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1. Introduction

Let F : D(⊇ S) ⊆ <n → <n be a continuously differentiable mapping and S be a nonempty
closed convex set in <n. Variational inequalities, denoted by V I(S,F ), is to find a vector x ∈ S
such that

F (x)T (y − x) ≥ 0 for all y ∈ S.

In the special case where S = <n
+, VI reduces to complementarity problem. A comprehensive

survey of VI is given in [9].

Basic methods for solving V I(S,F ) are Josephy’s Newton and quasi–Newton methods [11,
12]: Let x0 ∈ S. In general, given xk ∈ S, we let xk+1 be a solution of V I(S,F k), which is the
nearest one to xk if it is not unique, where

F k(x) := F (xk) + A(xk)(x − xk).

If A(xk) = F ′(xk), this is Josephy’s Newton method. On the other hand, if A(xk) is approx-
imated by some quasi–Newton update, this is Josephy’s quasi–Newton method. Under some
assumptions, the above methods have high–order convergence rate. However, they also suffer
from some drawbacks: First, the subproblem needed to solve is not a linear system; Second,
when the subproblem has more than one solution, to find a solution as required will cause nu-
merical difficulties. When S is a polyhedral set, some modifications aimed at eliminating such
drawbacks have been discussed in [22, 8]. In this paper we will generalize the ideas in [22, 8] to
the case:

S = {y ∈ <n | hi(y) ≤ 0, i = 1, · · ·,m}, (1.1)

where each hi is twice continuously differentiable and convex. As well as Josephy’s Newton and
quasi–Newton methods such methods converge only locally. As a remedy for this, in this paper
we will propose some hybrid methods.

In order to get globally convergent Newton–type methods, we need a differentiable merit
function. Early merit functions such as the regularized gap function [7] are intended to reformu-
late V I(S,F ) as a constrained differentiable optimization problem. Recently, Peng [16] showed
that the difference of two regularized gap functions constitutes an unconstrained differentiable
optimization problem equivalent to the V I(S,F ). Later, Yamashita, Taji and Fukushima [24]
extended the idea of Peng [16] and investigated some important properties related to this merit
function. Specifically, the latter authors considered the function gαβ : <n → < defined by

gαβ(x) = fα(x) − fβ(x), (1.2)

where α and β are arbitrary positive parameters such that α < β and fα is the regularized gap
function

fα(x) = max
y∈S

{

〈F (x), x − y〉 −
α

2
‖x − y‖2

}

. (1.3)

(The function fβ is defined similarly with α replaced by β.) In the special case β = 1/α and
α < 1 in (1.2), the function gαβ reduces to the merit function studied by Peng [16]. This
function gαβ is called D–gap function, where D stands for the word “difference”. Although gαβ

is continuously differentiable, its gradient function may be not Lipschitz continuous. So we can
not directly use the standard optimization methods (Newton–type methods) to solve gαβ to find
a solution of V I(S,F ). However, globally and superlinearly convergent Newton–type methods
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still exist [23]. Since the superlinear convergence condition used in [23] is stronger than that
used in Section 2, we will propose a hybrid method in section 3 by considering the results in
[23] and Section 2. In practice, F may be not defined on the whole space of <n, in Section 4 we
discuss a safeguarded Newton method to avoid the possible difficulty caused by the fact that D
may not equal to <n.

2. Local Newton–type methods

In this section and the next one we assume that D = <n, i.e., F is defined on the whole space
of <n. It is easy to see (for example, see [9]) that to find a solution of V I(S,F ) is equivalent to
find a solution of the following equation:

E(x) := x − ΠS(x − F (x) = 0,

where ΠS is the orthogonal projection operator on S. In [23], a computable generalized Jacobian
∂CΠS(x) for the projection operator ΠS at x is proposed under the so called constant rank
constraint qualification (CRCQ) at ΠS(x). The CRCQ holds at ΠS(x) if the linear independent
constraint qualification holds at ΠS(x) and holds automatically everywhere if S is a polyhedral
set. For any matrix P ∈ ∂CΠS(x), we have P T = P,P 2 = P . For details, see [8, 23].

Denote

W(x) = {W ∈ <n×n| W = I − P (I − F ′(x)), P ∈ ∂CΠS(x − F (x))}.

Newton’s method for solving V I(S,F )

Given x0 ∈ <n.
Do for k = 0, 1, ... :
Choose Pk ∈ ∂CΠS(xk − F (xk)) and compute

Wk := I − Pk(I − F ′(xk)).

Solve
Wkd + E(xk) = 0 (2.1)

for dk.

xk+1 = xk + dk. (2.2)

Theorem 2.1 Suppose that F : <n → <n is continuously differentiable and x∗ is a solution of
V I(S,F ). Suppose that the CRCQ holds at ΠS(x∗−F (x∗)) and all W∗ ∈ W(x∗) are nonsingular,
then there exists a neighborhood N of x∗ such that when the initial vector x0 is chosen in N ,
the entire sequence {xk} generated by (2.2) is well defined and converges to x∗ Q–superlinearly.
Furthermore, if F ′ is Lipschitz continuous around x∗ and all ∇h2

i , i = 1, ...,m are Lipschitz
continuous around ΠS(x∗ − F (x∗)), then the convergence is Q–quadratic.

Proof. By Lemma 2.3 of [23], ∂CΠS(·) is upper semicontinuous at (x∗−F (x∗)) and there exists
a neighborhood U of x∗ such that for any P ∈ ∂CΠS(x − F (x)) and x ∈ U

ΠS(x − F (x)) − ΠS(x∗ − F (x∗)) − P [x − F (x) − (x∗ − F (x∗))] = o(‖x − F (x) − (x∗ − F (x∗))‖)
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(or = O(‖x−F (x)−(x∗−F (x∗))‖2) if all ∇2hi are Lipschitz continuous around ΠS(x∗−F (x∗))).
The upper semicontinuity of ∂CΠS(·) at (x∗ − F (x∗)) implies that all W ∈ W(x) are non-

singular when x is sufficiently close to x∗. Therefore the algorithm is well defined for k = 0
and

‖xk+1 − x∗‖ = ‖xk − W−1
k E(xk) − x∗‖

≤ ‖W−1
k ‖‖E(xk) − E(x∗) − Wk(x

k − x∗)‖

= ‖W−1
k ‖‖ΠS(xk − F (xk)) − ΠS(x∗ − F (x∗)) − Pk(I − F ′(xk))(xk − x∗)‖

≤ ‖W−1
k ‖[‖ΠS(xk − F (xk)) − ΠS(x∗ − F (x∗)) − Pk[x

k − F (xk) − (x∗ − F (x∗))]

+‖Pk[x
k − F (xk) − (x∗ − F (x∗)) − (I − F ′(xk))(xk − x∗)]‖]

= o(‖xk − F (xk) − (x∗ − F (x∗))‖) + O(‖F (xk) − F (x∗) − F ′(xk)(xk − x∗)‖)

= o(‖xk − x∗‖).

Thus we obtain the Q–superlinear convergence of {xk}. Finally when F ′ and ∇2hi are Lipschitz
continuous, we can easily modify the above arguments to get the Q–quadratic convergence. 2

Remark 2.1. For the assumption on the nonsingularity of all W∗ ∈ W(x∗), we just point out
that if F ′(x∗) is positive definite on <n, such an assumption is satisfied. For a weaker condition,
the reader may refer to Proposition 3.1 of [8] for a discussion.

Quasi–Newton method (Broyden’s case [3])

Given x0 ∈ <n, D0 ∈ <n×n (an approximation of F ′(x0)).
Do for k = 0, 1, ... :
Choose Pk ∈ ∂CΠS(xk − F (xk)) and compute

Vk := I − Pk(I − Dk).

Solve
Vkd + E(xk) = 0 (2.3)

for dk.
xk+1 = xk + dk, (2.4)

yk = F (xk+1) − F (xk),

Dk+1 = Dk +
(yk − Dkd

k)(dk)T

(dk)T dk
.

Theorem 2.2 Suppose that F : <n → <n is continuously differentiable, x∗ is a solution of
V I(S,F ), F ′ is Lipschitz continuous in a neighborhood of x∗ and the Lipschitz constant is γ.
Suppose that the CRCQ holds at ΠS(x∗ − F (x∗)) and all W∗ ∈ W(x∗) are nonsingular. There
exist positive constants ε, δ such that if ‖x0 −x∗‖ ≤ ε and ‖D0 −F ′(x0)‖ ≤ δ, then the sequence
{xk} generated by (2.4) is well defined and converges Q–superlinearly to x∗.

Proof. By considering Theorem 2.1, we may verify the results of Theorem 2.2 by a similar
argument to the proof of Theorem 2.2 of [8]. Here we omit the detail. 2
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3. A hybrid Newton method based on D–gap function

In [23], an approximation of the generalized Hessian of fα at x is defined as

H̃Cfα(x) = {V ∈ <n×n | V = F ′(x) + (F ′(x)T − αI)(I − Pα(I − α−1F ′(x)T )T ),
Pα ∈ ∂CΠS(x − α−1F (x))}

and H̃Cfβ(x) is defined similarly. Then the computable generalized Hessian of gαβ at x is defined
as

HCgαβ(x) = H̃Cfα(x) − H̃Cfβ(x). (3.1)

Let

θ(x) =
1

2
E(x)T E(x).

Using these sets and the Newton’s method presented in Section 2, we may give the following
hybrid method:

Hybrid Newton method for V I(S,F )

Step 0. Given x0 ∈ <n, τ, η, η1 ∈ (0, 1), γ, ρ, ε ∈ (0,∞). k := 0.
Step 1. Choose Pk ∈ ∂CΠS(xk − F (xk)) and compute

Wk := I − Pk(I − F ′(xk)).

Step 2. Solve
Wkd + E(xk) = 0 (3.2)

for dk.
Step 3. If θ(xk + dk) ≤ ηθ(xk), let

xk+1 = xk + dk.

k := k + 1. Go to step 1. Otherwise, go to Step 4.
Step 4. Let yk,0 = xk. j := 0.
Step 5. Choose Vk,j ∈ HCgαβ(yk,j). If Vk,j is nonsingular and

(V −1
k,j ∇gαβ(yk,j))T∇gαβ(yk,j) ≥ ρ‖∇gαβ(yk,j)‖2+ε, (3.3)

let
sk,j = −V −1

k,j ∇gαβ(yk,j);

otherwise, let
sk,j = −γ∇gαβ(yk,j).

Step 6. Let mj be the smallest nonnegative integer m such that

gαβ(yk,j + τmsk,j) − gαβ(yk,j) ≤ η1τ
m(sk,j)T∇gαβ(yk,j)

holds. Let
yk,j+1 = yk,j + τmjsk,j.

Step 7. If θ(yk,j+1) ≤ ηθ(xk), let

xk+1 = yk,j+1.

k := k + 1. Go to Step 1. Otherwise, j := j + 1. Go to Step 5.
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Theorem 3.1 Suppose that F is strongly monotone on <n and the CRCQ holds at ΠS(y) for
any y ∈ <n. Then the above hybrid Newton method is well–defined and any accumulation point
of the infinite sequence {xk} is a solution of V I(S,F ). Furthermore, if the set G := {x ∈
<n|θ(x) ≤ θ(x0)} is bounded then the sequence {xk} will converge to the unique solution x̄
of V I(S,F ) Q–superlinearly. Moreover, the convergence is Q–quadratic if F ′(y) is Lipschitz
continuous around x̄ and ∇hi, i = 1, ...,m are Lipschitz continuous around ΠS(x̄ − F (x̄)).

Proof. Since F is strongly monotone on <n, any stationary point of gαβ is a solution of V I(S,F )
[16, 24]. This means that in the above hybrid Newton method Steps 4–7 cannot loop and an
infinite sequence {xk} will be generated. From the algorithm we have

θ(xk+1) ≤ ηθ(xk)

≤ (η)k+1θ(x0).

Therefore,
lim

k→∞
θ(xk) = 0,

which means that any accumulation point of {xk} is a solution of V I(S,F ).
The Q–superlinear (–quadratic) convergence of {xk} may be obtained by Theorem 2.1 and

Remark 2.1 easily. 2.

4. A safeguarded Newton method under pseudomonotone con-

dition

In many problems, the mapping F is only defined on the set S or outside S some monotonicity
condition on F , which is essential in designing effective algorithms, will lose [6], it is desirable
to consider algorithms similar to those discussed in Sections 2–3 while keeping the iteration
sequence in S. Such approaches have already been discussed in [8] for solving V I(S,F ) with
S given by a polyhedral set. The results in [8] may be easily generalized to the case that S is
given by (1.1). In this section, however, under the assumption that F is pseudomonotone at a
solution, we will provide a globally and superlinearly convergent hybrid method while keeping
the feasibility. The tools used here are the so–called normal maps [19] and the projection and
contraction (PC) method for solving V I(S,F ) [20]. Normal maps for V I(S,F ) are defined by

H(z) := F (ΠS(z)) + z − ΠS(z). (4.1)

It is easy to verify (for example, see [19]) that if H(z) = 0, then the point x := ΠS(z) solves
V I(S,F ); conversely if x solves V I(S,F ), then with z := x−F (x) one has H(z) = 0. Therefore
the equation H(z) = 0 is an equivalent way of formulating the variational inequality problem
V I(S,F ). It is deserved to point out that although H is defined on the whole space of <n,
F is only required to be defined on S. Similar to the discussion in Section 2 we may give the
Newton–type methods for solving H(z) = 0. Again, these are only locally convergent methods.
In order to obtain a globally and locally superlinear convergent method, we first describe a
globally convergent method recently obtained by Sun [20].

Let S∗ denote the solution set of V I(S,F ) and

E(x, β) = x − ΠS [x − βF (x)]. (4.2)
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When β = 1, E(x, 1) = E(x).
Choose an arbitrary constant η ∈ (0, 1). When x /∈ S∗, define

η(x) =



















max{η, 1 −
t(x)

‖E(x, 1)‖2
}, if t(x) > 0

1, otherwise

(4.3)

and

s(x) =



















(1 − η(x))
‖E(x, 1)‖2

t(x)
, if t(x) > 0

1, otherwise

, (4.4)

where t(x) = {F (x) − F (ΠC [x − F (x)])}T E(x, 1).

Define
b(x, β) = F (ΠS [x − βF (x)]) − F (x) + E(x, β)/β. (4.5)

Then we can describe a globally convergent method appeared in [20].

Projection and Contraction (PC) Method
Step 0. Choose an arbitrary vector x0 ∈ S. Choose positive constants η, α ∈ (0, 1), 0 <

∆1 ≤ ∆2 < 2. k := 0, go to step 1.
Step 1. Calculate η(xk) and s(xk). If s(xk) = 1, let βk = 1; otherwise determine βk =

s(xk)αmk , where mk is the smallest nonnegative integer m such that

{F (xk) − F (ΠS [xk − s(xk)αmF (xk)])}T E(xk, s(xk)αm)
≤ (1 − η(xk))‖E(xk, s(xk)αm)‖2/(s(xk)αm) (4.6)

holds.
Step 2. Calculate b(xk, βk).
Step 3. Calculate

ρk = E(xk, βk)T b(xk, βk)/‖b(xk, βk)‖
2. (4.7)

Step 4. Take γk ∈ [∆1, ∆2] and set

xk+1 = ΠS [xk − γkρkb(x
k, βk)]. (4.8)

k := k + 1, go to step 1.

The mapping F is said to be pseudomonotone at a solution x∗ ∈ S∗ over S if

F (x)T (x − x∗) ≥ 0 for all x ∈ S.

Theorem 4.1 [20]. Suppose that F is continuous over S and pseudomonotone at a solution
point x∗ over S. Then the infinite sequence {xk} generated by the above PC method is bounded
and there exists a subsequence of {xk} converging to a solution of V I(S,F ).
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When S is of the following form

S = {x ∈ <n| l ≤ x ≤ u}, (4.9)

where l and u are two vectors of {R∪{∞}}n, we can give an improved form of the PC method.
For any x ∈ S and β > 0, denote

N(x, β) = {i| (xi ≤ li and (b(x, β))i ≥ 0) or (xi ≥ ui and (b(x, β))i ≤ 0)},

B(x, β) = {1, ..., n}\N(x, β). (4.10)

Denote bN (x, β) and bB(x, β) as follows

(bN (x, β))i =

{

0, if i ∈ B(x, β)
(b(x, β))i, otherwise

,

(bB(x, β))i = (b(x, β))i − (bN (x, β))i, i = 1, ..., n. (4.11)

Then for any x∗ ∈ S∗ and x ∈ S,

(x − x∗)T bB(x, β) ≥ (x − x∗)T b(x, β). (4.12)

So if in the PC method we set

xk+1 = ΠS [xk − γkρ̄kbB(xk, βk)] (4.13)

where
ρ̄k = E(xk, βk)

T b(xk, βk)/‖bB(xk, βk)‖2,

then the convergence Theorem 4.1 holds for the modified PC method. In practice, we will use
the iterative form (4.13) when S is of the form (4.9).

Define
N (z) = {W ∈ <n×n| N = F ′(ΠS(z))P + I − P, P ∈ ∂CΠS(z)}

and

r(z) =
1

2
‖H(z)‖2.

Safeguarded Newton Method

Step 0. Choose an arbitrary vector z0 ∈ <n. Choose scalars η, α, γ, ε0 ∈ (0, 1), σ ∈ (0, 1/2),
and 0 < ∆1 ≤ ∆2 < 2. k := 0, go to step 1.

Step 1. Choose Wk ∈ N (zk).
Step 2. If Wk is singular, go to step 6; otherwise solve

Wks + H(zk) = 0

for sk. If
r(zk + sk) ≤ (1 − σ)r(zk), (4.14)

let zk+1 = zk + sk, k := k + 1, go to step 1; otherwise, go to step 3.
Step 3. If r′(zk; sk) < −ε0r(z

k), let dk = sk and go to step 5; otherwise go to step 4.
Step 4. If r′(zk;−sk) < −ε0r(z

k), let dk = −sk and go to step 5; otherwise, go to step 6.
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Step 5. (safeguarding step) Let βk = αmk , where mk is the first nonnegative integer m such
that

r(zk + αmdk) ≤ r(zk) + σαmr′(zk; dk)

or
αm ≤ γ

holds.
If βk ≥ γ, let zk+1 = zk + βkd

k, k := k + 1, and go to step 1; otherwise, go to step 6.
Step 6. Set xk,0 = ΠS(zk) and i := 0. Take xk,0 as the initial vector and use PC method till

to get a sequence {xk,0, xk,1, ..., xk,i(k)} such that i(k) is the first nonnegative integer i such that

r(xk,i − F (xk,i)) ≤ (1 − σ)r(zk).

Set zk+1 = xk,i(k) − F (xk,i(k)) and k := k + 1. Go to step 1.

Before giving the convergence theorem, we make several remarks.

Remark 4.1. We use the safeguarding step because H is not continuously differentiable.
Remark 4.2. The pseudomonotonicity assumption of F is used only when the Newton step
fails.
Remark 4.3. The finite termination of Step 6 at a non–solution point zk is guaranteed by
Theorem 4.1 and the continuity of F and ΠS .

Theorem 4.2 Let F be continuously differentiable over S. Suppose that F is pseudomonotone
at a solution of V I(S,F ) over S, and CRCQ holds. Then the sequence {zk} generated by
the above safeguarded Newton method is well defined and limk→∞ r(zk) = 0. Furthermore, if all
W ∈ N (z̄) are nonsingular at an accumulation point z̄, then {zk} converges to z Q–superlinearly
and Q–quadratically if F ′ is Lipschitz continuous in a neighborhood of z̄ and all ∇2hi, i = 1, ...,m
are Lipschitz continuous around ΠS(z).

Proof. According to the safeguarded Newton method, we have

r(zk+1) ≤ (1 − σγε0)r(z
k)

≤ (1 − σγε0)
k+1r(z0).

Therefore,
lim

k→∞
r(zk) = 0.

Furthermore, if z is an accumulation point of {zk} and all W ∈ N (z̄) are nonsingular, then
similar to the proof of Theorem 2.1 we may prove that when zk is close enough to z, we have

‖zk + sk − z̄‖ = o(‖zk − z̄‖).

This, and the fact that ∂BH(z̄) ⊆ N (z̄), implies that (4.14) is satisfied if zk is close enough to
z̄ and the full Newton step will be taken. So by modifying the proof of Theorem 2.1, we may
obtain the Q–superlinear (–quadratic) convergence of {zk} under the assumptions. 2

There are several papers on the topic of this section under the assumption that F is
pseudomonotone at a solution [1, 2, 21]. In [1, 2] the subproblem needed to solve is not a
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linear system of equations (a quadratic programming subproblem for V I(S,F ) with S given by
(4.9)) while in [21] (Chapter 6) F is required to be defined on the whole space of <n, which was
not made here. For a generalization of the above safeguarded Newton method we can ask F to
be only semismooth instead of continuously differentiable as in [21]. For the discussion on the
applications of the concept of semismoothness to nonsmooth equations see [18, 17, 15].
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