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Motivating examples

Figure 1: Optimal transport (color
transfer).

Figure 2: Production planning.

Many important applications require solving large-scale linear programming
problems with over 10 million constraints and variables.
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Convex optimization problem

Consider the following convex optimization problem (COP):

miny∈Y,z∈Z f1(y) + f2(z)
subject to B1y +B2z = c,

(1)

1 X, Y, and Z are three finite-dimensional real Euclidean spaces;

2 f1 : Y → (−∞,+∞] and f2 : Z → (−∞,+∞] are two proper closed
convex functions;

3 B1 : Y → X and B2 : Z → X are two linear operators, c ∈ X.

Purpose: accelerating an alternating direction method of multipliers
(ADMM) with semi-proximal terms for solving COP.
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COP

The augmented Lagrangian function of problem (1) is defined by, for any
(y, z, x) ∈ Y× Z× X,

Lσ(y, z;x) := f1(y) + f2(z) + ⟨x,B1y +B2z − c⟩+ σ

2
∥B1y +B2z − c∥2.

The dual of problem (1) is given by

max
x∈X

{−f∗
1 (−B∗

1x)− f∗
2 (−B∗

2x)− ⟨c, x⟩} , (2)

where B∗
1 : X → Y and B∗

2 : X → Z are the adjoints of B1 and B2,
respectively; f∗

1 and f∗
2 are Fenchel conjugate functions of f1 and f2,

respectively.

Let w := (y, z, x) and W := Y× Z× X.
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Preconditioned ADMM (pADMM)

Algorithm 1 A pADMM3 for solving COP (1)

Input: Let T1 and T2 be two self-adjoint positive semidefinite linear op-
erators. Choose w0 = (y0, z0, x0). Set σ > 0 and ρk ∈ (0, 2] for any
k ≥ 0. For k = 0, 1, . . . ,

Step 1. z̄k = argmin
z∈Z

{
Lσ

(
yk, z;xk

)
+

1

2
∥z − zk∥2T2

}
.

Step 2. x̄k = xk + σ(B1y
k +B2z̄

k − c).

Step 3. ȳk = argmin
y∈Y

{
Lσ

(
y, z̄k; x̄k

)
+

1

2
∥y − yk∥2T1

}
.

Step 4. wk+1 = (1− ρk)w
k + ρkw̄

k.

Connection: ADMM4,5, generalized ADMM6, proximal ADMM7,
and semi-proximal ADMM8.

3Xiao, Chen, and Li. Math. Program. Comput. (2018): 533-555.
4Glowinski and Marroco. Revue française d’automatique, informatique, recherche opérationnelle.

Analyse numérique (1975): 41-76.
5Gabay and Mercier. Comput. Math. Appl. (1976): 17-40.
6Eckstein and Bertsekas. Math. Program. (1992): 293-318.
7Eckstein. Optim. Methods Softw. (1994): 75-83.
8Fazel, Pong, Sun, and Tseng. SIAM J. Matrix Anal. Appl. (2013): 946-977.
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Example: Convex quadratic programming

Consider the convex quadratic programming (CQP):

minx∈X
1

2
⟨x,Qx⟩+ ⟨c, x⟩

subject to Ax− b ∈ K,
(3)

where Q : X → X is a self-joint positive semidefinite matrix, A : X → Y is
a linear operator, K ⊆ X is a closed convex (polyhedral =⇒ QP) set, and
c ∈ X and b ∈ Y.

The restricted-Wolfe dual9 of (3) is

min
(y,z)∈Y×X

{
−⟨b, y⟩+ δ∗K(−y) +

1

2
⟨z,Qz⟩ | A∗y −Qz = c, z ∈ Z

}
, (4)

where Z is any subspace of X containing Range(Q), e.g., Z = Range(Q).

9Li, Sun, and Toh. Math. Program. Comput. (2018): 703-743.
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Example: CQP

The augmented Lagrangian function of restricted-Wolfe dual (4) is defined by,
for any (y, z, x) ∈ Y×Z × X,

LQP
σ (y, z;x) := −⟨b, y⟩+δ∗K(−y)+

1

2
⟨z,Qz⟩+⟨x,A∗y−Qz−c⟩+σ

2
∥A∗y−Qz−c∥2.

Let
T1 = σ(λmax(AA∗)I −AA∗), T2 = σQ(λmax(Q)I −Q).

Algorithm 2 A linearized ADMM for solving restricted-Wolfe dual (4)

Input: Choose w0 = (y0, z0, x0). Set σ > 0 and ρk ∈ (0, 2] for any k ≥ 0. For
k = 0, 1, . . . ,

Step 1. z̄k = argmin
z∈Z

{
LQP

σ

(
yk, z;xk

)
+

1

2
∥z − zk∥2T2

}
[ Q ∗ vector]

Step 2. x̄k = xk + σ(A∗yk −Qz̄k − c).

Step 3. ȳk = argmin
y∈Y

{
LQP

σ

(
y, z̄k; x̄k

)
+

1

2
∥y − yk∥2T1

}
[needs ΠK(·)]

Step 4. wk+1 = (1− ρk)w
k + ρkw̄

k.
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Two main approaches of acceleration of pADMM

Table 1: Some existing convergence rate results of pADMM

Paper Alg.
Dual

step

Prim. feas. Obj. err.
KKT

res.

Type

M&S (2013)10 ADMM 1 O(1/k) - O(1/k) ε-subdiff. res. ergodic

D&Y (2016)11 ADMM 1 o(1/
√
k) o(1/

√
k) - nonergodic

Cui. (2016)12 maj. ADMM (0, 1+
√

5
2

) O(1/
√
k) - O(1/

√
k) nonergodic

Two main approaches to accelerate the pADMM:

1 Integrate Nesterov’s extrapolation directly into the pADMM to develop
accelerated variants;

2 Reformulate pADMM as a fixed-point iterative method, if possible, and
then accelerate the pADMM by accelerating the fixed-point iterative
method.

10Monteiro and Svaiter. SIAM J. Optim. (2013): 475-507. (First version: 2010).
11Davis and Yin. Splitting methods in communication, imaging, science, and engineering (2016):

115-163.

12Cui, Li, Sun, and Toh. J. Optim. Theory Appl. (2016): 1013-1041.
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1. Integrate Nesterov’s extrapolation directly

Table 2: Applying Nesterov’s extrapolation directly

Ref. Alg. Prim. feas. Obj. err.

L&L (2019)13 acc-LADMM O(1/k) O(1/k)

S&T(2022)14
acc-pADMM

(T1 ⪰ 0, T2 ≻ 0)
O(1/k) O(1/k)

In Li and Lin (2019), the convergence rate is O( 1
1+k(1−τ) ) with the

dual step length τ ∈ (0.5, 1). Furthermore, at the k-th iteration, for
i = 1, 2,

T k
i = σ(λmax(B

∗
i Bi)I −B∗

i Bi)/θk, θk =
1

1 + k(1− τ)
,

implying the primal step length approaches zero as k → ∞.

13Li and Lin. J. Sci. Comput. (2019): 671-699.
14Sabach and Teboulle. SIAM J. Optim. (2022): 204-227.
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1. Integrate Nesterov’s extrapolation directly

Table 3: Applying Nesterov’s extrapolation directly

Ref. Alg. Prim. feas. Obj. err.

L&L (2019)15 acc-LADMM O(1/k) O(1/k)

S&T(2022)16
acc-pADMM

(T1 ⪰ 0, T2 ≻ 0)
O(1/k) O(1/k)

In Sabach and Teboulle (2022), the convergence rate is
O( 1k ) +O( 1

µk ) with the dual step length µ satisfying

µ ∈ (0, δ], δ = 1− σλmax (B
∗
2B2)

σλmax (B∗
2B2) + λmin (T2)

< 1.

Gap: cannot handle the case where both T1 and T2 are positive
semidefinite and/or with large step lengths.

15Li and Lin. J. Sci. Comput. (2019): 671-699.
16Sabach and Teboulle. SIAM J. Optim. (2022): 204-227.

11



2. Accelerate the fixed-point iterative method

Example: Halpern Peaceman-Rachford (HPR)17

The PR splitting method for solving problem (1):

Algorithm 3 A PR algorithm for solving COP (1)

1: Input: y0 ∈ dom(f1), x
0 ∈ X, ρ ∈ (0, 2) , and σ > 0. For k = 0, 1, . . .

2: Step 1. zk+1 = argmin
z∈Z

{
Lσ(y

k, z; xk)
}
.

3: Step 2. xk+1
2 = xk + σ(B1y

k + B2z
k+1 − c).

4: Step 3. yk+1 = argmin
y∈Y

{
Lσ(y, z

k+1; xk+1
2 )

}
.

5: Step 4. xk+1 = xk+1
2 + σ(B1y

k+1 + B2z
k+1 − c).

Rewrite: Given σ > 0 and η0 = x0 + σ(B1y0 − c),

ηk+1 = TPR
σ (ηk) := RσM1

◦RσM2
(ηk), ∀k ≥ 0, (5)

where

M1 = ∂(f∗
1 ◦ (−B∗

1 )) + c, M2 = ∂(f∗
2 ◦ (−B∗

2 ));

RMi
:= 2JMi

− I, JMi
:= (I +Mi)

−1, for i = 1, 2.

If η∗ ∈ Fix
(
TPR

σ

)
, then x∗ = JσM2

(η∗) is a solution to problem (2).

17Zhang, Yuan, and Sun. arXiv preprint arXiv:2211.14881 (2022).
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2. Accelerate the fixed-point iterative method
Example: Halpern Peaceman-Rachford

Note that TPR
σ : X ⇒ X is nonexpansive. Do not know when the PR splitting

method converges.

The Halpern iteration18 applying to the PR splitting method:

ηk+1 := λkη
0 + (1− λk)T

PR
σ (ηk), ∀k ≥ 0, (6)

where η0 ∈ X is any given initial point and λk ∈ [0, 1] is a specified parameter.

Theorem 1.1 (Wittmann (1992)19)

Let D be a nonempty closed convex subset of X, and let T : D → D be a nonexpansive
operator such that Fix(T) ̸= ∅. Let {λk}∞k=0 be a sequence in [0, 1] such that the
following hold:

λk → 0,
∞∑

k=0

λk = +∞,
∞∑

k=0

|λk+1 − λk| < +∞.

Let η0 ∈ D and set

ηk+1 := λkη
0 + (1− λk)T(ηk), ∀k ≥ 0.

Then ηk → ΠFix(T)(η
0).

18Halpern. Bull. Amer. Math. Soc. (1967): 957-961.
19Wittmann. Arch. Math. (1992): 486-491. 13



2. Accelerate the fixed-point iterative method

Example: Halpern Peaceman-Rachford

Lieder (2021)20 showed that when λk = 1/(k + 2) for k ≥ 0, the Halpern
iteration will give the following best possible convergence rate regarding the
residual:

∥ηk −TPR
σ (ηk)∥ ≤ 2∥η0 − η̄∥

k + 1
, ∀k ≥ 0 and η̄ ∈ Fix(TPR

σ ).

Take λk = 1/(k + 2). An HPR algorithm is presented as follows:

Algorithm 4 An HPR algorithm for solving COP (1)

1: Input: y0 ∈ dom(f1), x
0 ∈ X, and σ > 0.

2: Initialization: x̂0 := x0.
3: For k = 0, 1, . . .

4: Step 1. zk+1 = argmin
z∈Z

{
Lσ(y

k, z; x̂k)
}
.

5: Step 2. xk+1
2 = x̂k + σ(B1y

k + B2z
k+1 − c).

6: Step 3. yk+1 = argmin
y∈Y

{
Lσ(y, z

k+1; xk+1
2 )

}
.

7: Step 4. xk+1 = xk+1
2 + σ(B1y

k+1 + B2z
k+1 − c).

8: Step 5. x̂k+1 =
(

1
k+2x

0 + k+1
k+2x

k+1
)
+ σ

k+2

[
(B1y

0 − c) − (B1y
k+1 − c)

]
.

20Lieder. Optim. Lett. (2021): 405-418.
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2. Accelerate the fixed-point iterative method

Table 4: Some nonergodic accelerated results by accelerating the fixed-point iterative method

Ref. Acc. Prim. feas. Obj. err.
KKT

res.

Kim (2021)21 acc-PPM → acc-ADMM O(1/k) - -

T-D&L (2021)22 Halpern + DR → acc-ADMM
O(1/k)

f2 strongly conv.

- -

Zhang. (2022) Halpern + PR → HPR O(1/k) O(1/k) O(1/k)

Yang. (2023)23
Halpern+ precond. PPM → acc-pADMM

(T1 ≻ 0 and T2 ≻ 0)

- - O(1/k)

Gap: cannot handle the case where both T1 and T2 are positive
semidefinite;

Advantages: No restrictive requirements on the step lengths.

21Kim. Math. Program. (2021): 57-87.
22Tran-Dinh and Luo. arXiv preprint arXiv:2110.08150 (2021).
23Yang, Zhao, Li, and Sun. arXiv preprint arXiv:2304.11037 (2023).
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The Chambolle-Pock scheme

Let B2 = −I and c = 0. The Chambolle-Pock scheme24: Given
w0 := (y0, x0) ∈ Y× X, τ, σ > 0,

{
yk+1 = Jτ∂f1

(
yk − τB∗

1x
k
)
,

xk+1 = Jσ∂f∗
2

(
xk + σB1

(
2yk+1 − yk

))
.

(7)

Define

T :=

[
∂f1 B∗

1

−B1 ∂f∗
2

]
, M :=

[
1
τ
I −B∗

1

−B1
1
σ
I

]
.

Recently, Bredies et al. (2022)25 regarded the scheme (7) as a degenerate PPM
to discuss its convergence26:

wk+1 = (M+ T )−1Mwk,

where M is positive semidefinite under the condition of τσ∥B1∥2 = 1.

24Chambolle and Pock. J. Math. Imaging Vision. (2011): 120-145.
25Bredies, Chenchene, Lorenz, and Naldi. SIAM J. Optim. (2022): 2376-2401.
26The Chambolle-Pock scheme under the condition of τσ∥B1∥2 ≤ 1 is actually

equivalent to LADMM and the convergence properties of LADMM, even with larger
dual step lengths in the interval (0, (1 +

√
5)/2), have already been covered in the work

of Fazel et al. (2013).
16



Technology roadmap

Insight from the work of Bredies et al. (2022): Motivate us to
reformulate the pADMM as a dPPM and accelerate the pADMM by
accelerating the dPPM.

Figure 3: Technology Roadmap
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The degenerate proximal point method

Let H be a real Hilbert space with inner product ⟨·, ·⟩. Consider the
monotone inclusion problem:

find w ∈ H such that 0 ∈ T w, (8)

where T is a maximal monotone operator from H into itself.

18



The degenerate proximal point method

Definition 2.1 (admissible preconditioner, Bredies et al. (2022))

An admissible preconditioner for the operator T : H → 2H is a linear,
bounded, self-adjoint, and positive semidefinite operator M : H → H such
that

T̂ = (M+ T )−1M (9)

is single-valued and has full domain.

Let M be an admissible preconditioner for the maximal monotone
operator T . The degenerate PPM (dPPM) in the work of Bredies et al.
(2022) for solving the inclusion problem (8) is expressed as follows:

w0 ∈ H, wk+1 = (1− ρk)w
k + ρkw̄

k, w̄k = T̂ wk = (M+ T )−1Mwk,
(10)

where {ρk} is a sequence in [0, 2].

19



The degenerate proximal point method

Define
Q̂ := I − T̂ and F̂ρ := (1− ρ)I + ρT̂ , ρ ∈ [0, 2], (11)

where I is an identity operator on H.

Proposition 2.1

The following things hold:

(a) T̂ is M-firmly nonexpansive, i.e.,

∥T̂ w − T̂ w′∥2M + ∥Q̂w − Q̂w′∥2M ≤ ∥w − w′∥2M, for all w,w′ ∈ H;

(b) F̂ρ is M-nonexpansive for ρ ∈ (0, 2], i.e.,

∥F̂ρw − F̂ρw
′∥M ≤ ∥w − w′∥M, for all w,w′ ∈ H.

Theorem 2.1 (Bredies et al. (2022))

Let T : H → 2H with T −1(0) ̸= ∅ be a maximal monotone operator and let M
be an admissible preconditioner such that (M+ T )−1 is L-Lipschitz. Let {wk}
be any sequence generated by the dPPM in (10). If 0 < infk ρk ≤ supk ρk < 2,
then {wk} converges weakly to a point in T −1(0).

20



The connection between the dPPM and the PPM

Bredies et al. (2022) provided a connection between the PPM and the
dPPM based on the following decomposition.

Proposition 2.2 (Bredies et al. (2022))

Let M : H → H be a linear, bounded, self-adjoint, and positive
semidefinite operator. Then, there exists a bounded and injective operator
C : U → H for some real Hilbert space U , such that M = CC∗, where
C∗ : H → U is the adjoint of C. Moreover, if M has closed range, then C∗

is onto.

Denote by T̃ the resolvent of C∗ ▷ T :=
(
C∗T −1C

)−1
, i.e.,

T̃ := (I + C∗ ▷ T )
−1

.

21



The connection between the dPPM and the PPM

Proposition 2.3 (Bredies et al. (2022))

Let T : H → 2H be a maximal monotone operator and let M be an admissible
preconditioner with closed range. Suppose that M = CC∗ is a decomposition of
M according to Proposition 2.2 with C : U → H. The parallel composition
C∗ ▷ T is a maximal monotone operator. Furthermore, T̃ has the following
identity

T̃ = C∗(M+ T )−1C. (12)

In particular, T̃ : U → U is everywhere well-defined and firmly nonexpansive.
Moreover, for any ρ ∈ (0, 2], F̃ρ = (1− ρ)I + ρT̃ is nonexpansive and

C∗T −1(0) = C∗ Fix T̂ = Fix T̃ = Fix F̃ρ,

where we denote the set of fixed-points of an operator T̂ by Fix T̂ .

The proximal point method:

u0 = C∗w0 ∈ U , uk+1 = (1− ρk)u
k + ρkū

k, ūk = T̃ uk, (13)

with {ρk} in [0, 2] is equivalent to the dPPM in (10), in the sense that
uk = C∗wk for all k ≥ 0.

22



The accelerated dPPM

The dPPM in (10) can be reformulated as

w0 ∈ H, wk+1 = F̂ρw
k, (14)

where F̂ρ = (1− ρ)I + ρT̂ is M-nonexpansive for ρ ∈ (0, 2].

Based on the M-nonexpansiveness of F̂ρ, one can consider applying
the Halpern iteration to (14) to accelerate the dPPM.

Contreras and Cominetti (2023)27 demonstrated that the best
possible convergence rate for the Halpern iteration is lower bounded
by O(1/k) in normed spaces.

27Contreras and Cominetti. Math. Program. (2023): 343-374.
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The accelerated dPPM

In contrast, given a nonexpansive operator F̃ : H → H, Bot and Nguyen
(2023)28 proposed the following fast Krasnosel’skĭi-Mann (KM) iteration: given
α > 2 and w0, w1 ∈ H,

wk+1 = wk +
α

2(k + α)
(F̃wk − wk) +

k

k + α

(
F̃wk − F̃wk−1

)
, k ≥ 1. (15)

Theorem 2.2 (Bot and Nguyen (2023))

Suppose Fix(F̃) ̸= ∅. Let {wk} be the sequence generated by (15). Then {wk}
converges weakly to an element in Fix F̃ as k → +∞. Moreover,

∥wk − wk−1∥ = o

(
1

k

)
and ∥wk−1 − F̃wk−1∥ = o

(
1

k

)
as k → +∞.

It appears to offer better convergence rates than O(1/k) in certain applications.

28Boţ and Nguyen. SIAM J. Numer. Anal. (2023): 2813-2843.
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The accelerated dPPM

When α = 2, the fast KM in (15) reduces to the Halpern iteration:

wk+1 =
1

k + 2
w0 +

k + 1

k + 2
F̃wk, k ≥ 1. (16)

Combining the Halpern iteration and fast KM iteration, we propose the
following accelerated dPPM:

Algorithm 5 An accelerated dPPM for solving the inclusion problem (8)

Input: Let ŵ0 = w0 ∈ H, α ≥ 2 and ρ ∈ (0, 2]. For k = 0, 1, . . . ,

Step 1. w̄k = T̂ wk.
Step 2. ŵk+1 = F̂ρw

k = (1− ρ)wk + ρw̄k.
Step 3. wk+1 = wk + α

2(k+α)
(ŵk+1 − wk) + k

k+α

(
ŵk+1 − ŵk

)
.

25



The shadow sequences

Similar to the connection between the dPPM in (10) and the PPM in (13), we
define two shadow sequences {uk} and {ūk} as follows:

uk := C∗wk and ūk := C∗w̄k, ∀k ≥ 0, (17)

where the sequences {wk} and {w̄k} are generated by Algorithm 5. This leads
to the following identity:

uk+1 = uk+
α

2(k + α)
(F̃ρu

k−uk)+
k

k + α

(
F̃ρu

k − F̃ρu
k−1

)
, ∀k ≥ 1, (18)

where F̃ρ = (1− ρ)I + ρT̃ for ρ ∈ (0, 2] is nonexpansive by Proposition 2.3.
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Global convergence of the accelerated dPPM

With the help of the shadow sequences {uk} and {ūk}, we can obtain the global
convergence of the accelerated dPPM.

Theorem 2.3

Let T : H → 2H with T −1(0) ̸= ∅ be a maximal monotone operator, and let M
be an admissible preconditioner with a closed range such that (M+ T )−1 is
continuous. Suppose that M = CC∗ is a decomposition of M according to
Proposition 2.2 with C : U → H. The following conclusions hold for the
sequences {w̄k}, {ŵk}, and {wk} generated by the accelerated dPPM in
Algorithm 5:

(a) If α = 2, then the sequence {w̄k} converges strongly to a fixed point
w∗ = (M+ T )−1CΠC∗T −1(0)(C∗w0) in T −1(0), where ΠC∗T −1(0)(·) is the
projection operator onto the closed convex set C∗T −1(0); moreover, if
ρ ∈ (0, 2), then the sequences {wk} and {ŵk} also converge strongly to w∗;

(b) If α > 2, then the sequence {w̄k} converges weakly to a fixed-point in
T −1(0).
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Convergence rate of the accelerated dPPM

Proposition 2.4

Let T : H → 2H with T −1(0) ̸= ∅ be a maximal monotone operator and let M
be an admissible preconditioner with closed range. The sequences {wk} and
{ŵk} generated by Algorithm 5 satisfy the following:

(a) if α = 2, then

∥wk − ŵk+1∥M ≤
2
∥∥w0 − w∗∥∥

M
k + 1

, ∀k ≥ 0 and w∗ ∈ T −1(0); (19)

(b) if α > 2, then

∥wk+1−wk∥M = o

(
1

k + 1

)
and ∥wk−ŵk+1∥M = o

(
1

k + 1

)
as k → +∞.

(20)

1 The rates are inherited from the results of the Halpern iteration and the
fast KM iteration applied to the nonexpansive operator F̃ρ.

2 Without acceleration, similar to Proposition 8 in the work of Brézis and
Lions (1978)29, the dPPM with ρ = 1 has an O(1/

√
k) convergence rate

with respect to ∥wk − wk−1∥M, k ≥ 1.
29Brézis and Lions. Israel J. Math. (1978): 329-345.
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Convergence rate of the accelerated dPPM

Even when the proximal term M is positive semidefinite, the accelerated dPPM
can achieve an O(1/k) convergence rate in terms of the operator residual under
the Euclidean norm.

Corollary 2.1

Let T : H → 2H with T −1(0) ̸= ∅ be a maximal monotone operator and let M
be an admissible preconditioner with closed range such that (M+ T )−1 is
L-Lipschitz. Suppose that M = CC∗ is a decomposition of M according to
Proposition 2.2 with C : U → H. Let ∥C∥ := sup∥w∥≤1 ∥Cw∥ represent the
spectral norm of the linear operator C. Choose α = 2 and ρ = 1. Then the
sequences {wk} and {w̄k} generated by Algorithm 5 satisfiy

∥wk−w̄k∥ ≤
1

k + 1
∥w0−w∗∥+

(5k + 1)L∥C∥
(k + 1)2

∥w0−w∗∥M, ∀k ≥ 0 and w∗ ∈ T −1(0).
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The equivalence between the pADMM and the dPPM

To reformulate the pADMM in (1) as a dPPM in (10), we first introduce
T and M for further analysis:

Define the maximal monotone operator T : W → W as follows:

T w =

 ∂f1(y) +B∗
1x

∂f2(z) +B∗
2x

c−B1y −B2z

 , ∀w = (y, z, x) ∈ W. (21)

Define the self-adjoint linear operator M : W → W as follows:

M =

 σB∗
1B1 + T1 0 B∗

1

0 T2 0
B1 0 σ−1I

 . (22)
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Assumption

The KKT system of problem (1):

−B∗
1x

∗ ∈ ∂f1(y
∗), −B∗

2x
∗ ∈ ∂f2(z

∗), B1y
∗ +B2z

∗ − c = 0. (23)

Assumption 3.1

The KKT system (23) has a nonempty solution set.

Since f1 and f2 are proper closed convex functions, there exist two
self-adjoint and positive semidefinite operators Σf1 and Σf2 such that for
all y, ŷ ∈ dom(f1), ϕ ∈ ∂f1(y), and ϕ̂ ∈ ∂f1(ŷ),

f1(y) ≥ f1(ŷ) + ⟨ϕ̂, y− ŷ⟩+ 1

2
∥y− ŷ∥2Σf1

and ⟨ϕ− ϕ̂, y− ŷ⟩ ≥ ∥y− ŷ∥2Σf1
,

and for all z, ẑ ∈ dom(f2), φ ∈ ∂f2(z), and φ̂ ∈ ∂f2(ẑ),

f2(z) ≥ f2(ẑ) + ⟨φ̂, z− ẑ⟩+ 1

2
∥z− ẑ∥2Σf2

and ⟨φ− φ̂, z− ẑ⟩ ≥ ∥z− ẑ∥2Σf2
.

Assumption 3.2

Both Σf1 +B∗
1B1 + T1 and Σf2 +B∗

2B2 + T2 are positive definite.
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The equivalence between the pADMM and the dPPM

Proposition 3.1

Suppose that Assumption 3.2 holds. Consider the operators T defined in
(21) and M defined in (22). Then the sequence

{
wk

}
generated by the

pADMM in Algorithm 1 coincides with the sequence
{
wk

}
generated by

the dPPM in (10) with the same initial point w0 ∈ W. Additionally, M is
an admissible preconditioner such that (M+ T )−1 is Lipschitz continuous.

Based on the equivalence between the dPPM and the pADMM, we can

deduce the convergence of pADMM in Algorithm 1 with varying
relaxation factors ρk ∈ (0, 2) for k ≥ 0 by applying the convergence
results of the dPPM;

employ the accelerated dPPM introduced in Algorithm 5 to derive an
accelerated pADMM.
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An accelerated pADMM

Algorithm 6 An accelerated pADMM for solving COP (1)

Input: Let T1 and T2 be two self-adjoint positive semidefinite linear operators.
Choose w0 = (y0, z0, x0). Let ŵ0 := w0. Set σ > 0, α ≥ 2 and ρ ∈ (0, 2]. For
k = 0, 1, . . . ,
Step 1. z̄k = argmin

z∈Z

{
Lσ

(
yk, z;xk

)
+ 1

2
∥z − zk∥2T2

}
.

Step 2. x̄k = xk + σ(B1y
k +B2z̄

k − c).
Step 3. ȳk = argmin

y∈Y

{
Lσ

(
y, z̄k; x̄k

)
+ 1

2
∥y − yk∥2T1

}
.

Step 4. ŵk+1 = (1− ρ)wk + ρw̄k.
Step 5. wk+1 = wk + α

2(k+α)
(ŵk+1 − wk) + k

k+α

(
ŵk+1 − ŵk

)
.

Corollary 3.1

Suppose that Assumptions 3.1 and 3.2 hold. The sequence
{w̄k} = {(ȳk, z̄k, x̄k)} generated by Algorithm 6 converges to the point
w∗ = (y∗, z∗, x∗), where (y∗, z∗) is a solution to problem (1) and x∗ is a
solution to problem (2).
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Connection to existing algorithms

1 When Ti = 0 for i = 1, 2 in Algorithm 6, we can obtain an accelerated
ADMM. In addition, if α = 2, this algorithm is equivalent to the HPR
in terms of the sequence {(ȳk, z̄k, x̄k)}.

2 Setting Ti = σ(λmax(B
∗
i Bi)I −B∗

i Bi) for i = 1, 2 in Algorithm 6, we
can obtain an accelerated LADMM. Compared to the algorithm in Li
and Lin (2019), the Ti for i = 1, 2 in Algorithm 6 will not tend to
infinity as k increases, which implies that this accelerated LADMM
has a larger primal step length.

3 Both T1 and T2 in Algorithm 6 can be positive semidefinite under
Assumption 3.2, which is a significant difference compared to work of
Sabach and Teboulle (2022) (Only T1 can be positive semidefinite).

4 The accelerated pADMM introduced in Yang et al. (2023), where
both T1 and T2 are positive definite, is a special case of Algorithm 6
with α = 2.
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Convergence rate of the accelerated pADMM

To analyze the convergence rate of Algorithm 6, we define the following
residual mapping associated with the KKT system (23):

R(w) =

 y − Proxf1(y −B∗
1x)

z − Proxf2(z −B∗
2x)

c−B1y −B2z

 , ∀w = (y, z, x) ∈ W, (24)

and the objective error:

h(ȳk, z̄k) := f1(ȳ
k) + f2(z̄

k)− f1(y
∗)− f2(z

∗), ∀k ≥ 0,

where (y∗, z∗) is the limit point of the sequence {(ȳk, z̄k)}.
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Convergence rate of the accelerated pADMM

Theorem 3.1

Suppose that Assumptions 3.1 and 3.2 hold. Let {(ȳk, z̄k, x̄k)} be the sequence
generated by Algorithm 6, and let w∗ = (y∗, z∗, x∗) be the limit point of the
sequence {(ȳk, z̄k, x̄k)} and R0 = ∥w0 − w∗∥M.

(a) If α = 2, then for all k ≥ 0, we have the following bounds:

∥R(w̄k)∥ ≤
(
σ∥B∗

1∥+ 1√
σ

+ ∥
√
T2∥+ ∥

√
T1∥

)
2R0

ρ(k + 1)
(25)

and (
−1√
σ
∥x∗∥

)
2R0

ρ(k+1)
≤ h(ȳk, z̄k) ≤

(
3R0 +

1√
σ
∥x∗∥

)
2R0

ρ(k+1)
. (26)

(b) If α > 2, then we have the following bounds:

∥R(w̄k)∥ =
(

σ∥B∗
1∥+1√
σ

+ ∥
√
T2∥+ ∥

√
T1∥

)
o
(

1
k+1

)
as k → +∞ (27)

and

|h(ȳk, z̄k)| = o

(
1

k + 1

)
as k → +∞. (28)
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Convergence rate of the accelerated pADMM

Table 5: Comparison of the convergence rates of accelerated pADMM variants

Ref. Prox. oper. Prim. feas. Obj. err.
KKT

res.

L&L (2019)
T k
i = σ(λmax(B

∗
i Bi)I −B∗

i Bi)/θk,

θk → 0, i = 1, 2

O(1/k) O(1/k) -

S&T (2022) T1 ⪰ 0, T2 ≻ 0 O(1/k) O(1/k) -

Kim (2021) T1 = 0, T2 = 0 O(1/k) - -

T-D&L (2021) T1 = 0, T2 = 0
O(1/k)

f2 strongly conv.

- -

Zhang. (2022) T1 = 0, T2 = 0 O(1/k) O(1/k) O(1/k)

Yang. (2023) T1 ≻ 0, T2 ≻ 0 - - O(1/k)

Ours T1 ⪰ 0, T2 ⪰ 0 O(1/k) or o(1/k) O(1/k) or o(1/k) O(1/k) or o(1/k)
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Numerical experiments: Linear programming

Consider the following linear programming (LP) problem:

min
x∈Rn

⟨c, x⟩

s.t. A1x = b1

A2x ≥ b2

x ∈ C,

(29)

where A1 ∈ Rm1×n, A2 ∈ Rm2×n, b1 ∈ Rm1 , b2 ∈ Rm2 , c ∈ Rn, and
C := {x ∈ Rn | l ≤ x ≤ u} with l ∈ (R ∪ {−∞})n and
u ∈ (R ∪ {+∞})n. Let A = [A1;A2] ∈ Rm×n with m = m1 +m2, and
b = [b1; b2] ∈ Rm. Then, the dual of problem (29) is given by

min
y∈Rm,z∈Rn

− ⟨b, y⟩+ δD(y) + δ∗C(−z)

s.t. A∗y + z = c,
(30)

where D := {y = (y1, y2) ∈ Rm1 × Rm2
+ }.

38



Numerical experiments

Experimental design:

1 Evaluate the performance of various algorithms by solving the dual
problem (30):

LADMM with ρ = 1.8 as described in Algorithm 1;
LADMM with τ = 1.618 as proposed by Fazel et al. (2013);
Accelerated LADMM by Li and Lin (2019);
Accelerated LADMM by Sabach and Teboulle (2022);
Accelerated LADMM as in Algorithm 6 with α = 2 (e2), α = 5 (e5),
and α = 15 (e15).

2 Evaluate the performance of the LP solver: HPR-LP30, an
implementation of an HPR method with semi-proximal terms (an
accelerated pADMM with α = 2 in Algorithm 6) for solving LP.

30Chen, Sun, Yuan, Zhang, and Zhao. ”HPR-LP: An implementation of an HPR
method for solving linear programming”. arXiv preprint arXiv:2408.12179 (2024)
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Numerical experiments: Part 1

The relative KKT residual is defined as:

KKTres = max

{
∥b−Ax∥
1 + ∥b∥

,

∥∥AT y + z − c
∥∥

1 + ∥c∥
,
∥x−ΠK(x− z)∥
1 + ∥x∥+ ∥z∥

}
.

All tested algorithms are terminated when KKTres ≤ 10−4. The
maximum iteration count is set to 106, and the maximum runtime is
3600 seconds.

The algorithm is restarted for the r-th time if either of the following
conditions31 is met:{

KKTres(w
r−1,t) ≤ 0.3×KKTres(w

r−1,0),
t/k ≥ 0.1.

(31)

Upon restarting, set

σr =

√
∥xr,0 − xr−1,0∥
∥yr,0 − yr−1,0∥

· σr−1, r ≥ 1, with σ0 = 1.

31Applegate, D́ıaz, Hinder, Lu, Lubin, O’Donoghue, and Schudy. Adv Neural Inf Process Syst.
(2021): 20243-20257.
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Numerical experiments: Part 1

The data collection is sourced from Mittelmann32, and we preprocess it
using Gurobi’s presolve feature.

Table 6: The problem size of tested data collection

No. problem nRow nCol

1 ’a2864 presolved’ 20669 34493

2 ’datt256 lp presolved’ 9863 196147

3 ’ex10 presolved’ 62934 78632

4 ’karted presolved’ 46501 133114

5 ’neos-3025225 lp presolved’ 81172 151017

6 ’neos-5052403-cygnet presolved’ 19134 46727

7 ’nug08-3rd presolved’ 19728 29856

8 ’pds-100 presolved’ 94994 441224

9 ’qap15 presolved’ 6330 22275

10 ’rail4284 presolved’ 4176 1094702

11 ’scpm1 lp presolved’ 5000 67631

12 ’set-cover presolved’ 10000 1112008

13 ’stp3d presolved’ 95279 205516

32https://plato.asu.edu/ftp/lptestset/
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Numerical experiments: Part 1
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Figure 4: Performance profile of different methods. ( a: LADMM with ρ = 1.8 in
Algorithm 1; b: LADMM with τ = 1.618 in Fazel et al. (2013); c: accelerated LADMM
in Li and Lin (2019); d: accelerated LADMM in Sabach and Teboulle (2022); e2, e5,
e15: accelerated LADMM in Algorithm 6 with α = 2, 5, 15, respectively.
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LP Solver: HPR-LP

Algorithm 7 HPR-LP

Input: Choose T1(⪰ 0) such that T1 + AA∗ ≻ 0 and w0,0 = (y0,0, z0,0, x0,0) ∈
D × Rn × Rn.
Initialization: Set r = 0, k = 0, and σ0 > 0.
repeat

initialize the inner loop: set inner loop counter t = 0;
repeat

z̄r,t+1 = argmin
z∈Rn

{
Lσr

(
yr,t, z;xr,t

)}
;

x̄r,t+1 = xr,t + σr(A
∗yr,t + z̄r,t+1 − c);

ȳr,t+1 = argmin
y∈Rm

{
Lσr

(
y, z̄r,t+1; x̄r,t+1

)
+

σr

2
∥y − yr,t∥2T1

}
;

ŵr,t+1 = 2w̄r,t+1 − wr,t;

wr,t+1 =
1

t+ 2
wr,0 +

t+ 1

t+ 2
ŵr,t+1;

t = t+ 1, k = k + 1;
until one of the restart criteria holds or termination criteria hold

restart the inner loop: τr = t, wr+1,0 = w̄r,τr ,
σr+1 = SigmaUpdate(w̄r,τr , wr,0, T1, A), r = r + 1;

until termination criteria hold
Output: {w̄r,t}.
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HPR-LP: Restart criteria

Based on the iteration complexity of O(1/k) in terms of the KKT residual (as
derived from Proposition 2.4), we define the merit function:

R̃r,l = ∥wr,t − ŵr,t+1∥M.

The restart criteria in HPR-LP are as follows:

1 Sufficient decay of R̃r,t:
R̃r,t ≤ α1R̃r,0; (32)

2 Necessary decay + no local progress of R̃r,t:

R̃r,t ≤ α2R̃r,0 and R̃r,t+1 > R̃r,t; (33)

3 Long inner loop:
t ≥ α3k, (34)

where α1 ∈ (0, α2), α2 ∈ (0, 1), and α3 ∈ (0, 1). In HPR-LP, we set α1 = 0.2,
α2 = 0.6, and α3 = 0.2.
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HPR-LP: Update rule for σ

To minimize the upper bound of the complexity results
∥∥wr+1,0 − w∗∥∥

M in
Proposition 2.4 at the (r + 1)-th outer loop, we update σ as follows

σr+1 = argmin
σ

∥∥wr+1,0 − w∗∥∥2

M

= argmin
σ

(
σ∥yr+1,0 − y∗∥2T1

+ σ−1∥xr+1,0 − x∗ + σA∗(yr+1,0 − y∗)∥2
)

=

√
∥xr+1,0 − x∗∥2

∥yr+1,0 − y∗∥2T1
+ ∥A∗(yr+1,0 − y∗)∥2 .

(35)
In HPR-LP, we update σr+1 using the approximation:

σr+1 =
∆x

∆y
, (36)

where

∆x := ∥x̄r,τr − xr,0∥ and ∆y :=
√

∥ȳr,τr − yr,0∥2T1
+ ∥A∗(ȳr,τr − yr,0)∥2.

(37)
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Numerical experiments: Part 2

Benchmark datasets.

49 publicly available Mittelmann’s LP benchmark instances;

380 instances of MIP relaxations from the MIPLIB 2017 collection33;

20 LP instances generated from quadratic assignment problems (QAPs)34

and the “zib03” instance35.

Software and computing environment.

HPR-LP is implemented in Julia, referred to as HPR-LP.jl;

cuPDLP.jl36, the GPU version of the award-winning solver PDLP37, is also
implemented in Julia;

All tested solvers are run on an NVIDIA A100-SXM4-80GB GPU with
CUDA 12.3.

33Gleixner, Hendel, Gamrath, Achterberg, Bastubbe, Berthold, Christophel, Jarck,
Koch, Linderoth, Lübbecke. Math. Program. Comput. (2021): 443-490.

34Burkard, Karisch, Rendl. J. Global Optim. (1997) 391-403.
35Koch, Berthold, Pedersen, Vanaret. EURO J. Comput. Optim. (2022): 100031.
36Lu and Yang. arXiv preprint arXiv:2311.12180 (2023).
37Applegate, D́ıaz, Hinder, Lu, Lubin, O’Donoghue, and Schudy were awarded the

Beale–Orchard-Hays Prize for Excellence in Computational Mathematical Programming
at the 25th International Symposium on Mathematical Programming
(https://ismp2024.gerad.ca/), July 21-26, 2024, Montréal, Canada.
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Numerical experiments: Part 2

Termination criteria. We terminate HPR-LP when the following stopping
criteria used in PDLP are satisfied for the tolerance ε ∈ (0,∞):

|⟨b, y⟩ − δ∗C(−z)− ⟨c, x⟩| ≤ ε (1 + |⟨b, y⟩ − δ∗C(−z)|+ |⟨c, x⟩|) ,
∥ΠD(b−Ax)∥ ≤ ε (1 + ∥b∥) ,
∥c−A∗y − z∥ ≤ ε (1 + ∥c∥) .

Shifted geometric mean. We use the shifted geometric mean of solving time to
measure the performance of solvers on a collection of problems:

(
n∏

i=1

(ti +∆))1/n −∆,

where ti is the solving time in seconds for the i-th instance. We shift by ∆ = 10
and denote this measure as SGM10.
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Part 2: Mittelmann’s LP benchmark with presolve

Table 7: Numerical performance of different solvers on 49 instances of
Mittelmann’s LP benchmark set with Gurobi’s presolve.

Tolerance 10−4 10−6 10−8

Solvers SGM10 Solved SGM10 Solved SGM10 Solved

cuPDLP.jl 60.0 46 118.6 45 220.6 43

HPR-LP.jl 17.4 49 31.8 49 59.4 48

HPR-LP.jl solves 3-5 more problems than cuPDLP.jl across all tolerance
levels;

In terms of SGM10, HPR-LP.jl achieves a 3.71x speedup over cuPDLP.jl
for 10−8 accuracy on the presolved dataset.
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Part 2: Mittelmann’s LP benchmark without presolve

Table 8: Numerical performance of different solvers on 49 instances of
Mittelmann’s LP benchmark set without presolve.

Tolerance 10−4 10−6 10−8

Solvers SGM10 Solved SGM10 Solved SGM10 Solved

cuPDLP.jl 76.9 42 156.2 41 277.9 40

HPR-LP.jl 30.2 47 69.1 44 103.8 43

HPR-LP.jl consistently solves 3-5 more problems than cuPDLP.jl does
across all tolerance levels;

In terms of SGM10, HPR-LP.jl achieves a 2.68x speedup over cuPDLP.jl to
obtain a solution with a 10−8 relative accuracy for the unpresolved dataset.
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Part 2: MIP relaxations with presolve

Table 9: Numerical performance of different solvers on 380 instances of MIP
relaxations with presolve.

Tolerance 10−4 10−6 10−8

Solver SGM10 Solved SGM10 Solved SGM10 Solved

cuPDLP.jl 9.6 373 18.6 370 28.4 363

HPR-LP.jl 5.1 373 8.3 370 11.9 370

With a 10−8 accuracy, HPR-LP.jl solves 7 more problems than cuPDLP.jl
does across the 380 presolved MIP relaxation instances;

In terms of SGM10, HPR-LP.jl achieves a 2.39x speedup over cuPDLP.jl to
obtain a solution with a 10−8 accuracy for the presolved dataset.
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Part 2: MIP relaxations without presolve

Table 10: Numerical performance of different solvers on 380 instances of MIP
relaxations without presolve.

Tolerance 10−4 10−6 10−8

Solver SGM10 Solved SGM10 Solved SGM10 Solved

cuPDLP.jl 14.3 372 25.0 366 36.3 359

HPR-LP.jl 6.9 376 11.6 371 17.9 363

With a 10−8 accuracy, HPR-LP.jl solves 4 more problems than cuPDLP.jl
does across the 380 unpresolved MIP relaxation instances;

In terms of SGM10, HPR-LP.jl achieves a 2.03x speedup over cuPDLP.jl to
obtain a solution with a 10−8 accuracy for the unpresolved dataset.
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Part 2: QAP problem instances

Table 11: SGM10 for different solvers on 20 QAP instances with presolve.

Tolerance 10−4 10−6 10−8

Solver HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl

SGM10 2.9 12.7 8.8 60.0 60.2 343.1

HPR-LP.jl achieves a 5.70x speedup over cuPDLP.jl for 10−8

accuracy on the presolved dataset.

Table 12: SGM10 for different solvers on 20 QAP instances without presolve.

Tolerance 10−4 10−6 10−8

Solver HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl

SGM10 18.9 43.9 150.7 342.4 1246.4 3202.5

On the unpresolved dataset, HPR-LP.jl achieves a 2.57x speedup over
cuPDLP.jl for the 10−8 accuracy.
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Part 2: QAP problem instances

Table 11: SGM10 for different solvers on 20 QAP instances with presolve.
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Table 12: SGM10 for different solvers on 20 QAP instances without presolve.

Tolerance 10−4 10−6 10−8

Solver HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl

SGM10 18.9 43.9 150.7 342.4 1246.4 3202.5

On the unpresolved dataset, HPR-LP.jl achieves a 2.57x speedup over
cuPDLP.jl for the 10−8 accuracy.
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Part 2: ZIB problem instance

Dimensions of matrix A in “zib03”:

After presolve: 19,701,908 rows, 29,069,187 columns, 104,300,584
non-zeros;

Without presolve: 19,731,970 rows, 29,128,799 columns, 104,422,573
non-zeros.

Table 13: Solving time in seconds for the “zib03” instance.

Tolerance 10−4 10−6 10−8

Solver HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl

With presolve 273.8 351.9 1317.2 1634.6 3685.8 16462.2

Without presolve 154.2 237.7 1063.6 1963.9 4865.3 19746.4

The commercial LP solver COPT used 16.5 hours to solve this instance on an AMD Ryzen 9
5900X.38

HPR-LP.jl achieves a 4.47x speedup over cuPDLP.jl on the presolved
dataset and a 4.06x speedup on the unpresolved dataset, both in terms of
SGM10, to return a solution with a 10−8 relative accuracy.

38Lu, Yang, Hu, Huangfu, Liu, Liu, Ye, Zhang, Ge. arXiv preprint arXiv:2312.14832
(2023).
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Conclusion

We proposed an accelerated dPPM with both asymptotic o(1/k) and
non-asymptotic O(1/k) convergence rates by unifying the Halpern
iteration and the fast Krasnosel’skĭi-Mann iteration.

Leveraging the equivalence between the pADMM and the dPPM, we
derived an accelerated pADMM, which exhibited both asymptotic
o(1/k) and non-asymptotic O(1/k) convergence rates with respect to
the KKT residual and the objective error.

The Julia version of HPR-LP achieves a 2.39x to 5.70x speedup
measured by SGM10 on benchmark datasets with presolve (2.03x to
4.06x without presolve) over the award-winning solver PDLP with the
tolerance of 10−8.
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Thank you for your attention!
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Haim Brézis and Pierre Louis Lions.
Produits infinis de résolvantes.
Israel J. Math., 29:329–345, 1978.

55



References II
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