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Abstract. The paper presents concrete realizations of quasi-Newton methods for solving several
standard problems including complementarity problems, special variational inequality problems, and
the Karush–Kuhn–Tucker (KKT) system of nonlinear programming. A new approximation idea is
introduced in this paper. The Q-superlinear convergence of the Newton method and the quasi-
Newton method are established under suitable assumptions, in which the existence of F ′(x∗) is not
assumed. The new algorithms only need to solve a linear equation in each step. For complementarity
problems, the QR factorization on the quasi-Newton method is discussed.
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1. Introduction. In recent years, many authors have considered various forms
of Newton methods for solving nonsmooth equations (NE) (see, e.g., [17, 18, 19, 20,
11, 12, 13, 21, 22, 23, 26]). Some authors have also considered the application of
the quasi-Newton methods to nonsmooth equations. In Kojima and Shindo [11], the
quasi-Newton method was applied to piecewise smooth equations. When the iteration
sequence moves to a new C1-piece, a new approximate starting matrix is needed. Ip
and Kyparisis [9] considered the local convergence of quasi-Newton methods directly
applied to B-differentiable equations (in the sense of Robinson [25]). The superlin-
early convergent theorems are established under the assumption that F is strongly
F-differentiable [15] at the solution.

The main object of this paper is to construct a practical quasi-Newton method for
nonsmooth equations, especially for those which are of concrete background. In order
to complete this, we first give a slight modification of the generalized Newton method
[21, 22, 13]. Based on the modified generalized Newton method, we give a quasi-
Newton method for solving a class of nonsmooth equations, which arises from the
complementarity problem, variational inequality problem, the Karush–Kuhn–Tucker
(KKT) system of nonlinear programming, and related problems. In each step, we
only need to solve a linear equation. The Q-superlinear convergence is established
under mild conditions.

The characteristics of the quasi-Newton method for solving (4.12) established in
section 4 include the following: (i) without assuming the existence of F ′(x∗), we prove
the Q-superlinearly convergent property; (ii) only one approximate starting matrix is
needed; and (iii) from the QR factorization of the kth iterate matrix we need at most
O((I(k) + 1)n2) arithmetic operations to get the QR factorization of the (k + 1)th
iterate matrix (for the definition of I(k), see (5.8)).

The remainder of this paper is organized as follows. In section 2, we give some
preliminaries on nonsmooth functions. In section 3, we propose a modified generalized
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Newton method. In section 4, we give a quasi-Newton method for solving a class
of nonsmooth equations. In section 5, we discuss the implementation of the quasi-
Newton method for the nonlinear complementarity problem. The KKT system of
variational inequality problems with upper and lower bounds are discussed in section
6. The computational results are given in section 7.

2. Preliminaries. In general, assume that F : Rn → Rm is locally Lipschitzian.
In order to reduce the nonsingularity assumption of the generalized Newton method
[22], the concept ∂BF (x) was introduced by Qi [21]:

(2.1) ∂BF (x) =
{

lim
xk→x
xk∈DF

F ′(xk)
}
,

where DF is the set where F is differentiable. Let ∂F be the generalized Jacobian of
F in the sense of Clarke [4]. Then ∂F (x) is the convex hull of ∂BF (x),

(2.2) ∂F (x) = conv ∂BF (x).

For m = 1, ∂BF (x) was introduced by Shor [28]. Here, we denote

(2.3) ∂bF (x) = ∂BF1(x)× ∂BF2(x)× · · · × ∂BFm(x).

When m = 1, ∂bF (x) = ∂BF (x).
We say that F is semismooth at x if

(2.4) lim
V∈∂F (x+th′)
h′→h, t↓0

{V h′}

exists for any h ∈ Rn. Semismoothness was originally introduced by Mifflin [14]
for functionals. Convex functions, smooth functions, and piecewise linear functions
are examples of semismooth functions. Scalar productions and sums of semismooth
functions are still semismooth functions (see [14]). In [23], Qi and Sun extended the
definition of semismooth functions to F : Rn → Rm. It was proved in [23] that F is
semismooth at x if and only if all its component functions are so.

Condition (2.4) is stronger than the assumption that for any h ∈ Rn,

(2.5) lim
V∈∂F (x+th)

t↓0

{V h}

exists. Under the latter assumption, Qi and Sun [Proposition 2.1, 22] proved that the
classical derivative

F ′(x;h) = lim
t↓0

F (x+ th)− F (x)

t

exists and is equal to the limit in (2.5); i.e.,

(2.6) F ′(x;h) = lim
V∈∂F (x+th)

t↓0

{V h}.

If the right-hand side limit in (2.6) is uniformly convergent for all h with unit norm,
then from Theorem 2.3 of [22] we have that F is semismooth at x. In [13], Kum-
mer discussed sufficient and necessary conditions for the convergence of the Newton
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method based on generalized derivatives. One of the conditions for guaranteeing con-
vergence (see Theorem 2 of [13]) is (specialized to the fourth case discussed in [13])
that for any V ∈ ∂F (x+ h), h→ 0,

(2.7) F (x+ h)− F (x)− V h = o(‖h‖).

Since F is locally Lipschitz continuous, from [27] we know that if F ′(x;h) exists, then
F ′(x;h) coincides with the B-derivative of F at x; i.e.,

(2.8) lim
h→0

F (x+ h)− F (x)− F ′(x;h)

‖h‖ = 0.

So, if F ′(x;h) exists, then (2.7) implies that for any V ∈ ∂F (x+ h), h→ 0,

(2.9) V h− F ′(x;h) = o(‖h‖).

Again, (2.9) implies the semismoothness of F at x from Theorem 2.3 of [22]. But in
[13], Kummer also discussed the case that F ′(x;h) may not exist. In this paper we
will only consider the case that F ′(x;h) exists. Under the existence assumption of
F ′(x;h), similar to the above discussion from Theorem 2.3 of [22], we can prove that
in finite dimensional space the condition (CA∗) in Theorem 2 of [13] implies (2.9)
(by assuming F (x) = 0), which is essentially equivalent to the semismoothness of F
at x. Semismoothness is a useful tool in proving the Q-superlinear convergence of
the generalized Newton method for nonsmooth equations [21, 22, 23]. We also need
it in this paper. In addition, Kummer [13] discussed the approximation of Newton
matrices and errors when solving the auxiliary problems. In this paper we will put
our main attention on constructing concrete quasi-Newton methods for solving special
nonsmooth equations and will not discuss the inexact solution of the subproblems.

Lemma 2.1 (see [22]). Suppose that F : Rn → Rm is a locally Lipschitzian
function and semismooth at x. Then

(1) for any V ∈ ∂F (x+ h), h→ 0,

V h− F ′(x;h) = o(‖h‖);

(2) for any h→ 0,

F (x+ h)− F (x)− F ′(x;h) = o(‖h‖).

In the rest of this paper, let ‖ · ‖ denote the l2 vector norm or its induced matrix
norm.

Lemma 2.2. Suppose that F : Rn → Rn is a locally Lipschitzian function. If all
V ∈ ∂bF (x) are nonsingular, then there exists a positive constant β such that

‖V −1‖ ≤ β

for any V ∈ ∂bF (x). Furthermore, there exists a neighborhood N(x) of x such that
for any y ∈ N(x), all W ∈ ∂bF (y) are nonsingular and satisfy

(2.10) ‖W−1‖ ≤ 10

9
β.

Proof. From the definition of ∂bF we can easily know that ∂bF (·) is bounded and
closed in a neighborhood of x. Then the proof of the theorem is similar to that of [21,
22]. We omit the detail here.
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3. Newton method for nonsmooth equations. Suppose that F : Rn → Rn

is locally Lipschitzian. We are interested in finding a solution of the equation

(3.1) F (x) = 0.

Qi and Sun [22], Qi [21], and Kummer [13] considered various forms of the Newton
method for solving (3.1) when F is not F -differentiable. Here we will consider the
following slightly modified Newton method

(3.2) xk+1 = xk − V −1
k F (xk), k = 0, 1, . . . ,

where Vk ∈ ∂bF (xk). This method is useful to establish the superlinear convergence
of quasi-Newton methods given in section 4. Similar to that of [21, 22], we can give
the following convergence theorem.

Theorem 3.1. Suppose that x∗ is a solution of (3.1), F is locally Lipschitzian and
semismooth at x∗, and all V∗ ∈ ∂bF (x∗) are nonsingular. Then the iteration method
(3.2) is well defined and converges to x∗ Q-superlinearly in a neighborhood of x∗.

Proof. By Lemma 2.2, (3.2) is well defined in a neighborhood of x∗ for the first
step k = 0. Since Vk ∈ ∂bF (xk), the ith row V ik of Vk satisfies

V ik ∈ ∂BFi(xk).

From the semismoothness of F we know that Fi is semismooth at x∗. By Lemma 2.1,

V ik (xk − x∗)− F ′i (x∗;xk − x∗) = o(‖xk − x∗‖), i = 1, . . . , n.

Therefore,

(3.3) Vk(xk − x∗)− F ′(x∗;xk − x∗) = o(‖xk − x∗‖).

From Lemma 2.1 and (3.3) we have

‖xk+1 − x∗‖ = ‖xk − x∗ − V −1
k F (xk)‖

≤ ‖V −1
k [F (xk)− F (x∗)− F ′(x∗;xk − x∗)]‖

+‖V −1
k [Vk(xk − x∗)− F ′(x∗;xk − x∗)]‖

= o(‖xk − x∗‖).

From the theoretical point of view, there is no need to allow Newton matrices
in ∂bF (·) only since, due to the semismoothness assumptions, even each matrix of
conv ∂bF (·) could be used. The latter would lead to more general statements than
those in Theorem 3.1. On the other hand, from the computational point of view,
the assumption that all matrices V ∈ conv ∂bF (x) are nonsingular is too strong and
not necessary. So here we only restrict V ∈ ∂bF (x) and will not discuss the more
general case that V ∈ conv ∂bF (x). See [20] and section 6 for further discussions
on the nonsingularity assumption of V ∈ ∂bF (x). For general statements on Newton
methods for nonsmooth equations, see Qi and Sun [22] and Kummer [13].
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4. Quasi-Newton method for nonsmooth equations and its specializa-
tions. In this section, we will first consider a quasi-Newton method for general non-
smooth equations and then discuss its specializations to a class of nonsmooth equa-
tions and related problems.

Consider the following quasi-Newton method:

(4.1) xk+1 = xk − V −1
k F (xk), Vk ∈ Rn×n, k = 0, 1, . . . .

Theorem 4.1. Suppose that F : Rn → Rn is a locally Lipschitzian function in
the open convex set D ⊂ Rn and x∗ ∈ D is a solution of F (x) = 0. Suppose that
F is semismooth at x∗ and all W∗ ∈ ∂bF (x∗) are nonsingular. There exist positive
constants ε, ∆ such that if x0 ∈ D, ‖x0 − x∗‖ ≤ ε, and there exists Wk ∈ ∂bF (xk)
such that

(4.2) ‖Vk −Wk‖ ≤ ∆,

then the sequence of points generated by (4.1) is well defined and converges to x∗

Q-linearly in a neighborhood of x∗.
Proof. From Lemma 2.2, there exists a positive constant β such that ‖W−1

∗ ‖ ≤ β
for all W∗ ∈ ∂bF (x∗) and there exists a neighborhood N0(x∗) (⊆ D) of x∗ such that

‖W−1‖ ≤ 10

9
β

for any y ∈ N0(x∗), W ∈ ∂bF (y). Choose ∆ > 0 such that

(4.3) 6β∆ ≤ 1.

Recall that a map is semismooth at x∗ if and only if each of its components is semi-
smooth at x∗. So from (1) and (2) of Lemma 2.1, for any W i ∈ ∂bFi(x), x→ x∗,

(4.4) ‖Fi(x)− Fi(x∗)−W i(x− x∗)‖ = o(‖x− x∗‖).

Therefore, for any W ∈ ∂bF (x), x→ x∗, we have

(4.5) ‖F (x)− F (x∗)−W (x− x∗)‖ = o(‖x− x∗‖).

Then we can choose a positive constant ε small enough such that for any x ∈ N(x∗) =
{y|‖y − x∗‖ ≤ ε} ⊆ N0(x∗), W ∈ ∂bF (x), we have

(4.6) ‖F (x)− F (x∗)−W (x− x∗)‖ ≤ ∆‖x− x∗‖.

If ‖xk − x∗‖ ≤ ε, then Wk ∈ ∂bF (xk) is nonsingular and ‖W−1
k ‖ ≤ 10

9 β. By Theorem
2.3.2 of Ortega and Rheinboldt [15], Vk is invertible and

(4.7) ‖V −1
k ‖ ≤

‖W−1
k ‖

1− ‖W−1
k (Wk − Vk)‖

≤
10
9 β

1− 5
27

<
3

2
β.

Then when ‖xk − x∗‖ ≤ ε, we have

(4.8)

‖xk+1 − xk‖ = ‖xk − V −1
k F (xk)− x∗‖

≤ ‖V −1
k ‖‖F (xk)− F (x∗)− Vk(xk − x∗)‖

≤ ‖V −1
k ‖[‖F (xk)− F (x∗)−Wk(xk − x∗)‖

+‖Vk −Wk‖‖xk − x∗‖].
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Substituting (4.2), (4.6), and (4.7) into (4.8) gives

(4.9)

‖xk+1 − x∗‖ ≤ 3

2
β[∆‖xk − x∗‖+ ∆‖xk − x∗‖]

≤ 3β∆‖xk − x∗‖

≤ 1

2
‖xk − x∗‖.

This shows that the sequence of points generated by (4.1) is well defined and converges
to x∗ Q-linearly in a neighborhood of x∗.

In [20], Pang and Qi extended Theorem 2.2 in Dennis and Moré [5] to nonsmooth
equations. Here, we can do a similar extension and point out that some quasi-Newton
methods belong to our frame form.

Theorem 4.2. Suppose that F : Rn → Rn is a locally Lipschitzian function in the
open convex set D ⊂ Rn. Assume that F is semismooth at some x∗ ∈ D and all W∗ ∈
∂bF (x∗) are nonsingular. Let {Vk} be a sequence of nonsingular matrices in Rn×n,
and suppose for some x0 in D that the sequence of points generated by (4.1) remains
in D and satisfies xk 6= x∗ for all k, and limk→∞ xk = x∗. Then {xk} converges
Q-superlinearly to x∗, and F (x∗) = 0 if and only if there exists Wk ∈ ∂bF (xk) such
that

(4.10) lim
k→∞

‖(Vk −Wk)sk‖
‖sk‖ = 0,

where sk = xk+1 − xk.
Proof. Write ek = xk − x∗. Then both sequence {ek} and {sk} converge to zero.

From (4.1) we have

(4.11)

F (x∗) = [F (xk) +Wks
k]− [F (xk)− F (x∗)−Wke

k]−Wke
k+1

= [F (xk) + Vks
k] + [(Vk −Wk)sk]

−[F (xk)− F (x∗)−Wke
k]−Wke

k+1

= [(Vk −Wk)sk]− [F (xk)− F (x∗)−Wke
k]−Wke

k+1.

From the semismoothness of F at x∗ and (4.5) we know that the term in the second
square bracket approaches zero as k → ∞. So if (4.10) holds, then H(x∗) = 0.
From Lemma 2.2, {‖W−1

k ‖} is bounded. Thus, from (4.5), (4.10), (4.11), and the
boundedness of {‖W−1

k ‖}, we have

‖ek+1‖ ≤ o(‖sk‖) + o(‖ek‖) ≤ o(‖ek‖) + o(‖ek+1‖),

which means that

lim
k→∞

‖ek+1‖
‖ek‖ = 0.

Conversely, suppose that H(x∗) = 0 and {xk} converges Q-superlinearly to x∗.
Then reversing the above discussion easily establishes condition (4.10).
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As applications to Theorems 4.1 and 4.2, we will first consider the following
nonsmooth equations, which arise from complementarity problems, special variational
inequality problems, and the KKT system of nonlinear programming:

(4.12) F (x) = x− PX [x− f(x)] = 0,

where f : Rn → Rn is a continuously differentiable function, PY (·) is the orthogonal
projection operator onto a nonempty closed convex set Y , and X = {x ∈ Rn| l ≤ x ≤
u}, where l, u ∈ {R ∪ {∞}}n. To solve equation (4.12) is the original motivation in
investigating nonsmooth equations. When f ∈ C1, F is a semismooth function. The
results of the Newton method for solving (4.12) are fruitful, but not for the quasi-
Newton method. In this section, we will give a new quasi-Newton method for solving
equation (4.12).

Quasi-Newton method (Broyden’s case [1]).

Given f : Rn → Rn, x0 ∈ Rn, A0 ∈ Rn×n

Do for k = 0, 1, . . . :

Define

fk(x) = f(xk) +Ak(x− xk)

(4.13) F k(x) = x− PX [x− fk(x)]

Choose Vk ∈ ∂bF k(xk)

Solve Vks
k + F (xk) = 0 for sk

xk+1 = xk + sk

yk = f(xk+1)− f(xk)

(4.14) Ak+1 = Ak +
(yk −Aksk)sk

T

skT sk
.

For any matrix B ∈ Rn×n, let Bi be the ith row of B. For an arbitrary function
f ∈ C1, if V ∈ ∂bF (x), then V satisfies

(4.15) V i =


Ii if xi − fi(x) < li (or > ui),

λiI
i + (1− λi)f ′i(x) if xi − fi(x) = li (or = ui),

f ′i(x) if li < xi − fi(x) < ui,

where λi ∈ {0, 1} and I is the unit matrix of Rn×n. On the other hand, any V of the
above form is an element of ∂bF (x).

Corollary 4.1. Suppose that f : Rn → Rn is continuously differentiable, x∗ is
a solution of (4.12), f ′(x) is Lipschitz continuous in a neighborhood of x∗, and the
Lipschitz constant is γ. Suppose that all W∗ ∈ ∂bF (x∗) are nonsingular. There exist
positive constants ε, δ such that if ‖x0 − x∗‖ ≤ ε and ‖A0 − f ′(x∗)‖ ≤ δ, then the
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sequence {xk} generated by the quasi-Newton method (Broyden’s case) is well defined
and converges Q-superlinearly to x∗.

Proof. First we prove the Q-linear convergence of {xk}. Choose ε and ∆ as
in the proof of Theorem 4.1 and restrict ε to be small enough such that for any
y ∈ N(x∗) = {x|‖x− x∗‖ ≤ ε}, we have

(4.16) ‖f ′(y)− f ′(x∗)‖ ≤ γ‖y − x∗‖,

(4.17) 3γε ≤ ∆.

Denote δ := ∆/2. From the definition of F k(x) and (4.15), the jth row V jk of Vk
satisfies

(4.18) V jk =


Ij if xkj − fkj (xk) < lj (or > uj),

λkj I
j + (1− λkj )Ajk if xkj − fkj (xk) = lj (or = uj),

Ajk if lj < xkj − fkj (xk) < uj ,

where λkj ∈ {0, 1}. For such constants λkj we define a companion matrix Wk such that

the jth row W j
k of Wk satisfies

(4.19) W j
k =


Ij if xkj − fkj (xk) < lj (or > uj),

λkj I
j + (1− λkj )f ′j(x

k) if xkj − fkj (xk) = lj (or = uj),

f ′j(x
k) if lj < xkj − fkj (xk) < uj .

From f(xk) = fk(xk) and (4.19) we get

Wk ∈ ∂bF (xk).

From (4.18) and (4.19) for any x ∈ Rn we get

|(W j
k − V

j
k )x| ≤ |(Ajk − f ′j(xk))x|,

which means that

(4.20) ‖(Wk − Vk)x‖ ≤ ‖(Ak − f ′(xk))x‖.

Thus,

(4.21)

‖Wk − Vk‖ ≤ ‖Ak − f ′(xk)‖

≤ ‖Ak − f ′(x∗)‖+ ‖f ′(xk)− f ′(x∗)‖.

The local Q-linear convergence proof consists of showing by induction that

(4.22) ‖Ak − f ′(x∗)‖ ≤ (2− 2−k)δ,

(4.23) ‖Vk −Wk‖ ≤ ∆.
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For k = 0, (4.22) is trivially true. The proof of (4.23) is identical to the proof at the
induction step, so we omit it here.

Now assume that (4.22) and (4.23) hold for k = 0, 1, . . . , i− 1. From the proof of
Theorem 4.1, for k = 0, 1, . . . , i− 1, we have

(4.24) ‖ek+1‖ ≤ 1

2
‖ek‖.

For k = i, we have from Lemma 8.2.1 of [6] (also see [5]), (4.24), and the induction
hypothesis that

(4.25)

‖Ai − f ′(x∗)‖ ≤ ‖Ai−1 − f ′(x∗)‖+
γ

2
(‖ei‖+ ‖ei−1‖)

≤ (2− 2−(i−1))δ +
3γ

4
‖ei−1‖.

From (4.24) and ‖e0‖ ≤ ε we get

‖ei−1‖ ≤ 2−(i−1)‖e0‖ ≤ 2−(i−1)ε.

Substituting this into (4.25) and using (4.17) gives

‖Ai − f ′(x∗)‖ ≤ (2− 2−(i−1))δ +
3γ

4
ε · 2−(i−1)

≤ (2− 2−(i−1) + 2−i)δ = (2− 2−i)δ,

which verifies (4.22).
To complete the induction, we verify (4.23). Substituting (4.22) into (4.21) for

k = i and using ‖e0‖ ≤ ε, (4.16), (4.17), and (4.24) gives

‖Wi − Vi‖ ≤ (2− 2−i)δ + 2−iεγ

= (2− 2−i)
∆

2
+

1

3
· 2−i∆

< ∆.

This proves (4.23). So the Q-linear convergence follows from Theorem 4.1.
Next we will prove the Q-superlinear convergence of {xk} under the assumptions.

Let Ek = Ak − f ′(x∗). From the last part of the proof of Theorem 8.2.2 of [6] (also
see [5]) we get

(4.26) lim
k→∞

‖Eksk‖
‖sk‖ = 0.

From (4.20) and (4.16), we have

(4.27)

‖(Vk −Wk)sk‖ ≤ ‖(Ak − f ′(xk))sk‖

≤ ‖(Ak − f ′(x∗))sk‖+ ‖(f ′(xk)− f ′(x∗))sk‖

≤ ‖Eksk‖+ γ‖ek‖‖sk‖.
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Substituting (4.26) into (4.27) and using the linear convergence of {xk} gives

lim
k→∞

‖(Vk −Wk)sk‖
‖sk‖ = 0,

which, from Theorem 4.2, means that {xk} converges to x∗ Q-superlinearly.
Recall that when X is the nonnegative orthant, i.e., X = Rn+, F (x) defined

by (4.12) is essentially equivalent to the function H(x) in [9] and [17]. In [9], Ip
and Kyparisis discussed the convergence properties of quasi-Newton methods directly
applied to nonsmooth equations. For nonlinear complementarity problems, they de-
scribed the sufficient conditions to guarantee the convergence of the quasi-Newton
method (see Theorem 5.2 of [9]). A restrictive assumption in [9] is that F is strongly
F-differentiable at x∗. This condition, which restricts the class f to which Theorem
5.2 of [9] applies, is satisfied if f ′i(x

∗) = Ii for all i ∈ {j|fj(x∗) = x∗j , j = 1, . . . , n}.
Here, to guarantee the convergence of our new quasi-Newton method, we need the
nonsingularity of ∂bF (x∗) instead of needing the existence and invertibility of F ′(x∗).
For nonlinear complementarity problems, the nonsingularity assumption of ∂bF (x∗)
is equivalent to the b-regularity assumption in [19]. For a detailed discussion on
b-regularity, see [19].

Next we consider the following nonsmooth equation:

(4.28) F (x) = min(f(x), g(x)) = 0,

where f, g : Rn → Rn are continuously differentiable and the “min” operator denotes
the componentwise minimum of two vectors. Such a system arises from nonsmooth
partial differentiable equations [3, 2, 15] and implicit complementarity problems (see,
e.g., [16]). When g(x) = x, (4.28) is the function H(x) discussed in [9] and [17] and
is equivalent to (4.12) for X = Rn+. Here we will give a new quasi-Newton method
(Broyden’s case) for solving (4.28). In particular, the new resulting method with
g(x) = x coincides with the quasi-Newton method for solving (4.12) with X = Rn+.
In both methods, the concept ∂bF (·) has an important role.

Quasi-Newton method (Broyden’s case [1]).

Given x0 ∈ Rn, A0, B0 ∈ Rn×n

Do for k = 0, 1, . . . :
Define

fk(x) = f(xk) +Ak(x− xk)

gk(x) = g(xk) +Bk(x− xk)

F k(x) = min(fk(x), gk(x))

Choose Vk ∈ ∂bF k(xk)

Solve Vks
k + F (xk) = 0 for sk

xk+1 = xk + sk

yk = f(xk+1)− f(xk)
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zk = g(xk+1)− g(xk)

Ak+1 = Ak +
(yk −Aksk)sk

T

skT sk

Bk+1 = Bk +
(zk −Bksk)sk

T

skT sk
.

Corollary 4.2. Suppose that f, g : Rn → Rn are continuously differentiable,
x∗ is a solution of (4.28), f ′(x), g′(x) are Lipschitz continuous in a neighborhood
of x∗, and the common Lipschitz constant is γ. Suppose that all W∗ ∈ ∂bF (x∗)
are nonsingular. There exist positive constants ε, δ such that if ‖x0 − x∗‖ ≤ ε,
‖A0 − f ′(x∗)‖ ≤ δ, and ‖B0 − g′(x∗)‖ ≤ δ, then the sequence {xk} generated by the
quasi-Newton method (Broyden’s case) is well defined and converges Q-superlinearly
to x∗.

Proof. The proof is similar to that of Corollary 4.1. Here we only give an outline
of the proof. It is not difficult to give the detail.

Choose ε and ∆ as in the proof of Theorem 4.1 and restrict ε to be small enough
such that for any y ∈ N(x∗) = {x|‖x− x∗‖ ≤ ε}, we have

(4.29) ‖f ′(y)− f ′(x∗)‖ ≤ γ‖y − x∗‖, ‖g′(y)− g′(x∗)‖ ≤ γ‖y − x∗‖,

(4.30) 6γε ≤ ∆.

Denote δ := ∆/4. From the definition of F k(x) there exists λkj ∈ {0, 1} such that the

jth row V jk of Vk satisfies

(4.31) V jk =


Ajk if fkj (xk) < gkj (xk),

λkjA
j
k + (1− λkj )Bjk if fkj (xk) = gkj (xk),

Bjk if fkj (xk) > gkj (xk).

For such constants λkj we define a companion matrix Wk such that the jth row W j
k

of Wk satisfies

(4.32) W j
k =


f ′j(x

k) if fkj (xk) < gkj (xk),

λkj f
′
j(x

k) + (1− λkj )g′j(x
k) if fkj (xk) = gkj (xk),

g′j(x
k) if fkj (xk) > gkj (xk).

From f(xk) = fk(xk), g(xk) = gk(xk), and the definition of ∂bF (xk), we get

Wk ∈ ∂bF (xk).

From (4.31) and (4.32), for any x ∈ Rn we get

(4.33) ‖(Vk −Wk)x‖ ≤ ‖(Ak − f ′(xk))x‖+ ‖(Bk − g′(xk))x‖.
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Thus,

(4.34)

‖Wk − Vk‖ ≤ ‖Ak − f ′(xk)‖+ ‖Bk − g′(xk)‖

≤ ‖Ak − f ′(x∗)‖+ ‖f ′(xk)− f ′(x∗)‖

+‖Bk − g′(x∗)‖+ ‖g′(xk)− g′(x∗)‖.

The local Q-linear convergence proof consists of showing by induction that

‖Ak − f ′(x∗)‖ ≤ (2− 2−k)δ, ‖Bk − g′(x∗)‖ ≤ (2− 2−k)δ,

‖Vk −Wk‖ ≤ ∆.

The induction proof is similar to that of Corollary 4.1. We omit it here.
To prove the Q-superlinear convergence of {xk}, let Ek = Ak − f ′(x∗) and Hk =

Bk − g′(x∗). From the last part of the proof of Theorem 8.2.2 of [6] (also see [5]) we
get

(4.35) lim
k→∞

‖Eksk‖
‖sk‖ = 0, lim

k→∞

‖Hks
k‖

‖sk‖ = 0.

From (4.33) and (4.29), we have

(4.36)

‖(Vk −Wk)sk‖ ≤ ‖(Ak − f ′(xk))sk‖+ ‖(Bk − g′(xk))sk‖

≤ ‖Eksk‖+ γ‖ek‖‖sk‖+ ‖Hks
k‖+ γ‖ek‖‖sk‖.

Thus, from (4.35), (4.36), and the linear convergence of {xk}, we get

lim
k→∞

‖(Vk −Wk)sk‖
‖sk‖ = 0,

which, from Theorem 4.2, means that {xk} converges to x∗ Q-superlinearly.
In [21], Qi discussed a Newton method for solving (4.28) and provided a method to

compute ∂BF . Here, by using the concept ∂bF , we give a quasi-Newton method. The
main condition to guarantee the local Q-superlinear convergence is the nonsingularity
assumption of ∂bF (x∗). When g(x) = x, this nonsingularity assumption is exactly
the b-regularity in [19].

5. Implementation of the quasi-Newton method. The implementation of
the quasi-Newton method discussed in section 4 for solving equation (4.12) has no
difference to the smooth case except for the implementation of the QR factorization
of the iterate matrix Vk. The entire QR factorization of Vk costs O(n3) arithmetic
operations. If we do this in every step, then the advantage of quasi-Newton method
loses a lot. In this section, we will show how to update the QR factorization of Vk
into the QR factorization of Vk+1 at most in O((I(k) + 1)n2) operations (see (5.8) for
the definition of I(k)). For simplicity, we will assume that X = Rn+.

For a given vector x ∈ Rn, denote the index sets

α(x) = {i : xi > fi(x)},
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β(x) = {i : xi = fi(x)},

γ(x) = {i : xi < fi(x)}.

Suppose for each k that we choose Vk ∈ ∂bF
k(xk) such that the ith row V ik of Vk

satisfies

(5.1) V ik =

 Aik if i ∈ α(xk),

Ii if i ∈ β(xk) ∪ γ(xk).

Denote a matrix V k such that its ith row V
i

k satisfies

(5.2) V
i

k =

 Aik+1 if i ∈ α(xk),

Ii if i ∈ β(xk) ∪ γ(xk).

From (5.1), (5.2), and (4.14), we get

(5.3) V k = Vk +
(yk − Vksk)sk

T

skT sk
,

where yk satisfies

(5.4) yki =

 yki if i ∈ α(xk),

ski if i ∈ β(xk) ∪ γ(xk).

It is well known that we can update the QR factorization of Vk into the QR factor-
ization of V k in O(n2) operations (see, e.g., [7, 8]).

The ith row V ik+1 of Vk+1 satisfies

(5.5) V ik+1 =

 Aik+1 if i ∈ α(xk+1),

Ii if i ∈ β(xk+1) ∪ γ(xk+1).

Therefore,

(5.6) Vk+1 = V k + ∆V k,

where ∆V k satisfies

(5.7) ∆V
i

k =


0 if i ∈ α(xk) ∩ α(xk+1),

0 if i ∈ {β(xk) ∪ γ(xk)} ∩ {β(xk+1) ∪ γ(xk+1)},

V ik+1 − V
i

k otherwise.

Denote

(5.8) I(k) = n− (|α(xk) ∩ α(xk+1)|+ |{β(xk) ∪ γ(xk)} ∩ {β(xk+1) ∪ γ(xk+1)}|).
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Since the number of the nonzero rows of ∆V k is at most I(k), we can update the QR
factorization of V k into the QR factorization of Vk+1 at most in O(I(k)n2) operations
(see, e.g., [7, 8]).

Therefore, we get the following theorem.
Theorem 5.1. The cost of updating the QR factorization of Vk into the QR

factorization of Vk+1 is at most O((I(k) + 1)n2) arithmetic operations.
Josephy [10] considered the quasi-Newton method for solving generalized equa-

tions (see Robinson [24]). For nonlinear complementarity problems, in every step his
method needs to solve a linear complementarity problems, which requires more cost
than solving a linear equation. Kojima and Shindo [11] extended the quasi-Newton
method to piecewise smooth equations. They applied the classical Broyden’s method
as the points xk stayed within a given C1-piece. When the points xk arrived at a new
piece, a new starting matrix was used and it was needed to perform the entire QR fac-
torization (or other factorizations) in O(n3) operations in general. Thus a potentially
large number of matrices need to be stored and need to be performed to get an entire
QR factorization (or other factorizations). Here, our method needs only one approx-
imate matrix, and except for the first step we only need less effort to solve a linear
equation, which may be solved in much less than O(n3) operations. The smaller the
measure of I(k) is, the less computing effort is needed in the (k+ 1)th step (note that
I(k) is related to the nonsmoothness of F ). Ip and Kyparisis [9] discussed the local
convergence of the classical Broyden’s quasi-Newton method for solving nonsmooth
equations. Although the form used in [9] is very simple, the convergence remains open
without assuming the existence of F ′(x∗).

6. The KKT system of variational inequality problems. For a given closed
set X ⊆ Rn and a mapping f : X → Rn, the variational inequality problem which is
denoted by VI(X, f) is to find a vector x∗ ∈ X such that

(x− x∗)T f(x∗) ≥ 0 for all x ∈ X.

If X = Rn+, then VI(X, f) is equivalent to the complementarity problem which is to
find x∗ ∈ Rn+ such that

f(x∗) ∈ Rn+ and x∗T f(x∗) = 0.

When f is a gradient mapping, say f(x) = ∇θ(x) for some real-valued function θ,
VI(X, f) is equivalent to the problem of finding a stationary point for the following
minimization problem:

minimize θ(x)

subject to x ∈ X.

Here we shall assume that X has the form

(6.1) X = {x ∈ Rn| g(x) ≤ 0, h(x) = 0, l ≤ x ≤ u},

where g : Rn → Rm and h : Rn → Rp are assumed to be twice continuously differ-
entiable, and l, u ∈ {R ∪ {∞}}n. By introducing multipliers (λ, µ, v, w) ∈ Rm+p+2n

corresponding to the constraints in X, the (VI) Lagrangian (vector-valued) function
(see, e.g., Tobin [29]) can be defined by

L(x, λ, µ, v, w) = f(x) +

m∑
i=1

∇gi(x)λi +

p∑
j=1

∇hj(x)µj − v + w.
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If li = −∞ (or ui = +∞) for some i, the corresponding vi (wi, respectively) is absent
in the above formula. Then the KKT system of VI(X, f) can be written as

(6.2)



L(x, λ, µ, v, w) = 0,

λ ≥ 0, −g(x) ≥ 0, and λT g(x) = 0,

−h(x) = 0,

v ≥ 0, x− l ≥ 0, and vT (x− l) = 0,

w ≥ 0, u− x ≥ 0, and wT (x− u) = 0.

Define

L̃(x, λ, µ) = f(x) +

m∑
i=1

∇gi(x)λi +

p∑
j=1

∇hj(x)µj

and

(6.3) H(x, λ, µ) =


x− P[l,u][x− L̃(x, λ, µ)]

λ− PRn
+

[λ− (−g(x))]

−h(x)

 .

Suppose that (x∗, λ∗, µ∗, v∗, w∗) ∈ Rn+m+p+2n is a solution of the KKT system
(6.2), then (x∗, λ∗, µ∗) satisfies H(x∗, λ∗, µ∗) = 0; conversely, if (x∗, λ∗, µ∗) ∈ Rn+m+p

is a solution of H(x, λ, µ) = 0, then (x∗, λ∗, µ∗, v∗, w∗) is a solution of the KKT system
(6.2), where v∗, w∗ are defined as

(6.4) v∗ = PRn
+

[L̃(x∗, λ∗, µ∗)] and w∗ = PRn
+

[−L̃(x∗, λ∗, µ∗)].

So finding a solution of the KKT system of VI is equivalent to solving H(x, λ, µ) = 0.
Let z = (x, λ, µ), K = [l, u]×Rn+ ×Rp, and

f̃(z) =


L̃(z)

−g(x)

−h(x)

 .

Then H(x, λ, µ) = 0 can be written as

(6.5) H(z) = z − PK [z − f̃(z)] = 0,

which is a special form of (4.12).
Now suppose that z∗ is a solution of H(z) = 0 and f is continuously differen-

tiable at x∗; we will discuss a sufficient condition on the nonsingularity assumption
of ∂bH(z∗). Let

I(z∗) = {i| 1 ≤ i ≤ m, gi(x∗) = 0},
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I+(z∗) = {i ∈ I(z∗)| λ∗i > 0},

G+(z∗) = {d ∈ Rn| ∇gi(x∗)T d = 0 for i ∈ I+(z∗)

and ∇hi(x∗)T d = 0 for i = 1, . . . , p},

and

R(z∗) = {d ∈ Rn| di = 0 if x∗i = li (or ui) and (L̃(z∗))i 6= 0 for i = 1, . . . , n}.

Theorem 6.1. Suppose that z∗ is a solution of H(z) = 0 and that it satisfies
dT∇2

xxL̃(z∗)d > 0 for all d ∈ G+(z∗) ∩ R(z∗)\{0}. If {∇gi(x∗), i ∈ I(z∗)} and
{∇hi(x∗), i = 1, . . . , p} are linearly independent, then all V ∈ ∂bH(z∗) are nonsin-
gular.

Proof. Combining (4.15) and the proof of Theorem 4.1 in Robinson [24], we can
get the result.

7. Numerical examples. In this section, we report computational results ob-
tained for two small nonlinear complementarity problems using the above Newton
method and quasi-Newton method. For the quasi-Newton method, the initial matri-
ces are generated by the difference approximation method. In Table 1, “N” and “QN”
represent the Newton method and quasi-Newton method, respectively, and “P 1” and
“P 2” represent Problem 1 and Problem 2, respectively.

Problem 1 (a nondegenerate nonlinear complementarity problem [10, 9]). Consider
the following problem: find x ∈ R4 such that x ≥ 0, f(x) ≥ 0, and xT f(x) = 0, where
f : R4 → R4 is given by

f1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

f2(x) = 2x2
1 + x1 + x2

2 + 3x3 + 2x4 − 2,

f3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 3x4 − 1,

f4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.

This problem has the solution

x∗ =

(
1

2

√
6 ≈ 1.2247, 0, 0, 0.5

)
, f(x∗) =

(
0, 2 +

1

2

√
6 ≈ 3.2247, 5, 0

)
.

Since β(x∗) = ∅, x∗ is nondegenerate (see [9]) and it is easy to check that F ′(x∗)
(here ∂bF

′(x∗) = {F ′(x∗)}) is nonsingular.
Problem 2 (a degenerate nonlinear complementarity problem [11, 9]). Consider

the following problem: find x ∈ R4 such that x ≥ 0, f(x) ≥ 0, and xT f(x) = 0, where
f : R4 → R4 is given by

f1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

f2(x) = 2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2,

f3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9,

f4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.
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Table 1

Results for Problems 1 and 2, where D = degenerate solution and ND = nondegenerate solution.

Algorithm Starting point Number of Iterations sum of I(k)
P 1 P 2 P 1 P 2

N (1,0,0,0) 3 3(D)
QN (1,0,0,0) 4 4(D) 0 2
N (1,0,1,0) 4 1(ND)

QN (1,0,1,0) 5 1(ND) 1 0
N (1,0,0,1) 4 4(D)

QN (1,0,0,1) 5 5(D) 1 2
N (1,0.2,0.5,1) 4 4(D)

QN (1,0.2,0.5,1) 6 6(D) 0 2
N (1,0,1,-1) 3 3(D)

QN (1,0,1,-1) 5 5(D) 1 2
N (1.5,-0.5,4.5,-1.0) 4 4(D)

QN (1.5,-0.5,4.5,-1.0) 6 6(D) 1 0
N (1.1,-0.1,3.1,-0.1) 4 3(ND)

QN (1.1,-0.1,3.1,-0.1) 5 4(ND) 1 0
N (0.85,0.2,0.5,1) 4 5(D)

QN (0.85,0.2,0.5,1) 7 7(D) 1 2

This problem has the following two solutions:

x∗D =

(
1

2

√
6 ≈ 1.2247, 0, 0, 0.5

)
, f(x∗D) =

(
0, 2 +

1

2

√
6 ≈ 3.2247, 0, 0

)
,

and

x∗ND = (1, 0, 3, 0), f(x∗ND) = (0, 31, 0, 4).

Since β(x∗ND) = ∅ for the solution x∗ND, it is a nondegenerate solution (see [9]). On
the other hand, β(x∗D) = {3} for the solution x∗D, so it is a degenerate solution (see
[9]). It is easy to check that ∂bF (x∗ND) and ∂bF (x∗D) are nonsingular.

From Table 1 we see that even for Problem 2 when the starting point is close to a
solution, the sequence will converge to the corresponding solution no matter whether
it is degenerate or not.

In this paper two small examples are used to show the effectiveness of the Newton
method and the quasi-Newton method for solving some nonsmooth equations. More
examples are needed to show the efficiency of the above algorithms. For problem (4.12)
with a general convex set X, especially when X is a polyhedral set, how to construct
appropriate Newton methods and quasi-Newton methods is our further research topic.
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