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Abstract
In this paper, we propose an adaptive sieving (AS) strategy for solving general sparse
machine learning models by effectively exploring the intrinsic sparsity of the solu-
tions, wherein only a sequence of reduced problems with much smaller sizes need to
be solved. We further apply the proposed AS strategy to generate solution paths for
large-scale sparse optimization problems efficiently. We establish the theoretical guar-
antees for the proposed AS strategy including its finite termination property. Extensive
numerical experiments are presented in this paper to demonstrate the effectiveness and
flexibility of the AS strategy to solve large-scale machine learning models.
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1 Introduction

Consider the convex composite optimization problems of the following form:

min
x∈Rn

{
Φ(x)+ P(x)

}
, (1)

where Φ : Rn → R is a convex twice continuously differentiable function and
P : Rn → (−∞,+∞] is a closed and proper convex function. The optimization
problems in this form cover a wide class of models in modern data science appli-
cations and statistical learning. In practice, the regularizer P(·) is usually chosen to
enforce sparsity with desirable structure in the estimators obtained from the model,
especially in high-dimensional cases. For example, the Lasso regularizer [30] is pro-
posed to force element-wise sparsity in the predictors, and the group lasso regularizer
[37] is proposed to impose group-wise sparsity. Moreover, many more complicated
regularizers have also been proposed to study other structured sparsity, such as the
sparse group lasso regularizer [9, 15], the SortedL-OnePenalizedEstimation (SLOPE)
[3] and the exclusive lasso regularizer [18, 41].

Currently, many popular first-order methods have been proposed to solve the prob-
lems in the form of (1), such as the accelerated proximal gradient (APG) method [2],
the alternating direction method of multipliers (ADMM) [8, 13] and the block coor-
dinate descent (BCD) method [14, 27, 32]. These algorithms are especially popular
in machine learning and statistics in recent years. However, first-order methods are
often not robust and generally are only able to deliver low accuracy solutions. Other
than first-order methods, some second-order methods have been developed for solving
convex composite optimization problems in the formof (1), including the coderivative-
based generalized Newton method [17], the forward-backward quasi-Newton method
[28], the proximal trust-region method [1], and second-order algorithms based on the
augmented Lagrangian method [6, 20, 23, 29].

However, both the first-order and second-order algorithms for solving the problems
in the form of (1) will face significant challenges when scaling to high-dimensional
problems. Fortunately, the desired solutions to the model in practice are usually highly
sparse, where the nonzero entries correspond to selected features. Inspired by this
property, in this paper, we propose an adaptive sieving strategy for solving sparse
optimization models in the form of (1), by sieving out a large proportion of inactive
features to significantly reduce the dimension of the problems, which can then highly
accelerate the computation. The proposed AS strategy does not depend on the specific
form of the regularizer P(·), as long as the proximal mapping of P(·) can be computed
in an efficient way. It is worth emphasizing that our AS strategy can be applied to
any solver providing that it is able to solve the reduced problems to the required
accuracy. Numerical experiments demonstrate that our AS strategy is very effective in
reducing the problem dimensions and accelerating the computation for solving sparse
optimization models.

We will then apply the proposed AS strategy to generate solution paths for large-
scale machine learning models, which is necessary for model selection via cross-
validation in practice. In particular, we are interested in solving the following problem
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for a sequence of values of the parameter λ:

min
x∈Rn

{
Φ(x)+ λP(x)

}
. (Pλ)

Here the hyper-parameter λ > 0 is added to control the trade-off between the loss and
the sparsity level of the solutions. To reduce the computation time of obtaining a solu-
tion path, especially for high-dimensional cases, various feature screening rules, which
attempt to drop some inactive features based on prior analysis, have been proposed.
Tibshirani et al. [31] proposed a strong screening rule (SSR) based on the “unit-slope”
bound assumption for the Lasso model and the regression problem with the elastic
net regularizer. This idea has been extended to the SLOPE model recently [19]. Com-
pared to this unsafe screening rule where some active features may be screened out
by mistake, safe screening rules have been extensively studied. The first safe screen-
ing rule was proposed by El Ghaoui et al. [12] for Lasso models. Later on, Wang et
al. [33, 34] proposed a dual polytope projection based screening rule (DPP) and an
enhanced version (EDPP) for Lasso and group lasso models via carefully analyzing
the geometry of the corresponding dual problems. Other safe screening rules, like
Sphere test [36], have been proposed via different strategies for estimating compact
regions containing the optimal solutions to the dual problems. The safe screening
rules will not exclude active features, but in many instances they only exclude a small
subset of inactive features due to their conservative nature. In addition, the safe screen-
ing rules are usually not applicable to generate a solution path for a sequence of the
hyperparameters with large gaps. Recently, Zeng et al. [39] combined the SSR and
the EDPP to propose a hybrid safe-strong screening rule, which was implemented in
an R package biglasso [38]. However, these screening rules are usually problem
specific and they are difficult to be applied to the models with general regularizers,
like the exclusive lasso regularizer, as they are highly dependent on the separability
and positive homogeneity of the regularizers. Also, they implicitly require the reduced
problems to be solved exactly.

Based on our proposed AS strategy for solving the problem (1), we design a path
generation method for generating solution paths of the machine learning model (Pλ),
wherein a sequence of reduced problems with much smaller sizes need to be solved.
Our path generation method exhibits great improvement over the existing screening
rules in three aspects. First, it applies to themodels with general regularizers, including
those are non-separable or not positively homogeneous. Second, it does not require
the reduced problems to be solved exactly. Third, as we will see in the numerical
experiments, it is more aggressive, and is able to sieve out more inactive features.
Here, it is worth mentioning that, the aforementioned screening rules are only for
generating the solution path and they cannot be applied directly for solving a single
problem with a fixed parameter.

The remaining part of the paper is organized as follows. In Sect. 2, we propose the
adaptive sieving strategy for solving the sparse optimization models in the form of
(1), followed by its theoretical analysis including the finite termination property in
Sect. 3. In Sect. 4, we will design a path generation method for general sparse opti-
mization models based on the proposed AS strategy. Section5 provides the numerical
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performance of the proposed AS strategy for solving various machine learning models
on both synthetic data and real data. Experiments are also conducted to demonstrate
the superior performance of the path generation method based on the AS strategy
compared to other popular screening rules. Finally, we conclude the paper.

Notations: Denote the set [n] = {1, 2, . . . , n}. For any I ⊆ [n], I denotes the com-
plement of I in [n]. For any z ∈ R, sign(z) denotes the sign function of z. For any
x ∈ R

n , denotes its p-norm as ‖x‖p = (
∑p

i=1 |xi |p)1/p. For simplicity, we denote
‖ · ‖ = ‖ · ‖2. For any vector x ∈ R

n and any index set I ⊆ [n], denote xI as the
subvector generated by the elements of x indexed by I . For any closed and proper
convex function q : Rn → (−∞,∞], the proximal mapping of q(·) is defined by

Proxq(x) := argmin
y∈Rn

{
q(y)+ 1

2
‖y − x‖2

}
, (2)

for any x ∈ R
n . It is known that Proxq(·) is Lipschitz continuous with modulus 1 [26].

2 Dimension reduction via adaptive sieving

Throughout this paper, we make the following blanket assumption, which is satisfied
for many popular machine learning models, as discussed in [42, Section 2.1].

Assumption 1 Assume that the solution set of (1), denoted as Ω , is nonempty and
compact.

2.1 The adaptive sieving strategy

We propose an adaptive sieving strategy for solving sparse optimization models in
the form of (1). An appealing property of this strategy is that it does not depend on
the specific form of the regularizer and thus can be applied to sparse optimization
problems with general regularization functions. More importantly, due to the adaptive
nature of the AS strategy, it can sieve out a very large proportion of inactive features to
significantly reduce the dimension of the problems and accelerate the computation by
a large margin. This further shows that the AS strategy actually serves as a powerful
dimension reduction technique for sparse optimization models.
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Algorithm 1 An adaptive sieving strategy for solving (1)

1: Input: an initial index set I 0 ⊆ [n], a given tolerance ε ≥ 0 and a given positive integer kmax (e.g.,
kmax = 500).

2: Output: an approximate solution x∗ to the problem (1) satisfying ‖R(x∗)‖ ≤ ε.
3: 1. Find

x0 ∈ argmin
x∈Rn

{
Φ(x)+ P(x)− 〈δ0, x〉 | x

I0
= 0

}
, (3)

where δ0 ∈ R
n is an error vector such that ‖δ0‖ ≤ ε and (δ0)

I0
= 0.

2. Compute R(x0) and set s = 0.
4: while ‖R(xs )‖ > ε do
5: 3.1. Create J s+1 as

J s+1 =
{
j ∈ I s | (R(xs )) j �= 0

}
. (4)

(We prove in Theorem 1 that J s+1 �= ∅.) Let k be a positive integer satisfying k ≤ min{|J s+1|, kmax}
and define

Ĵ s+1 =
{
j ∈ J s+1 | |(R(xs )) j | is among the first k largest values in {|(R(xs ))i |}i∈J s+1

}
.

Update I s+1 as:

I s+1 ← I s ∪ Ĵ s+1.

6: 3.2. Solve the following constrained problem with the initialization xs ,

xs+1 ∈ argmin
x∈Rn

{
Φ(x)+ P(x)− 〈δs+1, x〉 | x

I s+1 = 0
}
, (5)

where δs+1 ∈ R
n is an error vector such that ‖δs+1‖ ≤ ε and (δs+1)

I s+1 = 0.

7: 3.3: Compute R(xs+1) and set s ← s + 1.
8: end while
9: return: Set x∗ = xs .

We give the details of the AS strategy in Algorithm 1. Here in order to measure
the accuracy of the approximate solutions, we define the proximal residual function
R : Rn → R

n associated with the problem (1) as

R(x) := x − ProxP (x −∇Φ(x)), x ∈ R
n . (6)

The KKT condition of (1) implies that x̄ ∈ Ω if and only if R(x̄) = 0.
A few remarks of Algorithm 1 are in order. First, in Algorithm 1, the introduction of

the error vectors δ0, {δs+1} in (3) and (5) implies that the corresponding minimization
problems can be solved inexactly. It is important to emphasize that the vectors are not
a priori given but they are the errors incurred when the original problems (with δ0 = 0
in (3) and δs+1 = 0 in (5)) are solved inexactly. We will explain how the error vectors
δ0, {δs+1} in (3) and (5) can be obtained in Sect. 3. Second, the initial active feature
index set I 0 is suggested to be chosen such that |I 0| � n, in consideration of the
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computational cost. Third, the sizes of the reduced problems (3) and (5) are usually
much smaller than n, which will be demonstrated in the numerical experiments.

We take the least squares linear regression problem as an example to show an
efficient initialization of the index set I 0 via the correlation test, which is similar to the
idea of the surely independent screening rule in [10]. Consider Φ(x) = 1

2‖Ax − b‖2,
where A = [a1, a2, . . . , an] ∈ R

m×n is a given feature matrix, b ∈ R
m is a given

response vector. One can choose k�√n� initial active features based on the correlation
test between each feature vector ai and the response vector b. That is, one can compute
si := |〈ai , b〉|/(‖ai‖‖b‖) for i = 1, . . . , n, and choose the initial guess of I 0 as

I 0 = {
i ∈ [n] : si is among the first k�√n� largest values in s1, . . . , sn

}
.

In practice, we usually choose k = 10.

2.2 Examples of the regularizer

As we shall see in Algorithm 1, there is no restriction on the form of the regularizer
P(·). In particular, it is not necessary to be separable or positively homogeneous,
which is an important generalization compared to the existing screening rules [12,
31, 33, 34, 36, 38, 39]. The only requirement for P(·) is that its proximal mapping
ProxP (·) can be computed in an efficient way. Fortunately, it is the case for almost all
popular regularizers used in practice. Below, we list some examples of the regularizers
for better illustration.

– Lasso regularizer [30]:

P(x) = λ‖x‖1, x ∈ R
n,

where λ > 0 is a given parameter.
– Elastic net regularizer [43]:

P(x) = λ1‖x‖1 + λ2‖x‖2, x ∈ R
n,

where λ1, λ2 > 0 are given parameters.
– Sparse group lasso regularizer [9, 15]:

P(x) = λ1‖x‖1 + λ2

g∑
l=1

wl‖xGl‖, x ∈ R
n,

where λ1, λ2 > 0,w1, . . . , wg ≥ 0 are parameters, and {G1, . . . ,Gg} is a disjoint
partition of the set [n]. For the limiting case when λ1 = 0, we get the group lasso
regularizer [37].

– Exclusive lasso regularizer [18, 41]:

P(x) = λ

g∑
l=1
‖wGl ◦ xGl‖21, x ∈ R

n,
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where λ > 0 is a given parameter, w ∈ R
n++ is a weight vector and {G1, . . . ,Gg}

is a disjoint partition of the index set [n].
– Sorted L-One Penalized Estimation (SLOPE) [3]:

P(x) =
n∑

i=1
λi |x |(i),

with parameters λ1 ≥ · · · ≥ λn ≥ 0 and λ1 > 0. For a given vector x ∈ R
n , we

denote |x | to be the vector in R
n obtained from x by taking the absolute value of

its components. We define |x |(i) to be the i-th largest component of |x | such that
|x |(1) ≥ · · · ≥ |x |(n).

Among the above examples, the screening rules of the Lasso regularizer and the
group lasso regularizer have been intensively studied in [12, 31, 33, 34, 36, 38, 39].
Recently, a strong screening rule has been proposed for SLOPE [19]. However, no
unified approach has been proposed for sparse optimization problemswith general reg-
ularizers. Fortunately, our proposedAS strategy is applicable to all the above examples,
which includes three different kinds of “challenging” regularizers. In particular, (1)
the sparse group lasso regularizer is a combination of two regularizers; (2) the SLOPE
is not separable; (3) the exclusive lasso regularizer is not positively homogeneous.

3 Theoretical analysis of the AS strategy

In this section, we provide the theoretical analysis of the proposed AS strategy for
solving sparse optimization problems presented in Algorithm 1. An appealing advan-
tage of our proposed AS strategy is that it allows the involved reduced problems to
be solved inexactly due to the introduction of the error vectors δ0, {δs+1} in (3) and
(5). It is important to emphasize that the vectors are not a priori given but they are
the errors incurred when the original problems (with δ0 = 0 in (3) and δs+1 = 0 in
(5)) are solved inexactly. The following proposition explains how the error vectors δ0,
{δs+1} in (3) and (5) can be obtained.

Proposition 1 Given any s = 0, 1, · · · . The updating rule of xs in Algorithm 1 can
be interpreted in the procedure as follows. Let Ms be a linear map from R

|I s | to R
n

defined as

(Msz)I s = z, (Msz)I s = 0, z ∈ R
|I s |,

and Φs , Ps be functions from R
|I s | to R defined as Φs(z) := Φ(Msz), Ps(z) :=

P(Msz) for all z ∈ R
|I s |. Then xs ∈ R

n can be computed as

(xs)I s := ProxPs (ẑ −∇Φs(ẑ)),
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and (xs)I s = 0, where ẑ is an approximate solution to the problem

min
z∈R|I s |

{
Φs(z)+ Ps(z)

}
, (7)

which satisfies

‖δ̂‖ ≤ ε, δ̂ := ẑ − (xs)I s +∇Φs((xs)I s )−∇Φs(ẑ), (8)

where ε is the parameter given in Algorithm 1.
If the function Φ(·) is L-smooth, that is, it is continuously differentiable and its

gradient is Lipschitz continuous with constant L:

‖∇Φ(x)−∇Φ(y)‖ ≤ L‖x − y‖, ∀x, y ∈ R
n,

then the condition (8) can be achieved by

‖ẑ − ProxPs (ẑ − ∇Φs(ẑ))‖ ≤ ε

1+ L
.

Proof Let {zi } be a sequence that converges to a solution of the problem (7). For
any i = 1, 2, · · · , define εi := zi − ProxPs (zi − ∇Φs(zi )) + ∇Φs(ProxPs (zi −
∇Φs(zi ))) − ∇Φs(zi ). By the continuous differentiability of Φs(·) and [7, Lemma
4.5], we know that limi→∞ ‖εi‖ = 0, which implies the existence of ẑ in (8).

Next we explain the reason why the updating rule of xs in Algorithm 1 can be
interpreted as the one stated in the proposition. Since (xs)I s := ProxPs (ẑ−∇Φs(ẑ)),
we have

ẑ − (xs)I s −∇Φs(ẑ) ∈ ∂Ps((xs)I s ).

According to the definition of δ̂ in (8), we have

δ̂ ∈ ∇Φs((xs)I s )+ ∂Ps((xs)I s ),

which means that xs is the exact solution to the problem

min
x∈Rn

{
Φ(x)+ P(x)− 〈δs, x〉 | xI s = 0

}
,

with δs := Ms δ̂. Moreover, we can see that (δs)I s = (Ms δ̂)I s = 0 and

‖δs‖ = ‖δ̂‖ = ‖ẑ − (xs)I s +∇Φs((xs)I s )−∇Φs(ẑ)‖ ≤ ε.

If Φ(·) is L-smooth, we have that

‖δ̂‖ = ‖ẑ − (xs)I s + ∇Φs((xs)I s )− ∇Φs(ẑ)‖
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≤ ‖ẑ − (xs)I s‖ + ‖∇Φs((xs)I s )−∇Φs(ẑ)‖
= ‖ẑ − (xs)I s‖ + ‖MT

s ∇Φ(Ms(x
s)I s )− MT

s ∇Φ(Msẑ)‖
≤ ‖ẑ − (xs)I s‖ + ‖∇Φ(Ms(x

s)I s )−∇Φ(Ms ẑ)‖
≤ ‖ẑ − (xs)I s‖ + L‖Ms(x

s)I s − Msẑ‖
= (1+ L)‖ẑ − (xs)I s‖,

which means that (8) can be achieved by

‖ẑ − ProxPs (ẑ − ∇Φs(ẑ))‖ ≤ ε

1+ L
.

This completes the proof. ��
Next, we will show the convergence properties of Algorithm 1 in the following

proposition, which states that the algorithm will terminate after a finite number of
iterations.

Theorem 1 The while loop in Algorithm 1 will terminate after a finite number of
iterations.

Proof We first prove that when ‖R(xs)‖ > ε ≥ 0 for some s ≥ 0, the index set J s+1
defined in (4) is nonempty. We prove this by contradiction. Suppose that J s+1 = ∅,
which means

(R(xs))I s = 0.

According to the definition of R(·) in (6), we have

R(xs)−∇Φ(xs) ∈ ∂P(xs − R(xs)).

Note that xs satisfies

xs ∈ argmin
x∈Rn

{
Φ(x)+ P(x)− 〈δs, x〉 | xI s = 0

}
,

where δs ∈ R
n is an error vector such that (δs)I s = 0 and ‖δs‖ ≤ ε. By the KKT

condition of the above minimization problem, we know that there exists a multiplier
y ∈ R

n with yI s = 0 such that

⎧⎨
⎩
0 ∈ ∇Φ(xs)+ ∂P(xs)− δs − y,(
xs

)
I s
= 0,

which means

δs + y −∇Φ(xs) ∈ ∂P(xs).
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By the maximal monotonicity of the operator ∂P , we have

〈R(xs)− δs − y,−R(xs)〉 ≥ 0,

which implies that

‖R(xs)‖2 ≤ 〈δs + y, R(xs)〉 = 〈(δs)I s , (R(xs))I s 〉 ≤ ‖δs‖‖R(xs)‖ ≤ ε‖R(xs)‖.

Thus, we get ‖R(xs)‖ ≤ ε, which is a contradiction.
Therefore, we have that for any s ≥ 0, J s+1 �= ∅ as long as ‖R(xs)‖ > ε, which

further implies that Ĵ s+1 �= ∅. In other words, new indices will be added to the index
set I s+1 as long as the KKT residual has not achieved at the required accuracy. Since
the total number of features n is finite, the while loop in Algorithm 1 will terminate
after a finite number of iterations. ��

Althoughweonlyhave thefinite terminationguarantee for the proposedASstrategy,
the superior empirical performance of the AS strategy will be demonstrated later in
Sect. 5with extensive numerical experiments. In particular, the number ofAS iterations
is no more than 5 (less than 3 for most of the cases) for solving a single sparse
optimization problem in our experiments on both synthetic and real datasets.

4 An efficient path generationmethod based on the AS strategy

When solving machine learning models in practice, we need to solve the model with
a sequence of hyper-parameters and then select appropriate values for the hyper-
parameters based on some methodologies, such as cross-validation. In this section,
we are going to propose a path generation method based on the AS strategy to obtain
solution paths of general sparse optimization models. Specifically, we will borrow the
idea of the proposed AS strategy to solve the model (Pλ) for a sequence of λ in a
highly efficient way.

Before presenting our path generation method, we first briefly discuss the ideas
behind the two most popular screening rules for obtaining solution paths of various
machine learning models, namely the strong screening rule (SSR) [31] and the dual
polytope projection based screening rule (DPP) [33, 34]. For convenience, we take the
Lasso model as an illustration, with Φ(x) = 1

2‖Ax − b‖2 and P(x) = ‖x‖1 in (Pλ),
where A = [a1, a2, . . . , an] ∈ R

m×n is the feature matrix and b ∈ R
m is the response

vector. Let x∗(λ) be an optimal solution to (Pλ). The KKT condition implies that:

aTi θ∗(λ) ∈
{ {λ sign(x∗(λ))} if x∗(λ)i �= 0
[−λ, λ] if x∗(λ)i = 0

,

where θ∗(λ) is the optimal solution of the associated dual problem:

max
θ∈Rm

{1
2
‖b‖2 − 1

2
‖θ − b‖2 | |aTi θ | ≤ λ, i = 1, 2, . . . , n

}
. (9)
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The existing screening rules for the Lasso model are based on the fact that x∗(λ)i = 0
if |aTi θ∗(λ)| < λ. The difference is how to estimate aTi θ∗(λ) based on an optimal
solution x∗(λ̃) of (Pλ̃) for some λ̃ > λ, without solving the dual problem (9). The SSR
[31] discards the i-th predictor if

|aTi θ∗(λ̃)| ≤ 2λ− λ̃,

by assuming the “unit slope” bound condition: |aTi θ∗(λ1)− aTi θ∗(λ2)| ≤ |λ1 − λ2|,
for all λ1, λ2 > 0. Since this assumption may fail, the SSRmay screen out some active
features by mistake. Also, the SSR only works for consecutive hyper-parameters with

a small gap, since it requires λ > λ̃
2 .Wang et al. [33, 34] proposed theDPP by carefully

analysing the properties of the optimal solution to the dual problem (9). The key idea
is, if we can estimate a region Θλ containing θ∗(λ), then

sup
θ∈Θλ

|aTi θ | < λ �⇒ x∗(λ)i = 0.

They estimate the region Θλ by realizing that the optimal solution of (9) is the pro-
jection onto a polytope. As we can see, a tighter estimation of Θλ will induce a better
safe screening rule.

The bottlenecks of applying the above screening rules to solve general machine
learning models in the form of (1) are: (1) the subdifferential of a general regularizer
may be much more complicated than the Lasso regularizer, whose subdifferential
is separable; (2) a general regularizer may not be positively homogeneous, which
means that the optimal solution to the dual problem may not be the projection onto
some convex set [25, Theorem 13.2]; (3) These screening rules may only exclude
a small portion of zeros in practice even if the solutions of the problem are highly
sparse, thus we still need to solve large-scale problems after the screening; (4) they
implicitly require the reduced problems to be solved exactly, which is unrealistic for
many machine learning models in practice.

To overcome these challenges, we propose a path generation method based on the
AS strategy for solving the problem (Pλ) presented in Algorithm 2. Here we denote
the proximal residual function Rλ : Rn → R

n associated with (Pλ) as

Rλ(x) := x − ProxλP (x −∇Φ(x)), x ∈ R
n . (10)

Assume that for any λ > 0, the solution set of (Pλ) is nonempty and compact.
The design of the above algorithm directly leads us to the following theorem regard-

ing its convergence property. The proof of the theorem can be obtained directly due
to Theorem 1.

Theorem 2 The solution path x∗(λ0), x∗(λ1), . . . , x∗(λk) generated by Algorithm 2
forms a sequence of approximate solutions to the problems (Pλ0), (Pλ1), · · · , (Pλk ),
in the sense that

‖Rλi (x
∗(λi ))‖ ≤ ε, i = 0, 1, . . . , k.
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Algorithm 2 An AS-based path generation method for (Pλ)
1: Input: a sequence of hyper-parameters: λ0 > λ1 > · · · > λk > 0, and given tolerances ε ≥ 0 and

ε̂ ≥ 0.
2: Output: a solution path: x∗(λ0), x∗(λ1), x∗(λ2), . . . , x∗(λk ).
3: 1. Apply Algorithm 1 to solve the problem (Pλ0 ) with the tolerance ε, and then denote the output as

x∗(λ0). Let

I∗(λ0) := { j | |x∗(λ0) j | > ε̂, j = 1, . . . , n}.

4: for i = 1, 2, . . . , k do
5: 2.1. Let I 0(λi ) = I∗(λi−1).
6: 2.2. Apply Algorithm 1 to solve the problem (Pλi ) with the initial index set I

0(λi ), the initialization
x∗(λi−1) and the tolerance ε. Denote the output as x∗(λi ).

7: 2.3. Let

I∗(λi ) := { j | |x∗(λi ) j | > ε̂, j = 1, . . . , n}.

8: end for

In practice, we usually choose ε̂ = 10−10. We will compare the numerical per-
formance of the proposed AS strategy to the popular screening rules in Sect. 5, our
experiment results will show that the AS strategy is much more efficient for solving
large-scale sparse optimization problems.

5 Numerical Experiments

In this section, we will present extensive numerical results to demonstrate the perfor-
mance of the AS strategy.1 We will test the performance of the AS strategy on the
sparse optimization problems of the following form:

min
x∈Rn

{
h(Ax)+ λP(x)

}
, (11)

where A : Rn → R
m is a given data matrix, h : Rm → R is a convex, twice

continuously differentiable loss function, P : Rn→ (−∞,+∞] is a proper closed
convex regularization function, and λ > 0 is the hyper-parameter. More specifically,
we consider the two most commonly used loss functions for h(·):
(1) (linear regression) h(y) =∑m

i=1(yi − bi )2/2, for some given vector b ∈ R
m ;

(2) (logistic regression) h(y) = ∑m
i=1 log(1 + exp(−bi yi )), for some given vector

b ∈ {−1, 1}m .
For the regularization function P(·), we consider four important regularizers in statis-
tical learning models: Lasso, sparse group lasso, exclusive lasso, and SLOPE. Details
of the regularizers can be found in Sect. 2.2. The algorithms used for solving each
sparse optimization model and its corresponding reduced problems when applying
the AS strategy will be specified later in the related subsections.

1 The code is available at https://doi.org/10.5281/zenodo.15087424.
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In our experiments, wemeasure the accuracy of the obtained solution by the relative
KKT residual:

ηKKT := ‖x − ProxλP (x − AT∇h(Ax))‖
1+ ‖x‖ + ‖AT∇h(Ax)‖ , (12)

as suggested in [20]. Here ηKKT measures how close the optimality condition of (11)
is to being met, which is particularly crucial in scenarios where the function values
decrease slowly but significant progress towards satisfying the optimality condition
is being made. We terminate the tested algorithm when ηKKT ≤ ε, where ε > 0 is a
given tolerance, which is set to be 10−6 by default.We choose ε̂ = 10−10 in Algorithm
2. All our numerical results are obtained by running MATLAB(2022a version) on a
Windows workstation (Intel Xeon E5-2680 @2.50GHz).

The numerical experiments will be organized as follows. First, we present the
numerical performance of the AS strategy on the mentioned models on synthetic data
sets in Sects. 5.1 and 5.2. To better demonstrate the effectiveness and flexibility of
our AS strategy, we compare it with other existing approaches for the path generation
in Sect. 5.3, and test its performance with its reduced problems solved by different
algorithms in Sect. 5.4. Finally, we present the numerical results on nine real data sets
in Sect. 5.5.

5.1 Performance of the AS strategy for linear regression on synthetic data

In this subsection, we conduct numerical experiments to demonstrate the performance
of the AS strategy for linear regression on synthetic data.

We first describe the generation of the synthetic data sets. We consider the models
with group structure (e.g., sparse group lasso and exclusive lasso) and without group
structure (e.g., Lasso and SLOPE). For simplicity, we randomly generate data with
groups and test all themodels on these data.Motivated by [4], we generate the synthetic
data using the model b = Ax∗ + ξ , where x∗ is the predefined true solution and
ξ ∼ N (0, Im) is a random noise vector. Given the number of observations m, the
number of groups g and the number of features p in each group, we generate each
row of the matrix A ∈ R

m×gp by independently sampling a vector from a multivariate
normal distribution N (0,Σ), where Σ is a Toeplitz covariance matrix with entries
Σi j = 0.9|i− j | for the features in the same group, andΣi j = 0.3|i− j | for the features in
different groups. For the ground-truth x∗, we randomly generate r nonzero elements
in each group with i.i.d values drawn from the uniform distribution on [0, 10]. In
particular, we test the case where r = �0.1% × p�. More experiments for the case
where r = �1%× p� are given in Appendix A.3.

Here, we mainly focus on solving the regression models in high-dimensional set-
tings. In our experiments, we set m ∈ {500, 1000, 2000}. For the number of features,
for simplicity, we fix g to be 20, but vary the number of features p in each group from
5000 to 60000. That is, we vary the total number of features n = gp from 1, 00, 000
to 12, 00, 000.

123



Y. Yuan et al.

Fig. 1 Performance of the AS strategy applied to the generation of solution paths for the Lasso linear
regression model on synthetic data sets with different problem sizes

5.1.1 Numerical results on Lasso linear regression problems

In this subsection, we present the numerical results of the Lasso linear regression
model. We will apply the state-of-the-art semismooth Newton based augmented
Lagrangian (SSNAL)method2 to solve the Lassomodel and its corresponding reduced
problems generated by the AS strategy. The comparison of the efficiency between the
SSNAL method and other popular algorithms for solving Lasso models can be found
in [20]. Following the numerical experiment settings in [20], we test the numerical
performance of the AS strategy for generating a solution path for the Lasso linear
regression model with λ = λc‖AT b‖∞, where λc is taken from 10−1 to 10−4 with 20
equally divided grid points on the log10 scale.

We show the numerical results in Fig. 1, where the performance of the AS strat-
egy and the well-known warm-start technique for generating solution paths of Lasso
linear regression problems are compared with different problem sizes (m, n). From
the numerical results, we can see that the AS strategy can significantly reduce the
computational time of path generation. In particular, the AS strategy can accelerate
the SSNAL method up to 43 times for generating solution paths for the Lasso lin-
ear regression model. Moreover, the AS strategy scales efficiently as the number of
features increases, which makes it especially effective for handling high-dimensional
data.

In order to further demonstrate the power of the AS strategy, in Fig. 2a, we plot
the average (and maximum) problem size of the reduced problems in the AS strategy
against the number of nonzero entries of the optimal solutions in the solution path
for the case when m = 500, n = 1, 00, 000. We can see that the average reduced
problem sizes in the AS strategy can nearly match the actual number of nonzeros
in the optimal solutions, except for the first problem with the largest λ. This clearly
demonstrates the dimensionality reduction achieved by the AS strategy when solving
sparse optimization problems, especially in high-dimensional settings. In addition,
Fig. 2(b) shows that we only need no more than three rounds of sieving in the AS
strategy to solve the problem for each λ, which demonstrates that our sieving technique
is quite effective in practice.

2 https://github.com/MatOpt/SuiteLasso.
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Fig. 2 Performance profile of the AS strategy on the Lasso linear regression model for the case when
m = 500, n = 1, 00, 000
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Fig. 3 Performance of the AS strategy applied to the generation of solution paths for the exclusive lasso
linear regression model on synthetic data sets with different problem sizes

5.1.2 Numerical results on exclusive lasso linear regression problems

In this subsection, we present the numerical results of the exclusive lasso linear regres-
sion model.We apply the state-of-the-art dual Newton based proximal point algorithm
(PPDNA) [21] to solve the exclusive lasso model and its corresponding reduced prob-
lems generated by the AS strategy. The comparison of the efficiency between the
PPDNA and other popular algorithms for solving exclusive lasso models can be found
in [21]. We follow the numerical experiment settings in [21] and test the numerical
performance of generating a solution path for the exclusive lasso regression model
with λ = λc‖AT b‖∞ and w being the vector of all ones. Here, λc is taken from 10−1
to 10−4 with 20 equally divided grid points on the log10 scale.

We summarize the numerical results on the path generation of the exclusive lasso
linear regression model with different problem sizes in Fig. 3. We can see that the AS
strategy gives excellent performance in generating the solution paths for the exclusive
lasso linear regression models, in the sense that it accelerates the PPDNA algorithm
up to 30 times. In addition, the average (and maximum) problem sizes of the reduced
problems against the number of nonzeros in the optimal solutions for the case when
m = 500, n = 1, 00, 000 is shown in Fig. 4a. The number of sieving rounds for
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Fig. 4 Performance profile of the AS strategy on the exclusive lasso linear regression model for the case
when m = 500, n = 1, 00, 000

this case is also provided in Fig. 4b. We can see that AS is able to highly reduce the
dimensions of the optimization problems along the solution paths.

More experiments on the numerical performance of the AS strategy when solving
the linear regressionmodelswith sparse group lasso regularizer andSLOPE regularzier
are shown in Appendix A.1 and Appendix A.2, respectively.

5.2 Performance of the AS strategy for logistic regression on synthetic data

To test the regularized logistic regression problem, we generate A and x∗ following
the same settings as in Sect. 5.1 and define bi = 1 if Ax∗ + ξ̃ ≥ 0, and −1 otherwise,
where ξ̃ ∼ N (0, Im).

5.2.1 Numerical results on Lasso logistic regression problems

We present the results on the Lasso logistic regression model, where the (reduced)
problems are again solved by the SSNALmethod [20].We test the performance on gen-
erating a solution path for the Lasso logistic regression model with λ = λc‖AT b‖∞,
where λc is taken from 10−1 to 10−4 with 20 equally divided grid points on the log10
scale. The detailed numerical results are shown in Table 1, where the performance
of the AS strategy and the well-known warm-start technique for generating solution
paths of Lasso logistic regression problems are compared on the problems with dif-
ferent sizes (m, n). For better illustration of the AS performance, we also list the total
number of sieving rounds, together with the average (maximum) dimension of the
reduced problems on the solution path.

We can see from the table that the AS strategy also works extremely well for solving
the Lasso logistic regression problems, in the sense that it reduces the problem size
by a large margin for each case and highly accelerates the computation of the path
generation.
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Table 1 Numerical performance of the AS strategy applied to the generation of solution paths (20 different
λ’s) for the Lasso logistic regression model on synthetic data sets. In the table, ‘S. Rnd’ represents the total
number of the AS rounds during the path generation, ‘Avg. D.’ (‘Max. D.’) denotes the average (maximum)
dimension of the reduced problems on the solution path

Total time (hh:mm:ss) Information of the AS

m n(= g × p) Warmstart With AS S. Rnd Avg. D Max. D

500 1, 00, 000 00:02:30 00:00:06 23 564 3170

2, 00, 000 00:04:18 00:00:05 18 622 4473

6, 00, 000 00:11:40 00:00:08 19 764 7752

12, 00, 000 00:23:06 00:00:11 20 668 10,951

1000 100, 000 00:05:55 00:00:12 23 843 3227

2, 00, 000 00:10:12 00:00:14 22 949 4512

6, 00, 000 00:28:29 00:00:21 20 1119 7763

12, 00, 000 00:53:27 00:00:28 18 1335 10,954

2000 1, 00, 000 00:17:27 00:01:12 26 1237 3251

2, 00, 000 00:26:19 00:01:15 25 1553 4656

6, 00, 000 01:09:52 00:01:23 22 1956 7859

12, 00, 000 02:01:53 00:01:42 19 2282 11,010

5.2.2 Numerical results on exclusive lasso logistic regression problems

In this subsection, we present the numerical results on the exclusive lasso logistic
regression model, where the (reduced) problems are solved by the PPDNA [21]. We
test the numerical performance of the AS strategy for generating a solution path for the
exclusive lasso logistic regression model with uniform weights and λ = λc‖AT b‖∞,
where λc is taken from 10−1 to 10−4 with 20 equally divided grid points on the log10
scale.

The results are presented in Table 2. As demonstrated, our AS strategy once again
exhibits excellent performance in significantly reducing the problem sizes during the
path generation of the exclusive lasso logistic regression problems. This reduction
clearly leads to a noticeable acceleration in computation, further highlighting the
efficiency and scalability of our approach.

5.3 Comparison between AS and other approaches

To further demonstrate the superior performance of the AS strategy, we will compare
it with other popular approaches on the generation of solution paths for the Lasso
linear regression models, which are implemented in high-quality publicly available
packages. Specifically, we compare AS(+SSNAL) with the following approaches.

– Matlab’sCD:The coordinate descendmethod [11],with itsMatlab implementation
in built-in “lasso” function in the Statistics and Machine Learning Toolbox.
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Table 2 Numerical performance of the AS strategy applied to the generation of solution paths (20 different
λ’s) for the exclusive lasso logistic regression model on synthetic data sets

Total time (hh:mm:ss) Information of the AS

m n(= g × p) Warmstart With AS S. Rnd Avg. D Max. D

500 1, 00, 000 00:01:03 00:00:08 31 306 3161

2, 00, 000 00:01:47 00:00:10 34 385 4471

6, 00, 000 00:04:41 00:00:13 30 443 7751

12, 00, 000 00:10:16 00:00:19 30 497 10,951

1000 1, 00, 000 00:01:36 00:00:21 36 429 3161

2, 00, 000 00:03:03 00:00:27 34 566 4471

6, 00, 000 00:07:26 00:00:35 36 623 7751

1, 200, 000 00:14:44 00:00:48 34 702 10,951

2000 1, 00, 000 00:02:58 00:01:16 36 499 3161

2, 00, 000 00:05:12 00:01:36 37 661 4471

6, 00, 000 00:13:30 00:02:11 38 899 7751

1, 200, 000 00:26:45 00:02:40 38 1038 10,951

– EDPP: The Enhanced Dual Projection onto Polytope (EDPP) rule implemented in
the DPC Package,3 where the inner problems are solved by the function “LeastR”
in the solver SLEP [22].

– FPC_AS: The active-set based fixed point continuation method [35].

Note that the above approaches are terminated by different stopping criteria: AS is
terminated ifηKKT in (12) is nogreater than agiven tolerance ε;Matlab’sCD terminates
when successive estimates of x differ in the �2 norm by a relative amount less than
RelTol; EDPP is terminated if the relative successive estimates of x is no greater
than Tol; and FPC_AS terminates if the maximum norm of sub-gradient is smaller
than gtol.

For fair comparison, we test each approach with two choices of tolerances, and then
compare their running time as well as the relative objective function values against
the benchmark. Here we set the benchmark as f ∗ := f (x∗) = ‖Ax∗ − b‖2/2 +
λ‖x∗‖1, where x∗ is the solution obtained by the AS with a high accuracy (ε = 10−8).
The relateive objective function value associated with an approximate solution x is
defined as ( f (x)− f ∗)/ f ∗. If this quantity is smaller, it means that the corresponding
approximate solution is better.

The numerical comparison among the four approaches in generating solution paths
for the Lasso model of size (m, n) = (500, 1, 00, 000) with λc decreasing from 1
to 10−4 is shown in Table 3 and Fig. 5. It can be seen from the results that, the AS
strategy gives great performance on path generation, as it achieves higher accuracy
solutions in less time comparing with the existing approaches. In addition, from the
experimental results, we can see that, as the tolerance becomes more stringent, our
AS strategy exhibits strong scalability in terms of running time.

3 http://dpc-screening.github.io/lasso.html.
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Table 3 Running time of different approaches in generating solution paths for the Lasso model of size
(m, n) = (500, 1, 00, 000) with λc decreasing from 1 to 10−4

AS Matlab’s CD EDPP FPC_AS

ε Time RelTol Time Tol Time gtol Time

1e−6 00:00:09 1e−3 00:00:09 1e−4 00:01:12 1e−6 00:01:06

1e−7 00:00:11 1e−4 00:00:27 1e−5 00:06:25 1e−7 00:04:28

Fig. 5 Comparison among different approaches in generating solution paths for the Lasso model of size
(m, n) = (500, 1, 00, 000) with λc decreasing from 1 to 10−4

5.4 Flexibility of the AS strategy

In this subsection, we combine our AS strategy with different algorithms for solving
the reduced problems to test its generality and flexibility. The path generation for the
Lasso model is taken as an example.

We incorporate the AS strategy with the SSNAL method, the alternating direc-
tion method of multipliers (ADMM) [8, 13], the accelerated proximal gradient
(APG) method [2], and the coderivative-based generalized Newton method (GRNM)
[17], separately. We stop the tested algorithm for solving each reduced problem if
ηKKT ≤ 10−6, the computation time exceeds 30min, or the pre-set maximum number
of iterations (100 for SSNAL, GRNM, and 20000 for ADMM, APG) is reached.

The numerical performance of the AS strategy combined with SSNAL, ADMM,
APGandGRNMfor solving theLassomodel of problemsize (m, n) = (500, 1, 00, 000)
with λc decreasing from 1 to 10−4 is shown in Fig. 6. For illustration purpose, we also
present the running time of each algorithm together with the warm-start techique for
the path generation. As one can see from the figure, the AS strategy is highly efficient
for generating solution paths of the Lasso models. Moreover, it can be incorporated
with different algorithms for solving the reduced problems, and can consistently accel-
erate the computation. For example, when generating the solution path using the APG
algorithm together with the warm-start technique, it takes a few hundred seconds for
each λ, while with the AS technique, it takes less than one second. Additionally, the
GRNM together with the warm-start technique is not able to solve the problems to the
required accuracy within the specified time, while with the AS strategy, it is able to
solve the problem for each λwithin tens of seconds. The improvement comes from the
fact that GRNM needs to solve an n × n linear system for the Newton step, which is
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Fig. 6 The combination of the AS strategy with different algorithms for solving the reduced problems
during the path generation for the Lasso model of size (m, n) = (500, 1, 00, 000). The maker “×” in the
plot means that the problem is not solved to the required accuracy

costly for high-dimensional problems. Moreover, since n  m, AT A becomes singu-
lar, leading to ill-conditioned (damped/regularized) Newton systems. In contrast, the
AS strategy solves reduced, lower-dimensional problems, greatly speeding up GRNM
and making it practical for high-dimensional tasks.

5.5 Performance of the AS strategy on real data sets

In this subsection, we present the numerical performance of the AS strategy on the
real data sets for the aforementioned four linear regression models. We test the AS
strategy for the Lasso model and the SLOPE model on eight UCI data sets, where the
group information is not required. In addition, we test the AS strategy for the sparse
group lasso model and the exclusive lasso model on one climate data set, where the
group information is available.
Test instances from the UCI data repository.We test eight data sets from the UCI data
repository [5]. The details are summarized in Table 4.

Following the settings in [20], we expand the original features by using polynomial
basis functions over those features for the data sets pyrim, triazines, abalone, bodyfat,
housing, mpg, and space-ga. For instance, the digit 5 in the name pyrim5 means that
an order 5 polynomial is used to generate the basis functions.
NCEP/NCAR reanalysis 1 dataset. The data set [16] contains the monthly means of
climate data measurements spread across the globe in a grid of 2.5o × 2.5o resolu-
tions (longitude and latitude 144 × 73) from 1948/1/1 to 2018/5/31. Each grid point
(location) constitutes a group of 7 predictive variables (Air Temperature, Precipitable
Water, Relative Humidity, Pressure, Sea Level Pressure, Horizontal Wind Speed and
VerticalWind Speed). Such data sets have two natural group structures: (i) groups over
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Table 4 Details of the UCI test
data. λmax(·) denotes the largest
eigenvalue

Name (m, n) λmax(AAT )

abalone7 (4177, 6435) 5.21e+5

bcTCGA (536, 17, 322) 1.13e+7

bodyfat7 (252, 1, 16, 280) 5.29e+4

housing7 (506, 77, 520) 3.28e+5

mpg7 (392, 3432) 1.28e+4

pyrim5 (74, 2, 01, 376) 1.22e+6

space-ga9 (3107, 5005) 4.01e+3

triazines4 (186, 6, 35, 376) 2.07e+7

Table 5 Running time of different approaches in generating solution paths for the Lasso model on mpg7
data set with λc decreasing from 1 to 10−4

AS Matlab’s CD EDPP FPC_AS

ε Time RelTol Time Tol Time gtol Time

1e−6 00:00:06 1e−3 00:00:12 1e−4 00:00:04 1e−5 00:00:11

1e−7 00:00:06 1e−4 00:01:50 1e−5 00:00:22 1e−6 00:00:46

Fig. 7 Comparison among different approaches in generating solution paths for the Lasso model on mpg7
data set with λc decreasing from 1 to 10−4

locations: 144× 73 groups, where each group is of length 7; (ii) groups over features:
7 groups, where each group is of length 10,512. For both cases, the corresponding
data matrix A is of dimension 845× 73584.

5.5.1 Numerical results on Lasso linear regression model

In this subsection, we present the numerical results of the AS strategy for the Lasso
linear regression model on the test instances from the UCI data repository.

First, we compare the AS strategy with Matlab’s CD, EDPP, and FPC_AS on the
path generation for the small data set mpg7. The running time of each approach with
different choices of tolerances is shown in Table 5, and the relative objective function
values along the solution path obtained by each approach are shown in Fig. 7. It can be
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Fig. 8 The combination of the AS strategy with different algorithms for solving the reduced problems for
the Lasso model on mpg7 data set

seen that the AS strategy outperforms other approaches by achieving more accurate
solutions in less time. This is, it stands out in both speed and solution quality.

Next, we test the performance of the AS strategy combined with different algo-
rithms for solving the reduced problems when solving the Lasso model on the small
mpg7 data set. The results are shown in Fig. 8. We can see that the AS strategy can
consistently improve the performance of SSNAL, ADMM, APG and GRNM, which
again demonstrates its effectiveness and flexibility.

To better illustrate the generality and flexibility of the proposed AS strategy, in
addition to the experiments on the small mpg7 data set, we conduct more experiments
on other larger UCI data sets. For the algorithms to solve the correspondingmodels and
their reduced problems, we take SSNAL and ADMM as two examples for illustration.
We follow the same setting as described in Sect. 5.1.1 to choose the values for the
parameter λ. The results are summarized in Table 6.

As one can see from Table 6, the SSNAL algorithm together with the warm-start
technique already gives great performance, which takes less than 1min to generate a
solution path on each of the first seven data sets and takes around 8min to generate
a solution path on the last data set. Surprisingly, the SSNAL algorithm together with
our proposed AS strategy can further speed up the path generation by a large margin,
which can generate solution paths on all data sets within 45s. In addition, the AS
strategy also shows excellent performance when the reduced problems are solved by
the ADMM algorithm. For example, for bodyfat7 data set, the ADMM algorithm with
the warm-start technique takes more than 2h to generate a solution path, while it only
takes around 20s with the AS strategy. Moreover, for the pyrim5 data set, the AS
strategy allows the ADMM algorithm to generate a solution path with the required
accuracy within 1min, while it takes 3h with the warm-start technique to generate a
solution path with low accuracy.
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5.5.2 Numerical results on SLOPE linear regression model

In this subsection, we present the numerical results of the AS strategy for the SLOPE
linear regression model on the test instances from the UCI data repository. For the
weights λ(i) in the SLOPE model, we follow the experiment settings in [3]. We test
the numerical performance on generating a solution path for the SLOPE regression
model with λ = λc‖AT b‖∞, where λc is taken from 10−1 to 10−4 with 20 equally
divided grid points on the log10 scale. As for the algorithm to solve the corresponding
models and their reduced problems, we take the state-of-the-art SSNAL method [24]
and the popular first-order method ADMM for examples. It should be noted that, the
AS strategy can be combined with any solver for solving the reduced problems. The
results are summarized in Table 7.

From Table 7, we again observe the extremely good performance of the proposed
AS strategy when combined with the SSNAL algorithm or the ADMM algorithm. For
example, for the triazines4 data set, the SSNAL algorithm together with the warm-start
technique takes more than 16min to generate a solution path, while it only takes 42s
with the AS strategy. For the pyrim5 data set, the ADMM algorithm together with the
warm-start technique takes more than one hour and 23min to generate a solution path,
while with the help of the AS strategy, it only takes 12s for the path generation. From
these experimental results, we can see that our proposed AS strategy can accelerate
optimization algorithms for solving large-scale sparse optimization problems with
intrinsic structured sparsity.

5.5.3 Numerical results on exclusive lasso linear regression model

We test the performance of the AS strategy for the exclusive lasso linear regression
model on the NCEP/NCAR reanalysis 1 dataset. Since the exclusive lasso regularizer
induces intra-group feature selections, we choose the group structure over features.
In other words, there will be seven groups, and each group includes feature values
of 10512 different locations. For the choice of the values for the parameter λ and
the weight vector w, we follow the same setting as described in Sect. 5.1.2. To solve
the reduced problems, we apply the PPDNA algorithm and the ADMM algorithm
for illustration. The results are summarized in Table 8. We can observe that the AS
strategy can accelerate the PPDNAalgorithmby around 10 times and can accelerate the
ADMMalgorithm bymore than 228 times. In addition, it also gives great performance
in reducing the dimensions of the problems to be solved.

5.5.4 Numerical results on sparse group lasso linear regression model

We test the performance of the AS strategy for the sparse group lasso linear regression
model on the NCEP/NCAR reanalysis 1 dataset. We follow the numerical experiment
settings in [40], and we choose the group structure over locations. In other words,
there will be 10512 groups, and each group includes 7 features. Following the settings
in [40], we test the numerical performance of the AS strategy for generating a solution
path for the sparse group lasso linear regression model with wl = √|Gl | for each
l = 1, . . . , g. For the parameters λ1 and λ2 in the sparse group lasso regularizer, we
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Table 9 Numerical performance of the AS strategy applied to the generation of solution paths for the sparse
group lasso linear regression models on the NCEP/NCAR reanalysis 1 dataset

Warmstart With AS

Data(Org.D.) Alg Time η∗KKT Time η∗KKT S.Rnd Avg.D Max.D

NCEP/NCAR (73584) PPDNA 00:24:33 4.81e−7 00:00:27 9.81e−7 22 146 2711

ADMM 02:48:46 4.40e–3 00:00:54 8.83e−7 24 145 2711

The values in bold mean that the required accuracy not achieved

take λ1 = λc‖AT b‖∞, λ2 = λ1/wmax with wmax = max{w1, . . . , wg}. Here, λc is
taken from 10−1 to 10−3 with 20 equally divided grid points on the log10 scale. As
for solving the reduced problems in the AS procedure, we employ the state-of-the-art
SSNAL method [40]. The comparison of the efficiency and robustness between the
SSNAL method and other popular algorithms for solving sparse group lasso models
is presented in [40]. In addition, the popular first-order method ADMM algorithm is
also employed.

The results are summarized in Table 9. It can be seen from the table that, the AS
strategy can accelerate the SSNAL algorithm by around 54 times and accelerate the
ADMM algorithm by around 187 times.

6 Conclusion

In this paper, we design an adaptive sieving strategy for solving general sparse
optimization models and further generating solution paths for a given sequence of
parameters. For each reduced problem involved in the AS strategy, we allow it to
be solved inexactly. The finite termination property of the AS strategy has also been
established. Extensive numerical experiments have been conducted to demonstrate the
effectiveness and flexibility of the AS strategy to solve large-scale machine learning
models.

A More numerical experiments on synthetic data

In this section, we present more experiments to demonstrate the performance of the
AS strategy to generate solution paths for sparse optimization problems.

A.1 Numerical results on sparse group lasso linear regression problems

In this subsection, we present the numerical results on the sparse group lasso linear
regression model. We apply the state-of-the-art SSNAL method [40] to solve the
sparse group lasso model and its corresponding reduced problems generated by the
AS strategy during the path generation. For the choice of the values for the parameters
λ1, λ2 and w, we follow the same setting as described in Sect. 5.5.4, and λc is taken
from 10−1 to 10−4 with 20 equally divided grid points on the log10 scale.
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Table 10 Numerical performance of the AS strategy applied to the generation of solution paths for the
sparse group lasso linear regression model on synthetic data sets with sparsity level 0.1%

Total time (hh:mm:ss) Information of the AS

m n(= g × p) Warmstart With AS S. Rnd Avg. D Max. D

500 1, 00, 000 00:03:00 00:00:35 17 1743 3588

200, 000 00:04:58 00:00:38 16 2234 4829

600, 000 00:14:11 00:00:55 21 2764 7839

1, 200, 000 00:27:34 00:01:00 20 3215 10998

1000 1, 00, 000 00:05:47 00:02:36 22 2000 4259

200, 000 00:10:28 00:02:16 19 2827 6295

600, 000 00:31:02 00:02:16 17 3570 8311

1, 200, 000 00:52:40 00:02:21 16 4286 11252

2000 1, 00, 000 00:15:46 00:06:19 34 2062 3464

200, 000 00:23:18 00:06:46 33 3006 6321

600, 000 00:58:03 00:05:31 25 4742 11063

1, 200, 000 01:55:24 00:07:07 26 5327 12557

We summarize the numerical results of the comparison of the AS strategy and the
warm-start technique for generating solution paths of sparse group lasso linear regres-
sion problems in Table 10. As we can see from the table, the AS strategy significantly
accelerates the path generation of the sparse group lasso linear regression models. For
example, on the synthetic data set of size (m, n) = (2000, 1, 200, 000), generating a
solution path of the sparse group lasso problem with the warm-start technique takes
around 2 h, while with our proposed AS strategy, it only takes around 7 min. The
superior performance of the AS strategy can also been seen from the much smaller
sizes of the reduced problems compared with the original problem sizes.

A.2 Numerical results on SLOPE linear regression problems

Here, we present the results on SLOPE linear regression model. We will apply the
state-of-the-art SSNAL method [24] to solve the SLOPE regression model and its
corresponding reduced problems generated by the AS strategy. The comparison of
the efficiency between the SSNAL method and other popular algorithms for solving
SLOPE models can be found in [24]. The choice of the values for the parameter λ

follows from the same setting as described in Sect. 5.5.2.
The results are presented in Table 11. We again observe the superior performance

of the AS strategy on solving sparse optimization models. Specifically, when we apply
the warm-start technique to generate solution paths for the SLOPE linear regression
model with (m, n) = (2000, 1, 200, 000), it runs out of memory, while with our AS
strategy, it takes less than 12min. Moreover, our AS strategy gives great performance
in reducing the problem sizes during the path generation.

123



Adaptive sieving for sparse optimization problems

Table 11 Numerical performance of the AS strategy applied to the generation of solution paths for the
SLOPE linear regression model on synthetic data sets with sparsity level 0.1%

Total time (hh:mm:ss) Information of the AS

m n(= g × p) Warmstart With AS S. Rnd Avg. D Max. D

500 1, 00, 000 00:01:38 00:00:38 22 1484 3122

2, 00, 000 00:02:42 00:00:36 19 1962 4474

6, 00, 000 00:06:30 00:00:37 17 2314 3922

1, 200, 000 00:13:31 00:00:44 14 3140 10,954

1000 1, 00, 000 00:04:30 00:02:33 21 2007 3000

2, 00, 000 00:05:46 00:02:09 19 2981 4701

6, 00, 000 00:14:44 00:02:44 21 4476 7988

1, 200, 000 00:27:17 00:02:38 17 5050 11,151

2000 1, 00, 000 00:10:24 00:05:39 21 2514 4914

2, 00, 000 00:17:31 00:09:38 21 3571 5553

6, 00, 000 00:31:42 00:10:29 22 7038 8619

1, 200, 000 out-of-memory 00:11:26 23 8322 11,234

Table 12 Numerical performance of the AS strategy applied to the generation of solution paths for the
Lasso linear regression model on synthetic data sets with sparsity level at 1%

Total time (hh: mm: ss) Information of the AS

m n(= g × p) Warmstart With AS S. Rnd Avg. D Max. D

500 1, 00, 000 00:00:53 00:00:07 31 682 3310

2, 00, 000 00:01:14 00:00:07 26 765 4503

6, 00, 000 00:04:49 00:00:09 25 830 7760

1, 200, 000 00:08:46 00:00:12 23 997 10,956

1000 1, 00, 000 00:01:17 00:00:25 29 1304 4958

2, 00, 000 00:02:28 00:00:27 29 1345 5180

6, 00, 000 00:07:03 00:00:34 31 1554 7898

1, 200, 000 00:12:55 00:00:38 27 1644 11,035

2000 100, 000 00:03:20 00:02:14 33 2372 11074

2, 00, 000 00:05:04 00:02:17 34 2574 11,172

6, 00, 000 00:13:27 00:02:22 32 2557 9357

1, 200, 000 00:25:30 00:02:39 31 2773 11,757

A.3 Numerical results on data sets with other sparsity level

As mentioned in Sect. 5.1, in the data generation procedure, we set each group of
the ground-truth x∗ to contain r nonzero elements. We have tested the case when
r = �0.1% × p� in Sects. 5.1–5.4, A.1 and A.2. In this subsection, we present more
experimental results for the case when r = �1%× p�.
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Table 13 Numerical performance of the AS strategy applied to the generation of solution paths for the
exclusive lasso linear regression model on synthetic data sets with sparsity level at 1%

Total time (hh:mm:ss) Information of the AS

m n(= g × p) Warmstart With AS S. Rnd Avg. D Max. D

500 1, 00, 000 00:00:34 00:00:05 29 199 3161

2, 00, 000 00:01:09 00:00:05 30 206 4471

6, 00, 000 00:03:06 00:00:08 24 284 7751

1, 200, 000 00:07:03 00:00:14 22 343 10,951

1000 1, 00, 000 00:00:49 00:00:10 29 213 3161

2, 00, 000 00:01:37 00:00:12 31 234 4471

6, 00, 000 00:04:19 00:00:17 22 298 7751

1, 200, 000 00:08:18 00:00:23 21 348 10,951

2000 1, 00, 000 00:01:35 00:00:26 25 196 3161

2, 00, 000 00:02:54 00:00:29 25 241 4471

6, 00, 000 00:08:04 00:00:35 23 302 7751

1, 200, 000 00:16:02 00:00:50 22 356 10,951

The numerical performance of the AS strategy applied to the generation of solution
paths for the Lasso linear regression model on synthetic data sets with sparsity level
at 1% is shown in Table 12, and that for the exclusive lasso linear regression model
is shown in Table 13. As demonstrated, the AS strategy once again showcases its
superior performance for solving sparse optimization models by greatly accelerating
the path generation and significantly reducing the problem dimensions.
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