
�
β j
(g′j (x̄)d)(Pj )β j � 0, j = 1, . . . , J

}
.

Therefore, the second-order sufficient condition (2.17) can be equivalently recast as

〈ν,W∗QWν〉 > 0 ∀ν ∈ Ω\{0}. (3.20)

Note that by Corollary 3.1, the matrixW∗QW is nonsingular. Then, by using Lemma
2.4 and (3.20) we know that (3.19) holds if and only if

〈η, (W∗QW)−1η〉 > 0 ∀ η ∈ Ω◦\{0}. (3.21)

In the following, we show that the conditions of Lemma 2.2 can actually imply (3.19),
hence the SSOSC given by (2.18), which constitutes a remarkable improvement to the
second-order sufficient condition in this lemma. To achieve this, we need the explicit
formula of Ω◦, and the following result is essential.

Lemma 3.2 Under the conditions of Proposition 3.2, the linear operatorA defined by
(3.18) is surjective.

Proof Since the constraint nondegeneracy (2.14) holds, for any given Y j ∈ S p j , j =
1, . . . , J , one can always find a vector d ∈ X and the matrices

Z j ∈ lin
(
TS p j

+
(g j (x̄))

)
= {Z j ∈ S p j | (Pj )

�
β j∪γ j

Z j (Pj )β j∪γ j = 0}, j = 1, . . . , J

such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h′(x̄)d = 0,

g′j (x̄)d + Z j = Pj

⎛
⎜⎝
(Y j )α jα j (Y j )α jβ j (Y j )α jγ j

(Y j )β jα j (Y j )β jβ j 0

(Y j )γ jα j 0 0

⎞
⎟⎠ P�j , j = 1, . . . , J .

Consequently, it holds that

P�j (g′j (x̄)d)Pj +
⎛
⎜⎝
(Pj )

�
α j
Z j (Pj )α j (Pj )

�
α j
Z j (Pj )β j (Pj )

�
α j
Z j (Pj )γ j

(Pj )
�
β j
Z j (Pj )α j 0 0

(Pj )
�
γ j
Z j (Pj )α j 0 0

⎞
⎟⎠

=
⎛
⎝(Y j )α jα j (Y j )α jβ j (Y j )α jγ j

(Y j )β jα j (Y j )β jβ j 0
(Y j )γ jα j 0 0

⎞
⎠ , j = 1, . . . , J .
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Since (Y j )β jβ j can be anymatrix inS |β j |, one can see that the linear operatorA defined
by (3.18) is subjective. This completes the proof ��

SinceA is subjective by Lemma 3.2, one can explicitly calculate from Lemma 2.3
that

Ω◦ = {A∗(Θ1; . . . ;ΘJ ) | Θ j ∈ −S |β j |
+ , j = 1, . . . , J }

=
⎧⎨
⎩

J∑
j=1

W∗∇g j (x̄)(Pj )β jΘ j (Pj )
�
β j
|Θ j � 0, j = 1, . . . , J

⎫⎬
⎭ .

(3.22)

Now, we are ready to present the main result of this section.

Theorem 3.1 Let x̄ be a locally optimal solution to the NLSDP problem (1.8) and
ȳ = (ζ̄ ; Γ̄1; . . . ; Γ̄J ) ∈M(x̄) be a multiplier at x̄ . Suppose that the solution mapping
SKKT in (1.6) has the Aubin property at (0; 0) for (x̄; ȳ). Then, the SSOSC (2.18) in
Definition 2.1 holds at (x̄; ȳ) with Q being defined in (2.16).

Proof Following the notation of Proposition 3.2, for j ∈ {1, . . . , J }, define A j :=
g j (x̄) + Γ̄ j and write its eigenvalue decomposition A j = PjΛ

j P�j as in (2.4) with

Pj =
(
(Pj )α j , (Pj )β j , (Pj )γ j

)
being the corresponding orthogonal matrix and Λ j

being the correspondingdiagonalmatrix of eigenvalues. Then, from the above analysis,
we only need to prove that (3.21) holds.

We start by considering the following auxiliary optimization problem

min
η∈Rr ,Θ j∈S |β j |

1
2 〈η, (W∗QW)−1η〉

s.t.

⎧⎪⎪⎨
⎪⎪⎩
η −∑J

j=1W∗∇g j (x̄)(Pj )β jΘ j (Pj )
�
β j
= 0,

1
2 (

∑J
j=1 ‖Θ j‖2 − 1) = 0,

Θ j � 0, j = 1, . . . , J .

(3.23)

Since the feasible set of (3.23) is compact, the minimum of the objective function can
be attained at a certain solution (η̄; Θ̄1; . . . ; Θ̄J ). Moreover, by applying Lemma 2.5
with H = A, K = −(S |β1|+ × · · · × S |βJ |+ ), E = Rr and F = S |β1| × · · · × S |βJ |,
one has that Robinson’s constraint qualification holds for the constraint in (3.23) at
(η̄; Θ̄1; . . . ; Θ̄J ). Consequently, we know from [6, Theorem 3.9] that there exists
a Lagrange multiplier (ρ̄; τ̄ ; Δ̄1; . . . ; Δ̄J ) ∈ Rr × R × S |β1| × · · · × S |βJ | at
(η̄; Θ̄1; . . . ; Θ̄J ) such that the following KKT system of (3.23) holds:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(W∗QW)−1η̄ + ρ̄ = 0,

−(Pj )
�
β j
(g′j (x̄)Wρ̄)(Pj )β j + τ̄ Θ̄ j + Δ̄ j = 0,

η̄ −∑J
j=1W∗∇g j (x̄)(Pj )β j Θ̄ j (Pj )

�
β j
= 0,

1
2 (

∑J
j=1 ‖Θ̄ j‖2 − 1) = 0,

Θ̄ j � 0, Δ̄ j � 0, 〈Δ̄ j , Θ̄ j 〉 = 0, j = 1, . . . , J .

(3.24)

It is obvious that

W∗QWρ̄ = −η̄ = −
J∑

j=1
W∗∇g j (x̄)(Pj )β j Θ̄ j (Pj )

�
β j
. (3.25)

Moreover, from (3.24) one can also see that
∑J

j=1 ‖Θ̄ j‖2 = 1, so that

τ̄ = 〈(Δ̄1; . . . ; Δ̄J )+ τ̄ (Θ̄1; . . . ; Θ̄J ), (Θ̄1; . . . ; Θ̄J )〉

=
J∑

j=1

〈
(Pj )

�
β j
(g′j (x̄)Wρ̄)(Pj )β j , Θ̄ j

〉

=
〈
ρ̄,

J∑
j=1

W∗∇g j (x̄)(Pj )β j Θ̄ j (Pj )
�
β j

〉
= 〈ρ̄, η̄〉 = −〈η̄, (W∗QW)−1η̄〉.

(3.26)

According to the last line of (3.24) one has the eigenvalue decompositions

Θ̄ j + Δ̄ j = Ō j

⎛
⎝(Λ̄ j )ᾱ j ᾱ j 0 0

0 0β̄ j β̄ j
0

0 0 (Λ̄ j )γ̄ j γ̄ j

⎞
⎠ Ō�j , j = 1, . . . , J ,

where each Ō j is an orthogonal matrix such that (Λ̄ j )ᾱ j ᾱ j � 0 and (Λ̄ j )γ̄ j γ̄ j ≺ 0. In
this case, it holds that

Θ̄ j = Ō j

⎛
⎝0ᾱ j ᾱ j 0 0

0 0β̄ j β̄ j
0

0 0 (Λ̄ j )γ̄ j γ̄ j

⎞
⎠ Ō�j , j = 1, . . . , J

and

Δ̄ j + τ̄ Θ̄ j = Ō j

⎛
⎝(Λ̄ j )ᾱ j ᾱ j 0 0

0 0β̄ j β̄ j
0

0 0 τ̄ (Λ̄ j )γ̄ j γ̄ j

⎞
⎠ Ō�j , j = 1, . . . , J . (3.27)

For an arbitrarily given index j ∈ {1, . . . , J }, one can take β+ = ᾱ j , β0 = β̄ j ∪ γ̄ j

and β− = ∅ in (2.6) and (2.7) to set
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Ξ1 =
⎛
⎝Eᾱ j ᾱ j Eᾱ j β̄ j

Eᾱ j γ̄ j

Eβ̄ j ᾱ j
0 0

Eγ̄ j ᾱ j 0 0

⎞
⎠ and Ξ2 = 0 ∈ S |β j |.

Consequently, it holds that

{
Ξ1 ◦ Ō�Θ̄ j Ō = 0 = Ξ2 ◦ Ō�(Δ̄ j + τ̄ Θ̄ j )Ō,

Ō�β0Θ̄ j Ōβ0 � 0.
(3.28)

Now, suppose on the contrary that (3.21) does not hold. With the help of the explicit
formula ofΩ◦ in (3.22), it is easy to see that the optimal value of (3.23) is not positive,
so that τ̄ ≥ 0 by (3.26). Thus, by (3.27) one has

Ō�β0(Δ̄ j + τ̄ Θ̄ j )Ōβ0 � 0,

which, together with (3.28) and Lemma 2.1, implies that

Θ̄ j ∈ D∗NS |β j |+
(0, 0)(Δ̄ j + τ̄ Θ̄ j ) = D∗NS |β j |+

(0, 0)((Pj )
�
β j
(g′j (x̄)Wρ̄)(Pj )β j ),

where the equality holds from the second line of (3.24). Note that such an inclusion
holds simultaneously for all j = 1, . . . , J . Thus, this inclusion, together with (3.25),
makes a contradiction to (3.13) in Proposition 3.2 (with ν = ρ̄ and Ũ j

β jβ j
= Θ̄ j for

all j = 1, . . . , J ). Consequently, we know that (3.21) is valid, which completes the
proof. ��

4 Characterizations of the Aubin property for NLSDP

This section establishes the equivalent characterizations of the Aubin property of
SKKT in (1.6) at (0; 0) for (x̄; ȳ)with x̄ being a locally optimal solution to the NLSDP
problem (1.8) and ȳ ∈M(x̄).

We first review some related concepts in variational analysis. As mentioned in
Sect. 1, the Aubin property is related to the strong metric regularity [17, Definition
2.5]. Specifically, for a set-valued mapping Ψ : E ⇒ F , one has Ψ is strongly
metrically regular at (z̄; w̄) ∈ gphΨ if Ψ−1 has the Aubin property at w̄ for z̄, and
there exist neighborhoods U of z̄ and V of w̄, such that Ψ−1(w) ∩ U is a singleton
for all w ∈ V . The following result provides a criterion for characterizing the strong
metric regularity.
Lemma 4.1 [17, Theorem 2.7] Ψ is strongly metrically regular at (z̄; w̄) ∈ gph(Ψ )

if and only if for all w ∈ F and z ∈ E , one has

0 ∈ D∗Ψ (z̄, w̄)(w) ⇒ w = 0 and 0 ∈ D∗Ψ (z̄, w̄)(z) ⇒ z = 0,

where D∗ refers to the strict graphical derivative defined in (2.2).
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Recall that the KKT system (1.3) can be equivalently written as the nonsmooth
equation

F(x, y) :=
( ∇xL(x, y)
−G(x)+ΠK(G(x)+ y)

)
= 0. (4.1)

Since F is locally Lipschitz continuous around (x̄; ȳ), it is almost everywhere differ-
entiable in a neighborhood V of (x̄; ȳ) by Rademacher’s theorem [43, Theorem 9.60].
We use DF ⊆ V to denote the set of points at which F is differentiable. The Bouligand
subdifferential of F at (x̄; ȳ) is defined by

∂B F(x̄, ȳ) := {v ∈ X × Y | ∃ (xk; yk) DF−→ (x̄; ȳ) with F ′(xk, yk)→ v}.

Moreover, the Clarke generalized Jacobian of F at (x̄; ȳ) is defined by

∂F(x̄, ȳ) := conv(∂B F(x̄, ȳ)),

i.e., the convex hull of ∂B F(x̄, ȳ).
The perturbed KKT system (1.4) corresponds to a two-parametric optimization

problem
min
x∈X

φ(x, b)− 〈a, x〉, (4.2)

where
φ(x, b) := f (x)+ δK(G(x)+ b) (4.3)

with δK(·) being the indicator function ofK in convex analysis [40].When a = 0 ∈ X
and b = 0 ∈ Y , one has (4.2) is exactly (1.1). Given ι > 0 and (x̄; b̄) ∈ X × Y such
that φ(x̄, b̄) is finite, one can define

⎧⎨
⎩
Mι(a, b) := argmin

x∈X
{φ(x, b)− 〈a, x〉 | ‖x − x̄‖ ≤ ι},

mι(a, b) := inf
x∈X

{φ(x, b)− 〈a, x〉 | ‖x − x̄‖ ≤ ι}. (4.4)

We say the point x̄ is a Lipschitzian fully stable local minimizer [30, Definition 3.2]
of (4.2) at (ā; b̄) if there exist numbers κ > 0, ι > 0 and a neighborhood V of (ā; b̄)
such that the mapping Mι(a, b) is single-valued on V with Mι(ā, b̄) = x̄ satisfying

‖Mι(a1, b1)− Mι(a2, b2)‖ ≤ κ‖(a1; b1)− (a2; b2)‖ ∀ (a1; b1), (a2; b2) ∈ V,

and that the function mι(a, b) is also Lipschitz continuous on V . Unlike SKKT, the
mapping Mι(a, b) focuses mainly on locally optimal solutions.

Recently, Rockafellar [41, 42] introduced the strong variational sufficient condition
for local optimality and provided several characterizations of this abstract property.
With φ defined in (4.3), one can reformulate (1.1) to

min
x∈X ,b∈Y

φ(x, b) s.t. b = 0.
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Define the function φ�(x, b) := φ(x, b) + �
2‖b‖2. The following definition comes

from [42, Section 2].

Definition 4.1 The (strong) variational sufficient condition for local optimality in (1.1)
holds with respect to a solution (x̄; ȳ) to the KKT system (1.3) if there exists � > 0
such that φ� is (strongly) variationally convexwith respect to the pair ((x̄; 0), (0; ȳ)) ∈
gph(∂φ�), i.e., there exist open convex neighborhoods U of (x̄; 0) and V of (0; ȳ),
and a closed proper (strongly) convex function  ≤ φ� on U such that

(U × V) ∩ gph(∂ ) = (U × V) ∩ gph(∂φ�),

and  (x, b) = φ�(x, b) holds for ((x;b),(a;y)) belonging to this common set. Here, ∂ 
is the subdifferential in convex analysis and ∂φ� is the limiting subdifferential defined
in (2.1).

Remark 4.1 For a special case (J = 1 and m = 0) of the NLSDP problem (1.8), the
strong variational sufficient condition (with respect to a solution (x̄; ȳ) to the KKT
system (1.3)) and the SSOSC (2.18) (for the same (x̄; ȳ)) were proved to be equivalent
in [46, Theorem 3.3]. This equivalence can be extended to the NLSDP problem (1.8)
in its general form with ease by directly following their proof.

More recently, the primal-dual full stability was studied in [2] as an extension of
the above (primal) full stability. Specifically, given ȳ ∈ M(x̄), in addition to Mι in
(4.4), one defines

M ι(a, b) := {(x; y) | x ∈ Mι(a, b), (a; y) ∈ ∂φ(x, b), ‖y − ȳ‖ ≤ ι}.

We say that the primal-dual pair (x̄; ȳ) is fully stable [2, Definition 1.4] in problem
(1.8) if there exist a number ι > 0 and a neighborhood V of (0; 0) such that the
mapping M ι is single-valued and Lipschitz continuous in V , and the function mι is
likewise Lipschitz continuous on V .

Based on the above definitions, the following result holds regarding the equivalent
characterizations of the Aubin property for the solution mapping SKKT in (1.6) of the
NLSDP problem (1.8).

Theorem 4.1 Let x̄ be a locally optimal solution to the NLSDP problem (1.8) and
ȳ = (ζ̄ ; Γ̄1; . . . ; Γ̄J ) ∈M(x̄) be a multiplier at x̄ . Then, the following statements are
equivalent:

(i) The solution mapping SKKT in (1.6) has the Aubin property at (0; 0) for (x̄; ȳ).
(ii) The strong second-order sufficient condition (2.18) holds at (x̄; ȳ) and x̄ is
nondegenerate, i.e., (2.14) holds.
(iii) Any element of theClarke generalized Jacobian ∂F(x̄, ȳ) is nonsingular,where
the function F is defined in (4.1).
(iv) The KKT point (x̄; ȳ) is a strongly regular solution to the generalized equation
(1.7) (or the KKT system (1.5)).
(v) The mapping Φ in (1.7) is strongly metrically regular at (x̄; ȳ) for (0; 0).
(vi) For any w ∈ X × Y with 0 ∈ D∗Φ(x̄, ȳ)(w), one has w = 0.
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(vii) The strong variational sufficient condition in Definition 4.1 holds with respect
to (x̄; ȳ), and x̄ is nondegenerate, i.e., (2.14) holds.
(viii) x̄ is a Lipschitzian fully stable local minimizer of (4.2), and x̄ is nondegen-
erate, i.e., (2.14) holds.
(ix) The primal-dual pair (x̄; ȳ) is fully stable in (1.8).

Proof One has (i)⇒ (ii) from Theorem 3.1 and [25, Theorem 1]. By simply repeating
the proof of [45, Proposition 3.2] one can get (ii) ⇒ (iii) ⇒ (iv). It follows by [37,
Corollary 2.2] and the definition that (iv) ⇒ (v) holds. From Lemma 4.1 and the
Mordukhovich criterion for the Aubin property [43, Theorem 9.40] one has (v) ⇒
(vi) ⇒ (i). According to Remark 4.1 we know that (ii) ⇔ (vii). One also has from
[30, Theorem 5.6] that (iv) ⇔ (viii). Moreover, from [2, Theorems 2.3 & 4.2] we
have (v)⇔ (ix). This completes the proof. ��

In the following, we introduce an example to help with understanding Theorem
4.1, focusing on the equivalence of (i), (ii), and (iii).

Example 2 Consider the following optimization problem

min
x∈S3

f (x) := 1

2
‖x‖2 − 1

2
x211

s.t. h(x) := x11 − 1 = 0,

g(x) := x ∈ S3+.

(4.5)

The unique optimal solution x̄ of (4.5) and its unique Lagrange multiplier ȳ are given
by

x̄ =
⎛
⎝1 0 0
0 0 0
0 0 0

⎞
⎠ and ȳ = (ζ̄ , Γ̄ ) with ζ̄ = 0, Γ̄ =

⎛
⎝0 0 0
0 0 0
0 0 0

⎞
⎠ .

It is easy to verify by definition that the constraint nondegeneracy holds at x̄ for (4.5).
By direct calculations the linear operator Q and B defined in (2.16) and (3.11) are
given by

Qd =
⎛
⎝ 0 d12 d13
d21 d22 d23
d31 d32 d33

⎞
⎠ and Bd = d11 ∀d ∈ S3.

Note that one can find a basis for ker(B) given by

{ω1, ω2, ω3, ω4, ω5}

=
⎧⎨
⎩

⎛
⎝0 1 0
1 0 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 1
0 0 0
1 0 0

⎞
⎠ ,

⎛
⎝0 0 0
0 1 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0
0 0 1
0 1 0

⎞
⎠ ,

⎛
⎝0 0 0
0 0 0
0 0 1

⎞
⎠

⎫⎬
⎭ .

Taking this basis for the definition ofW in (3.12), one can get

W∗QWν = (2ν1; 2ν2; ν3; 2ν4; ν5) ∀ν = (ν1; ν2; ν3; ν4; ν5) ∈ R5. (4.6)
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Thus the SOSC (3.20) holds, and one can use the Aubin property of SGE to obtain the
SSOSC.

According to Proposition 3.2, the Aubin property of SGE at 0 for x̄ can be equiva-
lently expressed as that for all 0 �= ν ∈ R5,

⎛
⎜⎜⎜⎜⎝

2ν1
2ν2
ν3
2ν4
ν5

⎞
⎟⎟⎟⎟⎠ /∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0
0

−u22
−u23 − u32
−u33

⎞
⎟⎟⎟⎟⎠

∣∣∣
(
u22 u23
u32 u33

)
∈ D∗NS2+(0, 0)

(
ν3 ν4
ν4 ν5

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (4.7)

If (4.7) does not hold, there exists a certain nonzero ν ∈ R5 such that

ν1 = ν2 = 0 and −
(
ν3 ν4
ν4 ν5

)
∈ D∗S2+

(0, 0)

(
ν3 ν4
ν4 ν5

)
.

However, this is impossible due to [35, Theorem 2.1]. Thus, the Aubin property of SGE
at 0 for x̄ holds. Consequently, the analysis in Theorem 3.1 tells us that the SSOSC
(3.19) holds. Of course, one can also directly observe the SSOSC from (4.6). As a
result, the solution mapping SKKT also has the Aubin property at the origin for (x̄; ȳ).

Besides, for the function F defined by (4.1), from [34, Lemma 11] and [45, Lemma
2.1] one has for any W ∈ ∂F(x̄, ζ̄ , Γ̄ ), there exists a matrix T ∈ S3 such that

W (Δx,Δζ,ΔΓ ) =

⎛
⎜⎜⎜⎜⎝

⎛
⎝ Δζ Δx12 Δx13
Δx21 Δx22 Δx23
Δx31 Δx32 Δx33

⎞
⎠+ΔΓ

Δx11
−Δx + T ◦ (Δx +ΔΓ )

⎞
⎟⎟⎟⎟⎠ ,

where “◦” denotes the Hadamard product and

T ∈
{ ⎛

⎝1 1 1
1 t1 t2
1 t2 t3

⎞
⎠ ∣∣∣ t1, t2, t3 ∈ [0, 1]

}
.

Thus, it is easy to see that each element in ∂F(x̄, ζ̄ , Γ̄ ) is not singular.

Remark 4.2 Note that the nine equivalent conditions listed in Theorem 4.1 are not
exhaustive. For example, one additional equivalent condition, according to [45,
Remark 3.1], is that F is a locally Lipschitz homeomorphism [15, Definition 2.1.9]
near (x̄; ȳ). Furthermore, by [45, Theorem 4.1], another condition is that x̄ is non-
degenerate and strongly stable [6, Definition 5.33]. For more details and equivalent
conditions, one may refer to [45] and the references therein.

Remark 4.3 According to the equivalence between the two conditions (v) and (vi) in
Theorem 4.1, one can see from Lemma 4.1 and [2, Section 2] that the conditions in
Theorem 4.1 are also equivalent to
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0 ∈ D∗Φ(x̄, ȳ)(z) ⇒ z = 0 ∀z ∈ X × Y,

where D∗Φ denotes the strict graphical derivative defined by (2.2).

Remark 4.4 It should be emphasized that, for (1.1) with K being an arbitrary C2-
cone reducible set, it is still unknown if the strong regularity of the KKT system
(1.7) is equivalent to the constraint nondegeneracy (2.13) combined with a certain
second-order optimality condition similar to (2.18). The currently known cases include
the nonlinear programming [13], the NLSOCP [5], the NLSDP problem [45] and a
composite matrix programming regarding matrix eigenvectors [9].

5 Conclusions

In this paper, we prove that at a locally optimal solution to the nonlinear semidefi-
nite programming problem (1.8), the Aubin property of SKKT (1.6) is equivalent to
the strong second-order sufficient condition plus the constraint nondegeneracy. This
enables us to derive a series of equivalent characterizations of the Aubin property,
which includes the strong regularity of the Karush-Kuhn-Tucker system (1.3). As a
byproduct, for nonlinear semidefinite programming, this paper answers the open ques-
tion posed in [11, Section 5] if the Aubin property can be characterized by an exact
form of a certain second-order optimality condition togetherwith the constraint nonde-
generacy. It should be noted that our analysis for nonlinear semidefinite programming
(and also for nonlinear second-order cone programming in [8]) relies on the explicit
formulas of the coderivative for the underlying normal cone mapping. Currently, it is
not clear to us how to extend these results to generic non-polyhedralC2-cone reducible
constrained optimization problems. We leave this as our future research topic.
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