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Globally and Quadratically Convergent Algorithm
for Minimizing the Sum of Euclidean Norms1
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4

Communicated by O. L. Mangasarian

Abstract. For the problem of minimizing the sum of Euclidean norms
(MSN), most existing quadratically convergent algorithms require a
strict complementarity assumption. However, this assumption is not
satisfied for a number of MSN problems. In this paper, we present a
globally and quadratically convergent algorithm for the MSN problem.
In particular, the quadratic convergence result is obtained without
assuming strict complementarity. Examples without strictly complemen-
tary solutions are given to show that our algorithm can indeed achieve
quadratic convergence. Preliminary numerical results are reported.
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1. Introduction

Consider the problem of minimizing a sum of Euclidean norms (MSN):

min
x∈ℜn

∑
iG1

m

��aiAAT
i x��, (1)

where a1 , a2 , . . . , am ∈ℜd are column vectors and A1 , A2 , . . . , Am are nBd
matrices. Let

f (x)G ∑
iG1

m

fi (x), (2)
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where

fi (x)G��aiAAT
i x��, iG1, 2, . . . , m.

The problem (1) arises in many applications, such as VLSL design, Eucli-
dean facilities location, and Steiner minimal tree with a given topology; see
e.g. Refs. 1–3 for more details.

Many algorithms have been proposed for the problem (1); see e.g. Refs.
1–4. Under a strict complementarity assumption, quadratic convergence
results have been obtained in Refs. 1, 2, 4. However, the assumption is not
satisfied for some MSN problems; even simple ones such as Euclidean
single-facility location problems.

In this paper, we reformulate the problem (1) as a monotone vari-
ational inequality problem (MVIP for short). Then, we present an algorithm
for (1) by solving the MVIP. The algorithm is globally and quadratically
convergent. In particular, unlike current results obtained in Refs. 1, 2, 4, the
quadratic convergence is obtained without assuming strict complementarity.

The rest of the paper is organized as follows. In Section 2, we reformu-
late the problem (1) as an MVIP. In Section 3, we propose an algorithm for
the MSN problem by solving the MVIP. In Section 4, we show that the
algorithm is quadratically convergent without assuming the strict comp-
lementarity. A number of examples are given in Section 5 to show that
conditions used in this paper are satisfied, but that strict complementarity
does not hold. In Section 6, we report some preliminary numerical results.
We conclude the paper in Section 7.

Concerning notation, we let

ℜn
+G{x∈ℜn: x¤0}

and

ℜn
++G{x∈ℜ: xH0}.

If nG1, then ℜn
+ and ℜn

++ are denoted by ℜ+ and ℜ++ respectively. In this
paper, unless otherwise stated, all vectors are column vectors. We denote
the cardinality of a set A by �A �. For a closed convex set Ω⊆ℜn and
x∈ℜn, we let ΠΩ(x) be the Euclidean projection of x onto Ω. If ΩGℜn

+ ,
then we denote ΠΩ(x) by xC. We use (↓0+ to denote the limit of a positive
scalar ( which tends to 0.

We let Id denote the dBd identity matrix, 0nBm the nBm zero matrix,
0n ∈ℜn the zero column vector, and en ∈ℜn the column vector of ones. To
represent a large matrix with several smaller matrices, we use semicolons
for column concatenation and commas for row concatenation. These
notations also applies to vectors. Given a finite number of square matrices
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Q1 , . . . , Qn , we denote the block diagonal matrix with these matrices as
blocks by either diag(Q1 , . . . , Qn) or diag(Qi , iG1, . . . , n). Let

MG{1, 2, . . . , m}.

Given vectors yi ∈ℜd, i∈M, we let

D(yi , i∈M )_�
y1 0d · · · 0d

0d y2 · · · 0d

···
···

· · ·
···

0d 0d · · · ym

� .

Let

QGD(yi , i∈M ), ΛGdiag(λ i Id , i∈M ),

RGdiag(λ i , i∈M ), XGdiag(λ iyiy
T
i , i∈M ).

If

��yi ��G1, i∈M,

then it is readily shown that

QTΛQGR, (3)

QRQTGX, (4)

RQTΛ−1GQT. (5)

2. Reformulation

In this section, we reformulate the problem (1) as a monotone vari-
ational inequality problem. This reformulation is important to our design
of quadratically convergent algorithms. Firstly, we give the following
lemma. We omit the proof of the lemma as it is easy.

Lemma 2.1. Let d(x)G��x��, x∈ℜn. Then, y∈∂d(x) if and only if there
exist g¤0 and h¤0 such that

xAgyG0, 1�2A(1�2) ��y��2Gh, ghG0. (6)

Let S be the solution set of problem (1). It is known that x∈S if and
only if

0∈ ∑
iG1

m

∂fi(x). (7)
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From Lemma 2.1 and Theorem 4.2.1 in Ref. 5, Chapter VI, for i∈M,

∂fi (x)G�−Aiyi : yi ∈ℜd, AT
i xAaiCλ iyiG0,

1�2A(1�2) ��yi ��2Ghi , λ ihiG0, λ i¤0, hi¤0�. (8)

Thus, (7) is equivalent to the following system:

−AyG0, AT
i xAaiCλ iyiG0, i∈M, (9)

1�2A(1�2) ��yi ��2Ghi , λ ihiG0, hi¤0, λ i¤0, i∈M, (10)

where

AG[A1 , A2 , . . . , Am ] and yG[y1 ; y2 ; . . . ; ym ].

Let

λG[λ1 ; . . . ; λm ]∈ℜm and hG[h1 ; . . . ; hm ]∈ℜm.

Let [x*; y*; λ*; h*] be a solution of the system (9)–(10). We say that strict
complementarity holds at [x*; y*; λ*; h*] if

λ*i Ch*i H0, ∀i∈M. (11)

Note that (11) is equivalent to the following:

��y*i ��F1 whenever aiAAT
i x*G0, ∀i∈M. (12)

Let

ΛGdiag(λ i Id , i∈M ), YG[��y1 ��2; . . . ; ��ym ��2]∈ℜm. (13)

Let

uG[x; y; λ ]∈ℜq, where qGnCmdCm.

Define F:ℜq→ℜq by

F(u)G�
−Ay

ATxAaCΛy

(1�2)emA(1�2)Y
�, (14)

and the set Ω⊂ℜq by

ΩG{u:G[x; y; λ ]∈ℜq: x∈ℜn, y∈ℜmd, λ∈ℜm
+ }. (15)

Then, it is readily shown that the system (9)–(10) is equivalent to the follow-
ing variational inequality problem: find a vector u*G[x*; y*; λ*]∈Ω such
that

F(u*)T(uAu*)¤0, ∀u∈Ω. (16)
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Lemma 2.2. The function F is a smooth monotone mapping in Ω.
Moreover, if A has rank n, then the solution set of (16) is nonempty and
bounded.

Proof. Let

J(y)GD(yi , i∈M ), (17)

where D(yi , i∈M ) is defined in (3). The Jacobian matrix of F is given by

F ′(u)G�
0nBn −A 0nBm

AT Λ J(y)

0mBn −J(y)T 0mBm

�. (18)

Since F ′(u) is the sum of a skew-symmetric matrix and a diagonal matrix
with nonnegative diagonal elements, F ′(u) is positive semidefinite in Ω.
Therefore, F is a smooth monotone mapping in Ω. It follows from Lemma
2.1 in Ref. 4 that the solution set S of (1) is nonempty and bounded if A
has rank n. Thus, it is readily proven that the solution set of (9)–(10) is
nonempty and bounded. Therefore, the solution set of (16) is nonempty and
bounded. �

Let zG[x; y; s]∈ℜq and let ΠΩ(z) be the Euclidean projection of z onto
Ω. It is well known that solving (16) is equivalent to solving the Robinson
normal equation,

E(z)_F(ΠΩ(z))CzAΠΩ(z)G0, (19)

in the following sense: if z* is a solution of (19), then ΠΩ(z*)G[x*; y*; s*+ ]
is a solution of (16); conversely, if u* is a solution of (16), then
z*Gu*AF(u*) is a solution of (19); see Ref. 6. Let

ΛGdiag((si)+Id , i∈M ). (20)

The function E(z) can be rewritten as follows:

E(z)G�
−Ay

ATxAaCΛy

(1�2)em −(1�2)YCsAs+
�. (21)

Lemma 2.3. The function E has the following properties:

(i) E is strongly semismooth.
(ii) If A has rank n, then the solution set of (19), i.e., E−1(0), is non-

empty and bounded.
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Proof.

(i) It is readily shown that the function sCis strongly semismooth; see
Ref. 7 for the definition of semismoothness. By using Theorem 19 in Ref. 8
and (21), we can conclude that E is strongly semismooth.

(ii) Let SF be the solution set of (16) and let S E be the solution set
of (19). By Lemma 2, SF is bounded. For any zG[x; y; s]∈SE ,

u_ ΠΩ(z)G[x; y; s+ ]∈SF .

By (19),

zGuAF (u).

Since SF is bounded, this implies that ��F(u) �� is bounded for all u∈SF .
Thus, there exists a cH0 such that

��z��⁄c, for all z∈SE . �

Now, we will give a smooth approximation to the function E defined
in (19). In Ref. 9, Chen and Mangasarian presented a class of smooth
approximations to the function

r+Gmax{0, r}, r∈ℜ.

Among these smooth approximations, the Chen–Harker–Kanzow–Smale
smooth function is the most commonly used. It is defined by

φ(t, r)G1�2(rC1r2C4t2), (t, r)∈ℜ++Bℜ. (22)

Let p:ℜ2→ℜ be defined by

p(t, r)G�φ(�t�, r), if t ≠ 0,

r+ , if tG0.
(23)

The properties of the above functions φ and p can be found in Refs. 4 and
10–12.

Let û_ [t; z]G[t; x; y; s]. Define D:ℜmC1→ℜm by

D(t, s)G[p(t, s1); . . . ; p(t, sm)], (24)

define P:ℜqC1→ℜq by

P(û)G[x; y; D(t, s)], (25)

define K:ℜmC1→ℜmdBmd by

K(t, s)Gdiag( p(t, si)Id , i∈M ), (26)
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and define H:ℜqC1→ℜqC1 by

H(û)G�tF (P(û))C(1Ct)zAP(û)�

G�
t

−AyCtx

ATxAaCK(t, s) yCty

(1�2)emA(1�2)YC(1Ct)sAD(t, s)
� , (27)

where F is defined in (14). Note that

F(P(û))C(1Ct)zAP(û)

is the Tikhonov regularization of F(P(û))CzAP(û). The Tikhonov reg-
ularization was used to study variational inequalities and complementarity
problems; see e.g. Refs. 11 and 12.

Lemma 2.4. The function H has the following properties:

(i) H is continuously differentiable on (ℜ \{0})Bℜq and strongly
semismooth on ℜBℜq.

(ii) For any z∈ℜq, limt→0H(û)G[0; E(z)].

Proof. The results follow readily from (21) and (27). �

Let

D′t (t, s)G[∂p(t, s1)�∂t; . . . ; ∂p(t, sm)�∂t],
(28)

D′s (t, s)Gdiag(∂p(t, si)�∂si , i∈M ).

Then, we have the following lemma.

Lemma 2.5. For any ûG[t; z]∈ℜ++Bℜq, the Jacobian of H is given
by

H ′(û)_�
1 0T

n 0T
md 0T

m

x tIn −A 0nBm

yCJD′t (t, s) AT K(t, s)CtImd JD′s (t, s)
sAD′t (t, s) 0mBn −JT (1Ct)ImAD′s (t, s)

� , (29)

where JGJ(y) is defined as in (17) and H ′(û) is nonsingular.
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Proof. It is readily shown that (29) holds by simple computation. For
any ûG[t; z]∈ℜ++Bℜq, in order to prove that H ′(û) is nonsingular, we need
only to prove that the submatrix

W_�
tIn −A 0nBm

AT K(t, s)CtImd JD′s (t, s)
0mBn −JT (1Ct)ImAD′s (t, s)

� (30)

is nonsingular. Let

NG�
0n −A 0nBm

AT 0md J

0mBn −JT 0m

�,
PGdiag(In , Imd , D′s (t, s)),

QGdiag(tIn , K(t, s)CtImd , (1Ct)ImAD′s (t, s)).

Then,

WGNPCQ.

Since N is positive semidefinite and since P, Q are positive-definite diagonal
matrices, by Theorem 3.3 in Ref. 13, W is nonsingular. Therefore, H ′(û) is
nonsingular. �

3. Algorithm

Let γ ∈(0, 1). Define Ψ:ℜqC1→ℜ+ by

Ψ(û)_ ��H(û) ��2 (31)

and define β :ℜqC1→ℜ+ by

β (û)_γmin(1Ψ(û),Ψ(û)). (32)

Now, we will describe an algorithm for finding a solution of H(û)G0. The
algorithm is a modified version of the smoothing Newton algorithm pro-
posed in Ref. 10.

Algorithm 3.1.

Step 0. Choose t̄∈ℜ++ ,δ∈(0, 1), and σ∈(0, 1�2). Let û̄_ [t̄; 0q ]∈
ℜBℜq and û0G[t0; z0], where t0:Gt̄ and z0 is an arbitrary
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initial point in ℜq. Choose γ ∈(0, 1) such that

γ t̄⁄γ1Ψ(û0)F 1. (33)

Set k:G0.
Step 1. If H(ûk)G0, then stop. Otherwise, let βk_β (ûk).
Step 2. Compute ∆ûk_ [∆tk; ∆zk] by solving the linear system

H(ûk)CH ′(ûk)∆ûkGβk û̄. (34)

Step 3. Let lk be the smallest nonnegative integer l satisfying

Ψ(ûkCδ l∆ûk)⁄ [1A2σ (1Aγ t̄)δ l]Ψ(ûk). (35)

Define ûkC1_ûkCδ lk∆ûk.
Step 4. Set k _kC1 and go to Step 1.

Remark 3.1. Define

h1GAAyCtxC∆tx,

h2GATxAaCK(t, s)yCtyC∆t(yCJD′t (t, s)),

h3G(1�2)emA(1�2)YC(1Ct)sAD(t, s)C∆t(sAD′t (t, s)),

N1G(1Ct)ImAD′s (t, s), N2GD′s (t, s),

N3GK(t, s)CtImdCJN2N
−1
1 JT,

where J, K(t, s), D(t, s), D′t (t, s), D′s (t, s) are defined as in (17), (26), (24), (28).
Let

diG∂p(t, si)�∂si , i∈M.

Then,

N−1
1 Gdiag(1�(1CtAdi), i∈M ),

N3Gdiag([p(t, si)Ct]IdC[di�(1CtAdi)]yiy
T
i , i∈M ).

For i∈M, let

biGdi�[(1CtAdi)( p(t, si)Ct)2Cdi ��yi ��2( p(t, si)Ct)].

By simple computation, we have

N−1
3 Gdiag([1�( p(t, si)Ct)]IdAbiyiy

T
i , i∈M ).

From (27) and (29), we can solve (34) by the following procedure. For
simplicity, we omit k in (34).
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Procedure 3.1.

(i) Compute ∆tGAtCβ(û)û̄.
(ii) Compute N−1

1 and N−1
3 .

(iii) Compute ∆x by

(tInCAN−1
3 AT) ∆xGAh1CAN−1

3 h4 , (36)

where h4GAh2CJN2N
−1
1 h3 .

(iv) Compute ∆yGAN−1
3 AT∆xCN−1

3 h4 .
(v) Compute ∆sGAN−1

1 h3CN−1
1 JT∆y.

The system (36) is an n-dimensional symmetric positive-definite linear sys-
tem, which can be solved by a direct method such as the Cholesky factoriz-
ation method. The above procedure for a search direction is similar to the
one used in the interior-point method in Ref. 3.

Theorem 3.1. Algorithm 3.1 is well defined. Let {ûkG[tk; zk]} be an
infinite sequence generated by Algorithm 3.1. Then,

lim
k→+S

H(ûk)G0 and lim
k→+S

tkG0. (37)

Moreover, the sequence {ûk} is bounded if A has rank n.

Proof. We omit the proof as it is similar to that of Theorem 4.5 in
Ref. 11. �

4. Quadratic Convergence

Let û*G[t*; z*] be a limit point of the sequence {ûk} generated by
Algorithm 3.1. By Theorem 3.1, t*G0 and û* is a solution of H(û)G0.
Define

A (û*)G{lim H ′(ûk): ûkG[tk; zk], tk ↓ 0+ and zk→z*}. (38)

Theorem 4.1. Suppose that û*G[t*; z*] is an accumulation point of
an infinite sequence {ûk} generated by Algorithm 3.1. Assume that all
W∈A (û*) are nonsingular. Then, the whole sequence {ûk} converges to û*
quadratically, i.e.,

��ûkC1Aû*��GO(��ûkAû*��2) (39)
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and

Ψ(ûkC1)GO([Ψ(ûk)]2). (40)

Proof. See Theorem 4.8 in Ref. 4. �

Let û*G[t*; x*; y*; s*] be a solution of H(û)G0. Then, x* is an opti-
mal solution to problem (1) and [x*; y*; s*] is a solution to (19). Let

M0(x*)G{i∈M: ��aiAAT
i x*��G0}.

Define

A0G[Ai , i∈M0 (x*)]

and

G(x*)G ∑
i∈M \M0(x*)

∇2fi (x*), (41)

where, for i∈M \ M0 (x*),

∇2fi(x*)G[1���aiAAT
i x*��]AiA

T
i

A[1���aiAAT
i x*��3]Ai(aiAAT

i x*) (aiAAT
i x*)TAT

i .

To prove a quadratic convergence result for Algorithm 3.1, we made the
following assumptions:

(A1) The matrix G(x*) is positive definite.
(A2) The matrix A0 has full column rank.

Without loss of generality, we suppose that

��aiAAT
i x*��G0, iG1, . . . , j,

where jG�M0(x*) � and

��aiAAT
i x*��H0, iGjC1, . . . , m.

From (21), for i∈M, we have

AT
i x*AaiC(s*i )+y*i G0, (42)

(1�2) (1A��y*i ��2)Cs*i A(s*i )+G0. (43)

We claim that

s*i ⁄0, iG1, . . . , j. (44)

By (43),

��y*i ��⁄1, i∈M,
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since

s*i A(s*i )+⁄0.

Suppose that there exists i∈{1, . . . , j} such that s*i H0. By (43), ��y*i ��G1
and hence (s*i )+y*i ≠0, but this contradicts (42). Therefore, we proved our
claim.

Now, for iG1, . . . , j, by (43),

��y*i ��F1 if and only if s*i F0.

Let

I _{i: s*i F0, iG1, . . . , j}. (45)

For iGjC1, . . . , m, from (42),

(s*i )+H0.

Thus,

s*i H0, iGjC1, . . . , m,

and by (43),

��y*i ��G1, iGjC1, . . . , m.

Using (42), we have

s*i G��aiAAT
i x*��, (46a)

y*i G(aiAAT
i x*)���aiAAT

i x*��, iGjC1, . . . , m. (46b)

Define

A0G[A1 , . . . , Aj ], ĀG[AjC1 , . . . , Am ].

By (42) and (46), the matrix G(x*) can be rewritten as follows:

G(x*) G ∑
i∈M \M0(x*)

(1�s*i )Ai(IdAy*i (y*i )T)AT
i

GĀP−1
1 (I(mAj )dAJ1J

T
1 )Ā

T, (47)

where

P1Gdiag(s*i Id , iGjC1, . . . , m), (48)

J1GD(y*i , iGjC1, . . . , m). (49)

Proposition 4.1. Suppose that û*G[t*; x*; y*; s*] is a solution of

H(û)G0 and that x* satisfies (A1) and (A2). Then, all W∈A (û*) are
nonsingular.
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Proof. For any W∈A (û*), there exists a sequence {ûkG[tk;xk; yk; sk]}
such that

WG lim
k→+S

H ′(ûk)G�
1 0T

n 0T
md 0T

m

x* 0nBn −A 0nBm

y*CJ*D*t AT K* J*D*s
s*AD*t 0mBn −(J*)T ImAD*s

� .

Here,

J*GJ (y*), K*GK (0, s*)

are defined as in (17)–(26) and

D*t G lim
tk↓0+

sk→s*

D′t (tk, sk), D*s G lim
tk↓0+

sk→s*

D′s (tk, sk),

where D′t (tk, sk) and D′s (tk, sk) are defined as in (28). From (23), (44), and (46),

p(0, s*i )G0, iG1, . . . , j,

and

p(0, s*i )Gs*, iGjC1, . . . , m.

Thus,

K*Gdiag(0 jdBjd, P1), (50)

where P1 is defined in (48). By (44), (46), and simple computation, we have

lim
tk↓0+

sk
i →s*i

∂p(tk, sk
i )�∂sk

i ∈[0, 1], iG1, . . . , j, (51)

lim
tk↓0+

sk
i →s*i

∂p(tk, sk
i )�∂sk

i G0, i∈I , (52)

lim
tk↓0+

sk
i →s*i

∂p(tk, sk
i )�∂sk

i G1, iGjC1, . . . , m. (53)

Hence,

D*s Gdiag(D1 , ImAj), (54)

where

D1Gdiag(di , iG1, . . . , j ), di ∈[0, 1]. (55)
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We suppose that

diG0, iG1, . . . , n1 ,

di ∈(0, 1), iGn1C1, . . . , n2

diG1, iGn2C1, . . . , j.

Then,

I ⊆ {1, 2, . . . , n1}, (56)

��yi ��G1, iGn1C1, . . . , j. (57)

Let

NGdiag(di , iGn1C1, . . . , n2),

N̄Gdiag(1Adi , iGn1C1, . . . , n2).

Then,

D1Gdiag(0, N, IjAn2).

Define

J01GD(y*i , iG1, . . . , n1), J02GD(y*i , iGn1C1, . . . , n2), (58)

J03GD(y*i , iGn2C1, . . . , j ). (59)

Let

A01G[A1 , . . . , An1], A02G[An1C1, . . . , An2],

A03G[An2C1, . . . , Aj ].

Then,

A0G[A01 , A02 , A03 ].

Let

UG�
0nBn −A 0nBm

AT K* J*D*s
0mBn −(J*)T ImAD*s

�

G�
0 −A01 −A02 −A03 −Ā 0 0 0 0

AT
01 0 0 0 0 0 0 0 0

AT
02 0 0 0 0 0 J02N 0 0

AT
03 0 0 0 0 0 0 J03 0

ĀT 0 0 0 P1 0 0 0 J1

0 −JT
01 0 0 0 In1 0 0 0

0 0 −JT
02 0 0 0 N̄ 0 0

0 0 0 −JT
03 0 0 0 0 0

0 0 0 0 −JT
1 0 0 0 0

� .
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To prove that W is nonsingular, it suffices to show that U is nonsingular. Let

UqG0, where qG(q1 ; . . . ; q9).

Here, q1 ∈ℜn, q2 ∈ℜn1d, q3 ∈ℜ(n2An1)d, q4 ∈ℜ(jAn2)d, q5 ∈ℜ(mAj )d, q6 ∈ℜn1,
q7 ∈ℜn2An1, q8 ∈ℜ jAn2, q9 ∈ℜmAj . Then, we have

A01q2CA02q3CA03q4CĀq5G0, (60)

AT
01q1G0, (61)

AT
02q1CJ02Nq7G0, (62)

AT
03q1CJ03q8G0, (63)

ĀTq1CP1q5CJ1q9G0, (64)

AJT
01q2Cq6G0, (65)

AJT
02q3CN̄q7G0, (66)

AJT
03q4G0, (67)

JT
1 q5G0. (68)

It follows from (64) that

q5G−P−1
1 ĀTq1AP−1

1 J1q9 . (69)

Premultiplying (69) by JT
1 and using (68) and (3), we get

JT
1 P−1

1 ĀTq1G−JT
1 P−1

1 J1q9G−Λ−11 q9 ,

where

Λ1Gdiag(s*i , iGjC1, . . . , m).

Thus, we have

q9G−Λ1J
T
1 P−1

1 ĀTq1G−JT
1 ĀTq1 . (70)

Note that the second equation in (70) is obtained by using (5). Premultiplying
(69) by Ā and applying (70), we get

Āq5G−ĀP−1
1 (I(mAj)dAJ1J

T
1 )Ā

Tq1G−G(x*)q1 ,

i.e.,

Āq5CG(x*) q1G0. (71)

Premultiplying (60) by qT
1 and applying (61), we have

qT
1 A02q3CqT

1 A03q4CqT
1 Āq5G0. (72)

Premultiplying (63) by qT
4 and applying (67), we obtain

qT
4 AT

03q1G−qT
4 J03q8G0. (73)
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From (66), we have

q7GN̄−1JT
02q3 . (74)

Let

ÑGdiag([di�(1Adi)] yiy
T
i , iGn1C1, . . . , n2).

By using (4), we obtain

J02NN̄−1JT
02GÑ. (75)

Premultiplying (62) by qT
3 and applying (74) and (75), we have

qT
3 AT

02q1G−qT
3 J02Nq7G−qT

3 J02NN̄−1JT
02q3G−qT

3 Ñq3 . (76)

From (71), (72), (73), (76), we get

qT
1 G(x*) qT

1CqT
3 Ñq3G0. (77)

Since Ñ is positive semidefinite, by (77) and (A1), q1G0. Hence, q8G0 from
(63), q9G0 from (70), and then q5G0 from (69). Since q5G0, by (60) and (A2),
q2G0, q3G0 and q4G0. Thus q7G0 from (74) and q6G0 from (65). There-
fore, qG0. This implies that the matrix U is nonsingular and the proof is com-
pleted. �

By combining Theorem 4.1 and Proposition 4.1, we obtain the main
result of the paper as follows.

Theorem 4.2. Suppose that û*G[t*; x*; y*; s*] is an accumulation
point of the infinite sequence {ûk} generated by Algorithm 3.1 and that x*
satisfies (A1) and (A2). Then, the whole sequence {ûk} converges to û*
quadratically.

Remark 4.1. Theorem 4.2 shows that, under conditions (A1) and
(A2), Algorithm 3.1 has quadratic convergence. In Refs. 1–2, in order to
get quadratic convergence results, besides assumptions (A1) and (A2), a
strict complementarity assumption is needed.

Remark 4.2. In Ref. 3, by reformulating the MSN problem as a
second-order cone programming problem, an interior-point algorithm with
polynomial complexity is presented. However, most existing interior-point
algorithms with quadratic convergence require a strict complementarity
assumption.

In Section 5, we will show that conditions (A1) and (A2) are satisfied
always for the Euclidean single-facility location (ESFL) problem, but that
strict complementarity does not hold for a number of problems in this class.
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5. ESFL Problem

Let c1 , c2 , . . . , cm be m, m¤3, distinct points in ℜd. Let ω1 , ω2 , . . . ,
ωm be m positive weights. Find a point x∈ℜd that minimizes

f (x)G ∑
iG1

m

ω i ��xAci ��. (78)

This is called the Euclidean single-facility location (ESFL) problem in
Ref. 3. Let

aiGω ici and AT
i Gω i Id , i∈M.

Then, the ESFL problem can be transformed into a special case of problem
(1). In what follows, we assume always that ci , i∈M, are not collinear. The
following lemma will be used later. We shall omit its proof, since it is easy.

Lemma 5.1. Let LG{1, 2, . . . , l}, ûi ∈ℜd, i∈L, satisfying ��ûi ��G1,
i∈L, and let ui , i∈L, be positive numbers. If there exist ûi and ûj , with
i, j∈L, such that ûi and ûj are linearly independent, then the matrix

NG ∑
iG1

l

ui (IdAûiû
T
i )

is positive definite.
Let

gi (x)Gω i ��xAci ��, i∈M.

Then, for i∈M,

∂gi (x)G�{ω i(xAci)���xAci ��}, if x ≠ ci ,

{ω iy: y∈ℜd, ��y��⁄1}, if xGci .

Proposition 5.1. If the vectors ci , i∈M, are not collinear, then con-
ditions (A1) and (A2) are satisfied at any x∈ℜd.

Proof. For any x∈ℜd, let

M0(x)G{i∈M: gi (x)G0}.

Clearly, either M0(x)G∅ or M0(x) only has one element.

Case 1. M0 (x)G{i}. In this case,

A0G[Ai , i∈M0 (x)]Gω i Id ,

which means that (A2) holds. For i∈M and x ≠ ci , let

ûi (x)G(xAci)���xAci ��.
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Then, from (41),

G(x)G ∑
i∈M \M0(x)

[1�gi(x)] [IdAûi(x) [ûi (x)]T].

If the vectors ci , i∈M are not collinear, then there exist ûi (x) and
û j (x), i, j∈M \M0(x), such that ûi(x) and û j (x) are linearly independent. By
Lemma 5.1, the matrix G(x) is positive definite, i.e., (A1) holds.

Case 2. M0 (x)G∅. Similar to the proof of Case 1, we have that

G(x)G ∑
i∈M

[1�gi (x)] (IdAûi (x) [ûi(x)]T)

is positive definite, which shows that (A1) holds. �

Proposition 5.2. If there exists i∈M such that

ω iG� ∑
j∈M, j ≠ i

ω j(ciAcj)���ciAcj ���, (79)

then ci is a solution of (78). However, strict complementarity does not holds
at the solution point ci .

Proof. By (79), there exists yi ∈ℜd satisfying ��yi ��G1 such that

ω iyiC ∑
j∈M, j ≠ i

ω j (ciAcj)���ciAcj ��G0, (80)

which means that 0∈∂f (ci). Thus, ci is a solution of (78).

For any yi ∈ℜd satisfying ��yi ��F1, by using (79), we have

ω iyiC ∑
j∈M, j ≠ 1

ω j (ciAcj)���ciAcj �� ≠ 0. (81)

This shows that the strict complementarity does not holds at the solution
point ci. �

Remark 5.1. (79) holds for a number of ESFL problems. For
example, let

d¤2, c1G0d , ω 1G1, c2G[1: 0dA1], ω 2G1,

c3G[0; 1; 0dA2], ω3G1, c4G[0;A1; 0dA2], ω4G1.
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Then,

ω1G� ∑
jG2

4

ω j (c1Acj)���c1Acj ���.

6. Preliminary Numerical Experiments

To show that the method proposed in the paper has quadratic conver-
gence, we implemented Algorithm 3.1 in MATLAB and tested the following
two Euclidean single-facility location (ESFL) problems. Note that, at the
solution points of these two examples, strict complementarity does not hold.

Example 6.1. Here

dG2, c1G[0; 0], ω1G1, c2G[1; 0], ω2G1,

c3G[0; 1], ω3G3, c4G[0; −1], ω4G3.

The solution is x*G[0; 0].

Example 6.2. Here

dG4, c1G[0; 0; 0; 0], ω1G0.5, c2G[1; 0; 0; 0], ω2G0.5,

c3G[0; 1; 0; 0], ω3G2, c4G[0; −1; 0; 0], ω4G2.

The solution is x*G[0; 0; 0; 0].
Throughout our computational experiments, we used the following

parameters:

δG0.5, σG0.0005, t̄G0.5, z0G0.3eq , γ G0.5.

We terminated the iteration when

��E(zk) ��S⁄10−12,

where E is defined in (19). The outputs of the algorithm for Examples 6.1
and 6.2 are given in Tables 1 and 2, which show the quadratic convergence
of this method.

7. Conclusions

In this paper, we proposed a globally and quadratically convergent
method for the problem of minimizing a sum of Euclidean norms. In par-
ticular, the quadratic convergence of the method was proved without
assuming strict complementarity.
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Table 1. Output of Algorithm 3.1 for Example 6.1.

k f (xk) ��E(zk) ��S xk
1 xk

2 δ lk

1 7.21E+00 3.67E+00 2.11E−01 1.63E−01 1
2 7.19E+00 2.76E+00 1.66E−01 −1.90E−01 0.5
3 7.12E+00 1.14E+00 1.75E−01 9.06E−02 1
4 7.14E+00 6.26E−01 1.73E−01 1.26E−01 1
5 7.07E+00 2.46E−01 1.34E−01 6.75E−02 1
6 7.01E+00 1.05E−01 5.96E−02 1.26E−02 1
7 7.00E+00 2.73E−02 1.12E−02 3.27E−03 1
8 7.00E+00 1.31E−03 7.67E−04 1.69E−04 1
9 7.00E+00 7.09E−06 2.47E−06 3.25E−07 1

10 7.00E+00 1.29E−10 6.06E−11 1.72E−11 1
11 7.00E+00 6.66E−16 −1.04E−16 2.49E−21 1

Table 2. Output of Algorithm 3.1 for Example 6.2.

k f (xk) ��E(zk) ��S xk
1 xk

2 xk
3 xk

4 δ lk

1 5.10E+00 2.51E+00 2.81E−01 2.54E−01 2.54E−01 2.54E−01 1
2 4.82E+00 1.49E+00 2.16E−01 −7.91E−02 1.87E−01 1.87E−01 0.5
3 4.74E+00 8.56E−01 1.94E−01 1.82E−01 1.36E−01 1.36E−01 1
4 4.69E+00 4.19E−01 1.77E−01 1.85E−01 1.12E−01 1.12E−01 1
5 4.61E+00 1.67E−01 1.51E−01 1.38E−01 7.19E−02 7.19E−02 1
6 4.54E+00 5.39E−02 1.01E−01 4.80E−02 3.27E−02 3.27E−02 1
7 4.50E+00 1.50E−01 2.88E−02 2.82E−03 8.29E−03 8.29E−03 1
8 4.50E+00 9.31E−03 1.69E−02 7.11E−03 6.44E−03 6.44E−03 1
9 4.50E+00 6.84E−03 1.44E−03 2.88E−05 4.23E−04 4.23E−04 1

10 4.50E+00 5.22E−05 3.97E−05 1.42E−05 1.47E−05 1.47E−05 1
11 4.50E+00 4.55E−08 9.85E−09 8.97E−10 3.06E−09 3.06E−09 1
12 4.50E+00 2.59E−15 1.61E−15 6.26E−16 6.77E−16 6.77E−16 1

Our numerical implementation of the algorithm is very preliminary.
There are numerous computational issues to be investigated in order to
make the algorithm practically efficient and robust. The main compu-
tational step in each iteration of Algorithm 1 lies in solving the linear system
(36). Thus, it is necessary for us to come up with ways to solve it efficiently
by exploiting sparsity or special structures present in the linear system. We
shall leave these as further research topics.
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