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Abstract. In this paper we reformulate several NCP-functions for the nonlinear complementarity problem
(NCP) from their merit function forms and study some important properties of these NCP-functions. We point
out that some of these NCP-functions have all the nice properties investigated by Chen, Chen and Kanzow [2]
for a modified Fischer-Burmeister function, while some other NCP-functions may lose one or several of these
properties. We also provide a modified normal map and a smoothing technique to overcome the limitation of these
NCP-functions. A numerical comparison for the behaviour of various NCP-functions is provided.
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1. Introduction

Consider the nonlinear complementarity problem (NCP for abbreviation) : Find anx ∈ <n
such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0, (1)

whereF maps from<n to<n and will be assumed to be continuously differentiable in this
paper. The NCP has received a lot of attention due to its various applications in operations
research, economic equilibrium, and engineering design [17, 25, 11].

A popular way to solve the NCP is via an NCP-functionφ : <2 → <:

φ(a, b) = 0⇐⇒ a, b ≥ 0, ab = 0

to reformulate the NCP as (nonsmooth) equations. We refer the reader to [15] for an up-
to-date review on NCP-functions. Here we only list several NCP-functions which we will
focus on:

φ1(a, b) = min(a, b),

φ2(a, b) =
√
a2 + b2 − (a+ b),

* This work is supported by the Australian Research Council.
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φ3(a, b) =
√
{[φ2(a, b)]+}2 + α[(ab)+]2, α > 0,

φ4(a, b) = φ2(a, b)− αa+b+, α > 0,

φ5(a, b) =
√

[φ2(a, b)]2 + α(a+b+)2, α > 0,

φ6(a, b) =
√

[φ2(a, b)]2 + α[(ab)+]4, α > 0,

φ7(a, b) =
√

[φ2(a, b)]2 + α[(ab)+]2, α > 0,

where for anyv ∈ <m,m ≥ 1, (v+)i = max{0, vi}, i = 1, · · · ,m. The functionφ1 is
usually labelled as a natural residual or “min” function. Its piecewise linear structure is very
favourable. However, its square(φ1(·))2 is not continuously differentiable, which makes
the generalized Newton direction not necessarily a descent direction. We will not study
φ1 in this paper. The functionφ2 is called the Fischer-Burmeister function [13] and has
been well studied. Among its many nice properties the Fischer-Burmeister function has
the feature that its square(φ2(·))2 is continuously differentiable [19]. A recent study of
Fischer-Burmeister function with various hybrid techniques is included in [7]. The function
φ3 is reformulated from a merit function studied in [21], which was based on earlier results
of [34] and [22]. The functionφ4 is called a penalized Fischer-Burmeister function in [2]
and a regularized Fischer-Burmeister function in [33]. Chen, Chen and Kanzow [2] have
studied several nice properties ofφ4 and have reported very encouraging numerical results
based onφ4 for solving nonlinear complementarity problems. The functionφ5 is a variant
of φ4. The functionφ6 is reformulated from a merit function in [35] whileφ7 is a variant
of φ6. It is noted that the functionφ2 in φ3 − φ7 can be replaced by a piecewise rational
NCP-function introduced in [26]. Note that fori = 2, 3, 4, 5, 6, 7, we have

φi(a, b) ≡ φ2(a, b)

for all (a, b) ∈ N−, where

N− = {(a, b)| ab ≤ 0}.

So functionsφi for i = 2, 3, 4, 5, 6, 7, are only different in the first or third quadrant. For
i = 3, 5, 6, 7, we may also define

φ̄i(a, b) =

 φi(a, b) ≡ φ2(a, b) if (a, b) ∈ N−,
−φi(a, b) if a ≥ 0, b ≥ 0,
φi(a, b) if a ≤ 0, b ≤ 0.

Thenφ̄i have the same properties forφi discussed in this paper, fori = 3, 5, 6, 7.
The concept of semismoothness was originally introduced by Mifflin [24] for function-

als. Convex functions, smooth functions, and piecewise linear functions are examples of
semismooth functions. The composition of semismooth functions is still a semismooth
function [24]. In [29], Qi and J. Sun extended the definition of semismooth functions to
Φ : <n → <m. It has been proved in [29] thatΦ is semismooth atx if and only if all its
component functions are.

Lemma 1 All φi, i ∈ {2, 3, 4, 5, 6, 7} are strongly semismooth functions and all(φi)2, i ∈
{2, 3, 4, 5, 6, 7} are continuously differentiable.
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Proof: The strong semismoothness ofφ2 andφ4 have been proved in [27] and [2], respec-
tively. For the continuous differentiability of(φ2)2, (φ3)2 and(φ4)2, see [19], [21] and [2],
respectively. By noticing that

√
(·)2 + (·)2 and(·)+ are strongly semismooth functions and

that the composition of strongly semismooth functions is a strongly semismooth function
[14, Theorem 19], we obtain thatφi, i ∈ {3, 5, 6, 7} are also strongly semismooth functions.
Since(φ2)2 is continuously differentiable, it is trivial to prove that all(φi)2, i ∈ {5, 6, 7}
are continuously differentiable.

DefineH : <n → <n by

Hi(x) = φ(xi, Fi(x)), i = 1, 2, · · · , n, (2)

whereφ is an NCP-function. Then to solve the NCP is equivalent to find a root ofH(x) = 0.
By using different NCP-functions we get various versions of equationsH(x) = 0. Define

f(x) =
1
2
‖H(x)‖2. (3)

We use‖ · ‖ for the 2-norm in this paper.

Theorem 1 For any i ∈ {2, 3, 4, 5, 6, 7}, the corresponding mapH constructed via
φ = φi is semismooth on<n. If F ′ is locally Lipschitz continuous around a pointx ∈ <n,
thenH is strongly semismooth atx.

Proof: The conclusions forH constructed viaφ2 andφ4 have been proved in [14] and [2],
respectively. By Theorem 5 in [24] and Lemma 1 we obtain that for eachi ∈ {3, 5, 6, 7},
all Hj , j ∈ {1, 2, · · · , n} are semismooth at anyx ∈ <n, and so,H is semismooth on<n.
Under the assumption thatF ′ is locally Lipschitz continuous around a pointx ∈ <n,
by Theorem 19 in [14] and Lemma 1, we get thatH is strongly semismooth atx.

We need the following definitions concerning matrices and functions.

Definition 1. A matrixW ∈ <n×n is called a

• P0-matrix if each of its principal minors is nonnegative;

• P -matrix if each of its principal minors is positive.

Obviously a positive semidefinite matrix is aP0-matrix and a positive definite matrix is a
P -matrix.

Definition 2. A functionF : <n → <n is called a

• P0-function on a setD ⊆ <n if, for everyx ∈ D andy ∈ D with x 6= y, there is an
indexi such that

xi 6= yi, (xi − yi)(Fi(x)− Fi(y)) ≥ 0;



204 SUN AND QI

• P -function on a setD ⊆ <n if, for everyx ∈ D andy ∈ D with x 6= y, there is an
indexi such that

xi 6= yi, (xi − yi)(Fi(x)− Fi(y)) > 0;

• uniformP -function on a setD ⊆ <n if there exists a positive constantµ such that, for
everyx ∈ D andy ∈ D, there is an indexi such that

(xi − yi)(Fi(x)− Fi(y)) ≥ µ‖x− y‖2;

• monotone function on a setD ⊆ <n if, for everyx ∈ D andy ∈ D,

(x− y)T (F (x)− F (y)) ≥ 0;

• strongly monotone function on a setD ⊆ <n if there exists a positive constantµ such
that, for everyx ∈ D andy ∈ D,

(x− y)T (F (x)− F (y)) ≥ µ‖x− y‖2.

It is known that every strongly monotone function is a uniformP -function and every mono-
tone function is aP0-function. Furthermore, the Jacobian of a continuously differentiable
P0-function (uniformP -function) at a point is aP0-matrix (P -matrix).

The organization of this paper is as follows. In the next section we prove that ifF is
monotone on<n and there exists a strictly feasible point, i.e., there existsx ∈ <n such that
x > 0, F (x) > 0, the merit functionf , constructed viaφ5, φ6, φ7 as well as viaφ3 and
φ4, has bounded level sets. In Section 3 we prove that ifx ∈ <n is a stationary point off
andF ′(x) is aP0-matrix, thenx is a solution of the NCP iff is constructed viaφ5, φ6, φ7

as well as viaφ2, φ3 andφ4. We also give an example to show that this property may not
hold for two NCP-functions closely related to those discussed here. In Section 4 we prove
that if the NCP isR-regular at a solutionx∗, then all the generalized JacobianV ∈ H(x∗)
are nonsingular withH constructed viaφ5, φ6, φ7 as well as viaφ2 andφ4. We also point
out that a similar result does not hold forφ3. In Section 5 we give a modified normal
map in order to overcome the limitation of all the NCP-functions and discuss a smoothing
technique. We also point out why some formulas are not recommended. We present some
numerical experiments for various NCP-functions in Section 6 and make final remarks in
Section 7.

2. Level Sets Conditions

For anyc ∈ < and any functiong : <n → <, define

Lcg = {x ∈ <n| g(x) ≤ c}. (4)
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Assumption 1. [2, Condition 3.8] For any sequence{xk} such that

‖xk‖ → ∞, lim sup
k→∞

‖[−xk]+‖ <∞, lim sup
k→∞

‖[−F (xk)]+‖ <∞,

it holds

max
i

[xki ]+[Fi(xk)]+ →∞.

It was proved in [2, Proposition 3.10] that Assumption 1 holds if eitherF is a monotone
function with a strictly feasible point orF is anR0-function.

Theorem 2 Suppose that Assumption 1 holds and thatf is constructed viaφi, i ∈
{3, 4, 5, 6, 7}. Then for anyc ≥ 0, Lcf is bounded.

Proof: For φi, i ∈ {3, 4}, the conclusion has been proved in [21, Theorem 4.2] and [2,
Theorem 3.9], respectively. Forφi, i ∈ {5, 6, 7}, the proof is similar to that of [2, Theorem
3.9]. We omit the detail.

Remark. The conclusion of Theorem 2 is not true forφ1 andφ2 as was shown in [21] by
the example withF (x) ≡ 1, x ∈ <.

3. Stationary Point Conditions

For any locally Lipschitz continuous functionΦ : <n → <m, let ∂Φ(x) denote Clarke’s
generalized Jacobian ofΦ atx ∈ <n [5].

First we study the structure of∂Hj(x), j ∈ {1, 2, · · · , n}. Let ej denote thejth unit row
vector of<n, j ∈ {1, 2, · · · , n}.

Lemma 2 Suppose thatF is continuously differentiable andH andf are defined by (2) and
(3) respectively, whereφ is one ofφi, i ∈ {2,3, 4,5, 6, 7}. Then for anyj ∈ {1, 2, · · · , n}
andV ∈ ∂Hj(x), there exist scalarsβ andγ such thatV = βej + γF ′j(x), whereβ and
γ satisfy

(i) βγ > 0 if Hj(x) 6= 0;

(ii) β 6= 0, γ = 0 if Hj(x) = 0 andxj = 0, Fj(x) > 0;

(iii) β = 0, γ 6= 0 if Hj(x) = 0 andxj > 0, Fj(x) = 0;

(iv) βγ ≥ 0 andβ + γ 6= 0 if Hj(x) = 0, xj = Fj(x) = 0, andφ = φi, i ∈ {2, 4, 5, 6, 7}
(Note thati 6= 3.)

Proof: For φ = φi, i ∈ {2, 4}, the conclusions of this lemma have been proved in [27]
and [2], respectively. For the other cases, we can get the results by computing∂Hj(x)
directly and using the facts that

|a+b+|, |(ab)+| ≤ max(|a|, |b|)|φ1(a, b)| ≤ (2 +
√

2) max(|a|, |b|)|φ2(a, b)|, (5)
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where the last inequality comes from [34]. For example, suppose thatφ = φ7. Then

Hj(x) =

√
[
√
x2
j + Fj(x)2 − (xj + Fj(x))]2 + α[(xjFj(x))+]2.

For anyx ∈ <n such thatHj(x) 6= 0,Hj is continuously differentiable atx and

H ′j(x) = βej + γF ′j(x),

where

β =
φ2(xj , Fj(x))

[
xj√

x2
j
+Fj(x)2

− 1
]

+ α[xjFj(x)]+Fj(x)

Hj(x)
, (6)

γ =
φ2(xj , Fj(x))

[
Fj(x)√
x2
j
+Fj(x)2

− 1
]

+ α[xjFj(x)]+xj

Hj(x)
. (7)

Then we get (i). WhenHj(x) = 0, by taking limits in (6) and (7) and noticing of (5), we get
(ii), (iii), and (iv), respectively. We omit the detail of the proof forφ = φi, i ∈ {3, 5, 6}.

Remark. In the above lemma we excludeφ3 for conclusion (iv). This suggests that (iv) of
lemma 2 may no hold forφ3. In fact, this can be shown clearly by lettingF (x) = x, x ∈ <.
Then by takingφ = φ3 we have (by settingα = 1)

H(x) =
√

[(
√

2x2 − 2x)+]2 + [(x2)+]2, x ∈ <.

For anyx > 0, H(x) = x2 andH ′(x) = 2x. Consequently,0 ∈ ∂H(0) and0 cannot be
expressed as in (iv) of Lemma 2.

By Lemma 1,f is continuously differentiable on<n if φ is one ofφi, i ∈ {2,3,4,5,6,7}.

Theorem 3 Suppose thatφ is chosen fromφi, i ∈ {2, 3, 4, 5, 6, 7}. Suppose thatx ∈ <n
is a stationary point off , i.e.,∇f(x) = 0. If F ′(x) is a P0-matrix, thenx is a solution
point of the NCP.

Proof: Forφ = φi, i ∈ {2, 3, 4}, the conclusion of this lemma has been proved in [10],
[21] and [2], respectively. The proof for other NCP-functions is similar to that of [10,
Theorem 4.1] in regard of (i) of Lemma 2. Again, we omit the detail.

Remark. It can be verified that the functionφ : <2 → < defined by

φ(a, b) =
√

[φ2(a, b)]2 + α(ab)2, α > 0 (8)

is an NCP-function and its square(φ(·))2 is continuously differentiable. However, for
this NCP-function, conclusion (i) of Lemma 2 may not hold. To show this letF (x) =
(x− 0.5)2 + c, wherex ∈ < andc is any solution of
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θ(c) :=
(

1 + c+
c2

2

)
− 1√

1 + 4c2
(1 + c+ 2c2) = 0

in (−∞, 0). Such ac exists becauseθ(−1) < 0 andθ(−10) > 0. Then we have (by setting
α = 1)

H(x) =
√
φ2(x, (x− 0.5)2 + c)2 + {x[(x− 0.5)2 + c]}2, x ∈ <.

By direct computation,F ′(0.5) = 0 andH ′(0.5) = [θ(c)/H(0.5)] · 1 + 0 = 0. Thus,
(i) of Lemma 2 does not hold for the NCP-function defined in (8) andx = 0.5 is only a
local solution ofmin f(x) instead of a global solution, i.e., a solution of the NCP, even if
F ′(0.5) = 0 is aP0-matrix. Due to the same reason, the functionφ : <2 → < defined by

φ(a, b) = φ2(a, b)− α(ab)+, α > 0 (9)

is also not recommended thoughφ is also strongly semismooth and its square(φ(·))2 is
continuously differentiable.

4. Nonsingularity Conditions

In this section we study under what conditions the generalized Jacobians ofH are nonsin-
gular at a solution pointx∗ of the NCP. Define

I = {j| x∗j > 0, Fj(x∗) = 0},
J = {j| x∗j = 0, Fj(x∗) = 0},
K = {j| x∗j = 0, Fj(x∗) > 0}.

LetW := F ′(x∗). Then the NCP is said to beR-regular atx∗ if WII is nonsingular and
its Schur complement

WJJ −WJIW−1
IIWIJ

is aP -matrix [10].R-regularity is equivalent to Robinson’s strong regularity [30].

Theorem 4 Suppose that the NCP isR-regular at x∗ and φ is any one ofφi, i ∈
{2, 4, 5, 6, 7}. Then allV ∈ ∂H(x∗) are nonsingular.

Proof: The conclusion of this theorem forφ2 andφ4 has been proved in [10] and [2],
respectively. We consider the rest cases.

According to Lemma 2, anyV ∈ ∂H(x∗) can be expressed as

V = Dβ +DγF
′(x∗),

whereDβ andDγ are some diagonal matrices satisfying

(i) (Dβ)jj = 0 and(Dγ)jj 6= 0 if j ∈ I;

(ii) (Dβ)jj(Dγ)jj ≥ 0 and(Dβ)jj + (Dγ)jj 6= 0 if j ∈ J ;
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(iii) (Dβ)jj 6= 0 and(Dγ)jj = 0 if j ∈ K.

Then by using standard analysis (e.g., [10, Proposition 3.2]), we can prove thatV is non-
singular.

Remark. In regard of the above discussions,φ5,φ6 andφ7 have all the important properties
asφ4 has while the conclusion of Theorem 4 does not hold forφ3. This may explain why
no superlinearly convergent methods have been constructed for solving the NCP based on
φ3 and(φ3)2. Another NCP-function, which has received a lot of attention, is the implicit
Lagrangian [23]

h(a, b) = ab+
γ

2
{[(a− γ−1b)+]2 − a2 + [(b− γ−1a)+]2 − b2}, γ ∈ (0, 1).(10)

Sinceh(a, b) ≥ 0 for all a, b ∈ < [23], we can define an NCP-functionφ : <2 → < by

φ(a, b) =
√
h(a, b) (11)

and its modifications as in Section 1. For example, we can define

φ(a, b) =
√
h(a, b) + α[(ab)+]2, α > 0. (12)

However, two observations prevent us from doing further on these NCP-functions. Firstly,
it is not clear whetherφ defined in (11) is semismooth or not. Secondly, the example given
in Section 5 of [33] suggests that theR-regularity may not be sufficient for guaranteeing
the superlinear convergence of generalized Newton methods based on (11) or (12).

There are many available methods for solvingH(x) = 0. For example, see [6] for a line
search model and [18] for a trust region model.

5. Modified Normal Map and Smoothing Techniques

In the above sections we have assumed thatF is well defined on the whole space<n. This,
however, may not be satisfied for a few problems [11]. On the other hand, even ifF has
definition on<n, some important properties ofF may be lost outside<n+, in particular,
the monotonicity of Karush-Kuhn-Tucker systems for convex programming problems with
nonlinear constraints may not hold. To handle this problem, one may try to add constraints
x ≥ 0 to the minimization problem considered in the above sections. This, however,
constitutes of a constrained optimization problem. Instead of doing so, in this section we
will discuss a modified normal map and its smoothing forms.

It is well known (see, e.g., [31]) that to solve the NCP is also equivalent to find a root of
the following normal equation:

M(z) := F (z+) + z − z+ = 0. (13)

M is called the normal map in the literature [31]. Here we will discuss a modification of
M . LetG : <n → <n be defined by

G(z) : = M(z) + αz+ • [F (z+)]+, α > 0, (14)
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where foru, v ∈ <n, u • v = (u1v1 · · · unvn)T . By noting that ifz ∈ <n is a solution
of M(z) = 0 thenF (z+) ≥ 0 andz+ • F (z+) = 0 and that ifz ∈ <n is a solution of
G(z) = 0 thenz+ • [F (z+)]+ = 0 we can verify that to solveM(z) = 0 is equivalent
to solveG(z) = 0. Based on the same idea we can also verify that to solveM(z) = 0 is
equivalent to solveN(z) = 0 with N : <n → <n defined by

N(z) : = M(z) + αz+ • F (z+), α > 0. (15)

However, this modification is not recommended by the following observation. LetF (x) =
x − 2, x ∈ <. ThenN is differentiable atz = 1/2 with N ′(z) = 0 (by settingα = 1).
This means that even ifF is strongly monotone a local solution of‖N(z)‖2 may not be a
solution ofM(z) = 0.

Define the merit functiong : <n → < by

g(z) =
1
2
‖G(z)‖2. (16)

Theorem 5 If F is monotone on<n+ and there exists a strictly feasible pointz̄, i.e.,z̄ > 0
andF (z̄) > 0, thenLcg is bounded for anyc ≥ 0.

Proof: Suppose that the conclusion is false. Then there exist a constantc ≥ 0 and a
sequence{zk} such thatg(zk) ≤ c but ‖zk‖ → ∞ ask → ∞. SinceF is monotone on
<n+ andz̄ > 0, we have

[F (zk+)− F (z̄)]T (zk+ − z̄) ≥ 0. (17)

Define

I∞ = {i| zki is unbounded}.

ThenI∞ is nonempty because‖zk‖ → ∞ ask → ∞. By passing to a subsequence, we
may assume that for anyi ∈ I∞, |zki | → ∞ ask →∞. Define

I∞+ = {i ∈ I∞| zki → +∞},
I∞− = {i ∈ I∞| zki → −∞}.

Again, by passing to a subsequence, we may assume that

I∞+ ∪ I∞− = I∞.

Let

Ī∞ = {1, 2, · · · , n}\I∞.

Sincezk ∈ Lcg,

‖F (zk+) + zk − zk+ + αzk+ • [F (zk+)]+‖2 ≤ 2c.

Then, we have
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(i) i ∈ I∞+ , Fi(zk+) ≤ 1
2Fi(z̄) for all k sufficiently large;

(ii) i ∈ I∞− , Fi(zk+)→ +∞ ask → +∞;

(iii) i ∈ Ī∞, |Fi(zk+)| is bounded.

Thus, from (17), for allk sufficiently large,∑
i∈I∞+

[
1
2
Fi(z̄)− Fi(z̄)](zki − z̄i) +

∑
i∈I∞−

[Fi(zk+)− Fi(z̄)](0− z̄i)

≥ −
∑
i∈Ī∞

[Fi(zki )− Fi(z̄)][(zk+)i − z̄i],

which is impossible because the left-hand-side tends to−∞ while the right-hand-side is
bounded. This completes the proof.

Remark. The conclusion of Theorem 5 does not hold if the mappingG is replaced by the
normal mapM . This can be seen clearly by assumingF (x) ≡ 1, x ∈ <.

Comparing to Theorem 2, we can see that the benefit of usingG is that we only need to
assumeF to be monotone on<n+ instead of on<n. On the other hand, the disadvantage ofG
is that the merit function defined in (16) is not continuously differentiable on<n. However,
this shortcoming can be overcome by using some smoothing functions to approximatez+

and[F (z+)]+. Though we can use any one of the smoothing functions described in [4],
we are particularly interested in using the Chen-Harker-Kanzow-Smale (CHKS) function
ψ : <2 → < [3, 20, 32]:

ψ(µ,w) =

√
w2 + 4µ2 + w

2
, (µ,w) ∈ <2. (18)

Among many of its nice properties the CHKS function has the feature

ψ(µ,w) > 0 for any w ∈ <, µ 6= 0. (19)

For anyu ∈ <n andx ∈ <n, definep(u, x) by

pi(u, x) = ψ(ui, xi), i ∈ {1, 2, · · · , n}. (20)

Then, from (19), for anyx ∈ <n if u > 0,

p(u, x) > 0.

DefineE : <2n → <n by

E(u, z) = F (p(u, z)) + z − p(u, z) + αp(u, z) • p(u, F (p(u, z))), α > 0 (21)

andΦ : <2n → <2n by

Φ(u, z) :=
(

u
E(u, z)

)
, α > 0. (22)
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Theorem 6 Suppose thatF is continuously differentiable on an open set containing<n+.
Then

(i) z ∈ <n is a solution ofM(z) = 0 if and only if (0, z) ∈ <n × <n is a solution of
Φ(u, z) = 0;

(ii) Φ is continuously differentiable on<n++ ×<n, where<n++ is the interior part of<n+;

(iii) Φ is semismooth on<2n, and ifF ′ is locally Lipschitz continuous atp(u, z), (u, z) ∈
<n ×<n, thenΦ is strongly semismooth at(u, z).

Proof: By noting that for anyx ∈ <n, p(0, x) = x+ and thatz ∈ <n is a solution
of M(z) = 0 if and only if z ∈ <n is a solution ofG(z) = 0, we get (i). Sincep is
continuously differentiable at any(u, x) ∈ <n++ × <n, we get (ii). For (iii) we refer to
Proposition 3.2 and Theorem 3.1 of [28] for a similar discussion.

Denotef : <2n → < by

f(u, z) =
1
2
‖Φ(u, z)‖2, (u, z) ∈ <n ×<n.

Theorem 7 If F is monotone on<n+ and there exists a strictly feasible pointz̄, i.e.,z̄ > 0
andF (z̄) > 0, thenLcf is bounded for anyc ≥ 0.

Proof: Suppose that the conclusion is false. Then there exist a constantc ≥ 0 and a
sequence{(uk, zk)} such thatf(uk, zk) ≤ c but ‖(uk, zk)‖ → ∞ ask → ∞. Since
‖uk‖2 ≤ 2f(uk, zk) ≤ 2c, we have that‖zk‖ → ∞ ask →∞. By using the facts thatF
is monotone on<n+, p(0, z̄) = z̄ > 0 andp(uk, zk) ∈ <n+, we have

[F (p(uk, zk))− F (p(0, z̄))]T [p(uk, zk)− p(0, z̄)] ≥ 0. (23)

Define

I∞ = {i| zki is unbounded}.
ThenI∞ is nonempty because‖zk‖ → ∞ ask → ∞. By passing to a subsequence, we
may assume that for anyi ∈ I∞, |zki | → ∞ ask →∞. Define

I∞+ = {i ∈ I∞| zki → +∞},
I∞− = {i ∈ I∞| zki → −∞}.

Again, by passing to a subsequence, we may assume that

I∞+ ∪ I∞− = I∞.

Let

Ī∞ = {1, 2, · · · , n}\I∞.
Since(uk, zk) ∈ Lcf ,

‖F (p(uk, zk)) + zk − p(uk, zk) + αp(uk, zk) • p(uk, F (p(uk, zk)))‖2 ≤ 2c.

Then, by combining with the properties ofψ:
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(i) |ψ(µ,w)− w+| ≤ µ for all µ,w ∈ <;

(ii) ψ(µ,w) ≥ w for all µ ∈ <;

(iii) ψ(µ,w)→ 0 asw → −∞ for anyµ in a bounded set,

we have

(i) i ∈ I∞+ , Fi(p(uk, zk)) ≤ 1
2Fi(p(0, z̄)) for all k sufficiently large;

(ii) i ∈ I∞− , Fi(p(uk, zk))→ +∞ ask → +∞;

(iii) i ∈ Ī∞, |Fi(p(uk, zk))| is bounded.

Similar to that of Theorem 5, we can complete our proof. Details are omitted here.

Theorem 8 Suppose thatF is continuously differentiable on an open set containing<n+.
If for some(u, z) ∈ <n++ ×<n, F ′(p(u, z)) is aP0-matrix, thenΦ′(u, z) is nonsingular.

Proof: By considering of (22) we only need to prove that∂E(u, z)/∂z is nonsingular
under the assumptions. By direct computation and noticing of that for anyy ∈ <n and
eachi ∈ {1, 2, · · · , n}, (∂pi(u, y)/∂y)j = 0 if j 6= i andj ∈ {1, 2, · · · , n}, we have

∂E(u, z)/∂z = F ′(p(u, z))∂p(u, z)/∂z + I − ∂p(u, z)/∂z
+αCF ′(p(u, z))∂p(u, z)/∂z + αD

for some diagonal matricesC andD satisfying

Cii = pi(u, z)
(
∂pi(u, y)/∂y|y=F (p(u,z))

)
i
,

Dii = pi(u, F (p(u, z)))(∂pi(u, z)/∂z)i,

wherei ∈ {1, 2, · · · , n}. By noting that for anyu > 0 andy ∈ <n, (∂pi(u, y)/∂y)i ∈ (0, 1)
andpi(u, y) > 0, i ∈ {1, 2, · · · , n}, we obtain the conclusion from Theorem 3.3 of [3].

Theorem 9 Suppose thatF is continuously differentiable on an open set containing
<n+ and thatz∗ ∈ <n is a solution of (13). If the NCP isR-regular at [z∗]+, then all
V ∈ ∂Φ(0, z∗) are nonsingular.

Proof: Let

V =
(
V1 V2

V3 V4

)
be an element of∂Φ(0, z∗), whereV1, · · · , V4 ∈ <n×n. ThenV1 = I, V2 = 0. Therefore,
to prove thatV is nonsingular is equivalent to prove thatV4 is nonsingular. By inspecting
the structure ofΦ, we can writeV4 as

V4 = (I + αdiag(p(0, z∗))W )F ′(p(0, z∗))U + I − U + αdiag(p(0, F (p(0, z∗))))U,
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whereW andU are two diagonal matrices with thei-th diagonal entries given by

Wii =

 1 if Fi(p(0, z∗)) > 0
ε ∈ [0, 1] if Fi(p(0, z∗)) = 0
0 if Fi(p(0, z∗)) < 0

and

Uii =

 1 if z∗i > 0
ε ∈ [0, 1] if z∗i = 0
0 if z∗i < 0

,

respectively. LetI, J andK be the index sets defined in Section 4 at solution point
x∗ := [z∗]+ = p(0, z∗) of the NCP. Then

I = {i| z∗i > 0},
J = {i| z∗i = 0},
K = {i| z∗i < 0}.

Thus,

αdiag(p(0, F (p(0, z∗))))U = 0

and

V4 = (I + αdiag(p(0, z∗))W )F ′(p(0, z∗))U + I − U.

Let D = I + αdiag(p(0, z∗))W . ThenD is a diagonal matrix with all diagonal entries
positive. Let

V ′ := (D−1V4)T = U(F ′(p(0, z∗)))T + (I − U)D−1.

By [10, Proposition 3.2]), we can prove thatV ′, and soV4, is nonsingular under the
assumption ofR-regularity. We complete our proof.

So far, we have demonstrated several important properties of the reformulated functionΦ.
The remaining task is to design a suitable algorithm to find a solution ofΦ(u, z) = 0 such
that during the process of the iterationu > 0 is kept while global and locally superlinear
convergence can still be achieved under suitable assumptions. Such an algorithm with other
nice features has already been constructed in [28]. We can apply the method in [28] to solve
Φ(u, z) = 0 directly by noticing of Theorems 6–9. See [36] for numerical performance on
Φ with an additional regularization technique.

Note that we may also defineG : <n → <n by

Gi(z) : =
√

(Mi(z))2 + α{[ziFi(z+)]+}2, α > 0, i = 1, 2, · · · , n (24)

or

Gi(z) : =
√

(Mi(z))2 + α{(zi)+[Fi(z+)]+}2, α > 0, i = 1, 2, · · · , n (25)

and its smoothing counterpart. However, the smoothing function of such definedG may
lose some favourable properties, in particular that described in Theorem 8.
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6. Numerical Experiments

In this section we present some numerical experiments for the NCP-functionsφ2–φ7 using
the test complementarity problems from GAMS and MCP libraries [1, 8, 12]. We used
the damped generalized Newton method introduced in [6] for solving complementarity
problems:

Step 0. Givenx0 ∈ <n, β > 0, p > 2, ρ, σ ∈ (0, 1/2). k := 0.

Step 1. Select an elementVk ∈ ∂BH(xk) and solve

H(xk) + Vkd = 0. (26)

Let dk be the solution of (26) if it is solvable. If (26) is unsolvable or if the condition

∇f(xk)T dk ≤ −β‖dk‖p

is not satisfied, letdk = −∇f(xk).

Step 2. Letmk be the smallest nonnegative integerm such that

f(xk + ρmdk)− f(xk) ≤ −σρm∇f(xk)T dk.

Settk = ρmk andxk+1 = xk + tkd
k.

Step 3. Replacek by k + 1 and go to Step 1.

The algorithm was implemented in Matlab and run on a SUN Sparc Server 3002. Instead
of a monotone line search we used a nonmonotone version as described in [9], which was
originally due to Grippo, Lampariello and Lucidi [16] and can be stated as follows. Let
` ≥ 1 be a pre-specified constant and`k ≥ 1 be an integer which is adjusted at each iteration
k. Calculate a steplengthtk > 0 satisfying the nonmonotone Armijo-rule

f(xk + tkd
k) ≤ Wk + σtk∇f(xk)T dk, (27)

whereWk := max{f(xj)|j = k + 1− `k, . . . , k} denotes the maximal function value of
f over the last̀ k iterations. Note that̀k = 1 corresponds to the monotone Armijo-rule.
In the implementation, we used the following adjustment of`k:

1. Set̀ k = 1 for k = 0, 1, i.e. start the algorithm using the monotone Armijo-rule for the
first two steps.

2. `k+1 = min{`k + 1, `} at all remaining iterations (` = 8 in our implementation).

Throughout the computational experiments the starting points are provided by GAMS or
MCP libraries. The parameters used in the algorithm wereρ = 0.5, β = 10−10, p = 2.1
andσ = 10−4. The parameterα used in the implementation wasα = (0.05)2 for φ3, φ5

andφ7, α = 0.05 for φ2 andα = (0.05)4 for φ6. The value ofα used forφ2 is close to the
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Table 1.Numerical results for MCPLIB problems

φ2 φ3 φ4 φ5 φ6 φ7

problem Ir Fev Ir Fev Ir Fev Ir Fev Ir Fev Ir Fev

bertsekas(1) 31 256 29 246 34 264 31 254 31 256 31 254

bertsekas(2) 32 247 13 22 27 142 31 192 25 108 31 192

bertsekas(3) 31 241 24 25 27 34 27 28 46 59 27 28

billups 253 3820 176 2055 253 3820 253 3820 253 3820 215 2813

colvdual(1) 43 108 11 14 12 15 12 15 15 16 12 15

colvdual(2) 299 818 F - 31 46 F - F - F -

colvnlp(1) 18 43 11 14 12 15 12 15 15 16 12 15

colvnlp(2) 14 18 10 12 12 15 13 16 18 27 13 16

cycle 3 5 3 5 4 6 4 6 6 7 4 6

explcp 19 31 19 31 19 31 19 31 19 31 19 31

hanskoop(1) 10 20 10 20 10 20 10 20 10 20 10 20

hanskoop(2) 10 20 11 21 10 20 10 20 10 20 10 20

hanskoop(3) 9 18 7 15 9 18 9 18 9 18 10 20

hanskoop(4) 9 12 9 12 9 12 9 12 9 12 9 18

hanskoop(5) 13 27 10 20 14 26 14 26 13 27 9 12

josephy(1) 7 10 8 9 7 8 7 8 7 10 14 26

josephy(2) 7 12 6 7 6 8 6 8 7 12 7 8

josephy(3) 37 48 16 17 15 16 15 16 29 30 6 8

josephy(4) 5 6 5 6 5 6 5 6 5 6 15 16

josephy(5) 4 5 4 5 4 5 4 5 4 5 5 6

josephy(6) 7 10 7 8 6 9 7 9 6 12 4 5

kojshin(1) F - 7 9 7 10 7 10 9 11 7 9

kojshin(2) 8 15 8 19 7 13 6 9 5 8 7 10

kojshin(3) 8 10 24 25 15 16 15 16 28 29 6 9

kojshin(4) 4 5 4 5 4 5 4 5 4 5 15 16

kojshin(5) 5 7 5 7 5 7 5 7 5 7 4 5

kojshin(6) 5 7 F 5 7 7 8 6 8 5 7

mathinum(1) 4 5 4 5 6 9 4 5 4 5 7 8

mathinum(2) 5 6 5 6 5 6 5 6 5 6 4 5
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Table 2.(continued) Numerical results for MCPLIB problems

φ2 φ3 φ4 φ5 φ6 φ7

problem Ir Fev Ir Fev Ir Fev Ir Fev Ir Fev Ir Fev

mathinum(3) 11 34 6 8 9 13 8 14 9 22 5 6

mathinum(4) 7 8 5 6 6 7 7 8 6 7 8 14

mathisum(1) 5 7 3 4 5 7 5 7 5 7 5 7

mathisum(2) 7 8 6 7 6 7 6 7 6 7 6 7

mathisum(3) 8 9 8 11 8 9 8 9 8 10 8 9

mathisum(4) 6 7 6 7 6 7 6 7 6 7 6 7

nash(1) 8 9 8 9 8 9 8 9 8 9 8 9

nash(2) 11 25 9 10 10 11 10 11 22 23 10 11

pgvon105(1) 47 106 F - 45 93 39 87 46 97 39 87

pgvon105(2) DV - DV - DV - DV - DV - DV -

pgvon105(3) F - LF - F F - F - F -

pgvon106 197 2646 101 631 LF - 33 68 36 76 33 68

powell(1) 10 12 9 11 10 12 10 12 10 12 10 12

powell(2) 12 15 12 15 12 15 12 15 12 15 12 15

powell(3) 12 29 9 23 12 26 12 26 13 27 12 26

powell(4) 12 13 26 41 12 13 12 13 12 13 12 13

scarfanum(1) 11 14 12 13 11 13 11 14 11 14 11 14

scarfanum(2) 12 21 12 13 12 17 11 16 12 21 11 16

scarfanum(3) 11 14 10 11 11 14 10 13 11 14 10 13

scarfasum(1) 8 10 7 8 7 9 8 10 8 10 8 10

scarfasum(2) 11 19 9 12 11 14 11 17 11 19 11 17

scarfasum(3) 12 18 9 12 11 14 12 17 12 18 12 17

scarfbnum(1) 20 30 21 29 21 23 22 26 20 30 22 26

scarfbnum(2) 12 37 29 69 13 31 14 35 23 41 13 32

scarfbsum(1) 24 37 17 28 17 27 11 13 17 33 11 13

scarfbsum(2) 32 93 18 36 19 35 18 38 22 44 18 38

sppe(1) 8 10 8 10 8 10 8 10 9 11 8 10

sppe(2) 6 7 8 9 6 7 6 7 9 10 6 7

tobin(1) 10 13 8 11 8 11 8 11 9 13 8 11

tobin(2) 8 10 15 19 9 13 9 12 13 27 9 12
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Table 3.Numerical results for GAMSLIB problems

φ2 φ3 φ4 φ5 φ6 φ7

problem Ir Fev Ir Fev Ir Fev Ir Fev Ir Fev Ir Fev

cafemge 10 18 9 11 9 11 10 12 10 14 10 12

dmcmge F - 25 70 31 102 34 124 42 142 34 124

etamge 19 46 9 12 17 26 19 37 19 46 19 37

hansmcp 11 17 12 18 15 27 17 21 19 25 17 21

harkmcp 14 20 12 15 12 15 11 14 12 25 11 14

kehomge 11 14 9 10 10 11 11 12 12 16 11 12

mr5mcp 10 14 8 9 9 11 11 13 15 26 11 13

nsmge 12 16 8 10 16 19 12 15 F - 12 15

oligomcp 6 7 6 7 6 7 6 7 6 7 6 7

scarfmge 11 13 9 10 11 12 11 12 11 12 11 12

scarfmcp 9 12 8 9 11 12 8 11 9 12 8 11

transmcp 11 18 11 18 11 18 12 19 10 16 12 19

unstmge 9 11 8 9 9 11 9 11 9 11 9 11

vonthmcp F - LF - 34 123 F - F - 40 162

vonthmge F - F - F - LF - 33 69 F -

one used in [2] (0.05 versus0.05/0.95). The choices of value ofα for other functions are
based on the same order of scaling. See [33] for an explanation about the scaling.

The iteration of the algorithm is stopped if either

f(xk) ≤ 10−12 or ‖∇f(xk)‖ ≤ 10−10

or if either

– the number of iterations exceeds 300,

– the number of line search steps exceeds 80.

Finally we note that in our algorithm we assume thatF is well defined everywhere, whereas
there are a few examples in the GAMS and MCP libraries where the functionF may be
not defined outside of<n+ or even on the boundary of<n+. To avoid this problem partially
our implementation used the following heuristic technique introduced in [9]: Lett denote a
stepsize for which inequality (27) shall be tested. Before testing check whetherF (xk+tdk)
is well-defined or not. IfF (xk+ tdk) is not well-defined then sett := t/2 and check again.
Repeat this process untilF is well defined or the limit of 80 line search steps is exceeded. In
the first case continue with the nonmonotone Armijo line search. Otherwise the algorithm
stops. This is equivalent to takingf(x) =∞ for all pointsx whereF (x) is not defined.
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The numerical results are summarized in Tables 1–2 for the MCPLIB complementarity
problems and in Table 3 for the GAMS complementarity problems. In these tables the
first column gives the name of the problem,Ir denotes the number of iterations (F means
after the maximum number of iteration steps (300) a solution has not been found under
the specified accuracy, LF means that the maximum number of line search steps (80) was
exceeded).Fev denotes the number of evaluations of the functionF . Ir is equal to the
number of evaluations of the JacobianF ′(x) and the number of subproblems (26) or systems
of linear equations solved. In the “problem” column of Tables 1–2, the number after each
problem specifies which starting point from the library is used. In the “Ir” column of Table
2, DV means that the starting point is not in the domain of function or Jacobian.

Tables 1–2 and 3 show that for every NCP-function the algorithm was able to solve most
complementarity problems in GAMS and MCP libraries. More precisely, there are four
(4) failures forφ4 andφ7, five (5) failures forφ5 andφ6 and six (6) failures forφ2 and
φ3 (for Billups problem, where there is a local solution which is not a global solution,
we observed that the iteration sequence was not trapped in the local solution and it was
always the case that the global solution was found for all merit functions considered. This
might be attributed to the use of nonmonotone line search. Of course, the nonmonotone line
search itself cannot always guarantee the iteration sequence to escape from local solutions.)
However, it is not our intention to declare a winner at this stage because the scaled parameter
α can affect the behavior of the corresponding algorithm. Moreover, the numerical results
reported for a squared smoothing Newton method in [36] indicates that when the iteratex
is far away from the solution set of the problem, a large value ofα is favorable while when
the iteratex is near the solution set, a small value ofα is recommended. More study on the
choice of different merit functions and different choices ofα is necessary.

7. Final Remarks

In this paper we have reformulated several NCP-functions and discussed their main prop-
erties. In particular, we showed that the NCP-functionφ3 may introduce singularity issue
for resulted nonsmooth equations whileφ5, φ6 andφ7 have all the discussed properties
asφ4 has. We believe that the research done here can deepen the understanding on NCP-
functions. We also presented a modified normal map by just requiringF to be monotone
on<n+ instead of on<n to get a global result. The modified normal map and its smoothing
forms need further investigation in regard of their nice numerical performance reported in
[36].
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