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Abstract. This paper provides for the first time some computable
smoothing functions for variational inequality problems with general
constraints. This paper proposes also a new version of the smoothing
Newton method and establishes its global and superlinear (quadratic)
convergence under conditions weaker than those previously used in the
literature. These are achieved by introducing a general definition for
smoothing functions, which include almost all the existing smoothing
functions as special cases.
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1. Introduction

Consider the equation

H(x)G0, (1)

where H:ℜn→ℜn is locally Lipschitz continuous but not necessarily smooth
(continuously differentiable). By the Rademacher theorem, H is differen-
tiable almost everywhere. So, for any x∈ℜn, the Clarke generalized Jacob-
ian ∂H(x) is well defined (Ref. 1). Such nonsmooth equations arise from
nonlinear complementarity problems, variational inequality problems,
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maximal monotone operator problems (Ref. 2), and interpolation problems
(Ref. 3). Various Newton-type methods have been proposed to solve (1).
Among them, smoothing methods have received an increasing interest in
the literature for solving (1) in connection with nonlinear complementarity
problems and variational inequality problems with simple constraints; e.g.
see Ref. 4 for a review.

The feature of a smoothing method is to construct a smoothing func-
tion G( :ℜn→ℜn of H such that, for any (H0, G( is continuously differen-
tiable on ℜn and, for any x∈ℜn, it satisfies

��H(z)AG( (z) ��→0, as (↓0, z→x, (2)

and then to find a solution of (1) by solving approximately the following
problems for a given positive sequence {(k}, kG0, 1, 2, . . . ,:

G(
k(xk)G0. (3)

Equation (2) provides a generalized definition for a smoothing function,
which includes almost all the existing smoothing functions as special cases.
Smoothing functions of locally Lipschitz functions satisfying (2) can be
obtained via convolution (Ref. 5). Usually, a multivariate integral is
involved in computing these smoothing functions via convolution, which
makes them uncomputable in practice. In this paper, we focus on studying
computable smoothing functions for those nonsmooth functions arising
from complementarity problems and variational inequality problems. We
shall develop first some new properties of existing smoothing functions,
which are essential in designing high-order convergent methods and then
discuss several new smoothing functions. In particular, we shall show for
the first time a way to get a class of computable smoothing functions for
variational inequality problems with general constraints. Another aim of
this paper is to establish globally and locally superlinearly (quadratically)
convergent methods for solving (1) based on smoothing functions of H. The
methods introduced in Refs. 6 and 7 require the inequality

��H(x)AG( (x) ��⁄µ( (4)

to hold for some known µH0 and all x∈ℜn. In this paper, (4) is replaced
by (2), which is a weaker condition, if not the weakest one.

The variational inequality problem (VIP) is to find x*∈X such that

(xAx*)TF (x*)¤0, for all x∈X, (5)

where X is a nonempty closed convex subset of ℜn and F: D→ℜn is continu-
ously differentiable on an open set D which contains X. When XGℜn

C , the
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VIP reduces to the nonlinear complementarity problem (NCP): Find
x*∈ℜn

C such that

F (x*)∈ℜn
C and F (x*)Tx*G0. (6)

It is well known (see e.g. Refs. 8 and 9) that solving (5) is equivalent
to finding a root of the following equation:

H(x)_xAΠX [xAF (x)]G0, (7)

where (for any x∈ℜn)ΠX(x) is the Euclidean projection of x onto X. For
the NCP, (7) becomes

H(x)GxAmax{0, xAF (x)}Gmin{x, F (x)}G0, (8)

where max and min are componentwise operators. Also, to solve the NCP
is equivalent to solve

Hi (x)_φ (xi , Fi (x))G0, iG1, 2, . . . , n, (9)

where φ :ℜ2→ℜ is the Fischer–Burmeister function (Ref. 10),

φ (a, b)_aCbA1a2Cb2.

It is also well known that solving the VIP is equivalent to solving the follow-
ing normal equation:

H(y)_F (ΠX (y))CyAΠX (y)G0, (10)

in the sense that, if y*∈ℜn is a solution of (10), then x*_ΠX( y*) is a
solution of (5); conversely, if x* is a solution of (5), then y*_x*AF (x*) is
a solution of (10); see Ref. 11.

In Section 2, we give some preliminaries. Section 3 discusses the proper-
ties of smoothing functions for three simple one-dimensional nonsmooth
functions, which will form a base for discussing smoothing functions for
complicated nonsmooth functions. In Section 4, we show how to compute
a class of smoothing functions for the variational inequality problem under
the condition that the constraint set X has a nonempty interior. These smoo-
thing functions will play essential roles in designing smoothing Newton
methods when the variational inequality problem is defined only on X. In
Section 5, we design a new algorithm to solve nonsmooth equations based
on smoothing functions and give its convergence analysis in Section 6 with
mild assumptions on the smoothing functions involved. Finally, we make
some remarks in Section 7.
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2. Preliminaries

In this section, we give some basic concepts and preliminary results
used in our analysis.

2.1. Smoothing Functions. A function G( :ℜn→ℜm is called a smoo-
thing function of a nonsmooth function H:ℜn→ℜm if, for any (H0, G( ( · )
is continuously differentiable and, for any x∈ℜn,

lim
(↓0, z→x

G( (z)GH(x). (11)

Definition 2.1. Let H:ℜn→ℜm be a locally Lipschitz continuous
function.

(i) G( :ℜn→ℜm is called a regular smoothing function of H if, for
any (H0, G( is continuously differentiable and, for any compact
set D⊆ℜn and (̄H0, there exists a constant LH0 such that, for
any x∈D and (∈(0, (̄],

��G( (x)AH(x) ��⁄L(. (12)

(ii) G( is said to approximate H at x superlinearly if, for any y→x
and (↓0, we have

G( (y)AH(x)AG′( (y)(yAx)Go(��yAx��)CO((). (13)

(iii) G( is said to approximate H at x quadratically if, for any y→x
and (↓0, we have

G( (y)AH(x)AG′( (y)(yAx)GO(��yAx��2)CO((). (14)

It is clear that a regular smoothing function of H is a smoothing function
of H.

2.2. Semismoothness. In order to establish the superlinear conver-
gence of generalized Newton methods for nonsmooth equations, we need
the concept of semismoothness. Semismoothness was introduced originally
by Mifflin (Ref. 12) for functionals. Convex functions, smooth functions,
and piecewise linear functions are examples of semismooth functions. The
composition of semismooth functions is still a semismooth function (Ref.
12). Semismooth functionals play an important role in the global conver-
gence theory of nonsmooth optimization; see Polak (Ref. 13). In Ref. 14, Qi
and Sun extended the definition of semismooth functions to vector-valued
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functions. Suppose that H:ℜn→ℜm is locally Lipschitz continuous. H is
said to be semismooth at x∈ℜn if the following limit exists for any h∈ℜn:

lim
V∈∂H(xCth′ )

h′→h, t↓0

{Vh′}.

It has been proved in Ref. 14 that H is semismooth at x if and only if all
its component functions are semismooth. Also, the directional derivative
H ′(x; h) of H at x in the direction h exists for any h∈ℜn if H is semismooth
at x.

Theorem 2.1. See Ref. 14. Suppose that H:ℜn→ℜm is a locally
Lipschitzian and semismooth function at x∈ℜn.

(i) For any V∈∂H(xCh), h→0,

VhAH ′(x; h)Go(��h��).

(ii) For any h→0,

H(xCh)AH(x)AH ′(x; h)Go(��h��).

The following result is extracted from Theorem 2.3 of Ref. 14.

Theorem 2.2. Suppose that H:ℜn→ℜm is a locally Lipschitzian func-
tion. Then, the following two statements are equivalent:

(i) H( · ) is semismooth at x.
(ii) For any V∈∂H(xCh), h→0,

VhAH ′(x; h)Go(��h��).

A notion stronger than semismoothness is that of strong semismooth-
ness. H is said to be strongly semismooth at x if H is semismooth at x and,
for any V∈∂H(xCh), h→0,

H(xCh)AH(x)AVhGO(��h��2).

A function H is said to be a strongly semismooth function if it is strongly
semismooth everywhere.

2.3. Weakly Univalent Functions. A function H: X⊆ℜn→ℜn is called
weakly univalent if it is continuous and there exists a sequence of continu-
ous injective functions H j : X→ℜn such that {H j} converges to H uniformly
on any bounded subset of X. The following results on weakly univalent
functions were obtained by Gowda and Sznajder (Ref. 15, Theorem 2) and
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by Ravindran and Gowda (Ref. 16, Theorem 1). These results will be used
in the analysis of bounded level sets of smoothing functions.

Theorem 2.3. Let H:ℜn→ℜn be a weakly univalent function. Assume
that the inverse image H −1(0) is nonempty and bounded. Then:

(i) H −1(0) is connected;
(ii) there exists a bounded open set D containing H−1(0) such that

deg(H, D)G1;
(iii) there exists a scalar δH0 such that the level set

{x∈ℜn � ��H(x) ��⁄δ} is bounded.

3. Smoothing Functions for Simple Nonsmooth Functions

A function ρ:ℜ→ℜC is called a kernel function if it is integrable (in
the sense of Lebesgue) and

�
ℜ
ρ(s) dsG1.

Suppose that ρ is a kernel function. Define Θ:ℜCCBℜm→ℜC by

Θ((, x)_(−mΦ ((−1x),

where ((, x)∈ℜCCBℜm and

Φ (z)_ ∏
m

iG1
ρ(zi), z∈ℜm.

Then, a smoothing approximation of a nonsmooth function F:ℜm→ℜp via
convolution can be described by

F( (x)_�
ℜn

F (xAy)Θ((, y) dy

G�
ℜn

F (xA( y)Φ (y) dy

G�
ℜn

F ( y)Θ((, xAy) dy, (15)

where ((, x)∈ℜCCBℜm. Such a smoothing function F( ( · ) has many good
properties (Refs. 17 and 5). However, in general, F( ( · ) is uncomputable,
since a multivariate integral is involved. Nevertheless, when F has a special
structure, F( can be expressed explicitly.
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3.1. Plus Function. One of the simplest but very useful nonsmooth
functions is the plus function p:ℜ→ℜC , defined by

p(t)_max{0, t},

for any t∈ℜ.
Suppose that ρ:ℜ→ℜC is any kernel function with

κ_�
ℜ

�s�ρ(s) dsFCS. (16)

Chen and Mangasarian (Ref. 18) discussed the following smoothing func-
tion for p:

P((, t)_�
ℜ
p(tA(s)ρ(s) ds, ((, t)∈ℜCCBℜ. (17)

For convenience, we define always

P(0, t)_p(t) and P(−�(�, t)_P(�(�, t), ((, t)∈ℜ2.

Define

supp(ρ)_{t�ρ(t)H0}.

Proposition 3.1.

(i) For any (H0 and t∈ℜ,

�P((, t)Ap(t) �⁄κ(.

(ii) For any (H0, P((, · ) is continuously differentiable on ℜ and

P′t ((, t)∈[0, 1], t∈ℜ,

where P ′((, · ) is the derivative function of P((, · ). If
supp(ρ)Gℜ, then

P ′t ((, t)∈(0, 1), ((, t)∈ℜCCBℜ.

(iii) P is globally Lipschitz continuous on ℜ2.
(iv) P is continuously differentiable on ℜCCBℜ and, for

((, t)∈ℜCCBℜ, we have

∇P((, t)G�−�
t�(

−S
sρ(s) ds

�
t�(

−S
ρ(s) ds � .
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(v) The directional derivative of P at (0, t) exists; for any hG
(h( , ht)∈ℜ2 with h(≠0, we have

P ′((0, t); h)G�htA�h( ��
ℜ
sρ(s) ds, if tH0,

ht�
ht��h(�

−S
ρ(s) dsA�h( ��

ht��h(�

−S
sρ(s) ds, if tG0,

0, if tF0,

and when h(G0, we have

P ′((0, t); h)G�
ht , if tH0,
p(ht), if tG0,
0, if tF0.

(vi) For any (↓0 and ∆t→0, we have

P((, tC∆t)AP(0, t)AP ′((, tC∆t) �(∆t�G�0, if tG0,
o((), if t≠0.

If supp(ρ) is bounded, then for all (H0 and � ((, ∆t) � sufficiently
small, we have

P((, tC∆t)AP(0, t)AP ′((, tC∆t) �(∆t�G0.

If supp(ρ) is unbounded, but there exists a number αH2 such
that

lim sup
s→S

ρ(s) �s�αFS,

then for any (↓0 and ∆t→0,

P((, tC∆t)AP(0, t)AP ′((, tC∆t) �(∆t�G�0, if tG0,
O(( (αA1)), if t≠0.

(vii) P is semismooth on ℜ2. If supp(ρ) is bounded or if

lim sup
s→S

ρ(s) �s�3FS, (18)

then P is strongly semismooth on ℜ2.
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Proof. Parts (i) and (ii) are proved in Ref. 18 and Part (iii) is proved
in Ref. 19. Then, we need only to prove Parts (iv)–(vii). By direct compu-
tation, we obtain (iv)–(vi). Next, we prove (vii). By (iv), we can prove that
P ′( · ) is locally Lipschitz continuous around any ((, t)∈ℜ2 with (≠0. Thus,
P is strongly semismooth at ((, t)∈ℜ2 with (≠0. Then, we need only to
consider the points (0, t)∈ℜ2. By (iii), (v), Theorem 2.1, and Theorem 2.2,
in order to prove that P is semismooth at (0, t), we need only to prove that,
for any ((, ∆t)∈ℜ2 with ((, ∆t)→0 and all V∈∂P((, tC∆t), we have

P((, tC∆t)AP(0, t)AV�(∆t�Go(�� ((, t) ��),

which according to (vi) holds for all (≠0. When (G0, by (iv) we can verify
easily that, for any V∈∂P(0, tC∆t), there exists a W∈∂p(tC∆t) such that

P((, tC∆t)AP(0, t)AV�(∆t�Gp(tC∆t)Ap(t)AW∆tG0,

for all ∆t sufficiently small. Then, we have proved that P is semismooth on
ℜ2. Under our further assumptions, this implies that P is strongly semi-
smooth on ℜ2. �

The following are three well-known smoothing functions for the plus
function p:

(a) neural network function,

P((, t)GtC( log(1Ce−t�(), (19a)

ρ(s)Ge−s�(1Ce−s)2; (19b)

(b) Chen–Harker–Kanzow–Smale (CHKS) function (Refs. 20–22),

P((, t)G(14(2Ct2Ct)�2, (20a)

ρ(s)G2�(s2C4)3�2; (20b)

(c) uniform smoothing function (Ref. 23),

P((, t)G�
t, if t¤(�2,
(1�2()(tC(�2)2, ifA(�2FtF(�2,
0, if t⁄A(�2,

(21a)

ρ(s)G�1, ifA(1�2)⁄s⁄ (1�2),
0, otherwise,

(21b)

where ((, t)∈ℜCCBℜ.
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3.2. Absolute Value Function. The absolute value function q:ℜ→ℜ
is defined by

q(t)G�t�, t∈ℜ.

Then, because

q(t)Gp(t)Cp(−t),

the smoothing function of q via convolution can be written as

Q((, t)_�
ℜ

�tA(s�ρ(s) dsGP((, t)CP((,At), ((, t)∈ℜCCBℜ, (22)

where P is defined by (17). We define also

Q(0, t)_ �t� and Q(−�(�, t)_Q(�(�, t), ((, t)∈ℜ2.

Apparently,

Q((, t)GQ((,At)GQ((, �t�)GQ((, 1t2), ((, t)∈ℜ2.

Many properties of Q inherit those from P. For example, by Proposition
3.1, Q is continuously differentiable on ℜ2 except on the line (0, t), t∈ℜ.

Analogously to (19)–(21), we have the following smoothing functions
for q:

Q((, t)G([log(1Ce−t�()Clog(1Ce t�()], (23)

Q((, t)G14(2Ct2, (24)

Q((, t)G�
t, if t¤(�2,
(t2�()C((�4), ifA(�2FtF(�2,
−t, ift⁄A(�2,

(25)

where ((, t)∈ℜCCBℜ.

3.3 One-Dimensional Projection Function. If F (t)GΠD (t), t∈ℜ,
where DG[l, u] and l⁄u, then the smoothing function of F via convolution
is also computable. Gabriel and Moré (Ref. 24) discussed smoothing func-
tions of ΠD as a generalization of (17). Analogously, we can parallelize the
results in Proposition 3.1 to this class of smoothing functions. Furthermore,
we have

ΠD (t) ≡ p(tAl )Ap(tAu)Cl,

for all t∈ℜ. Hence, we may develop formulas of smoothing functions for
ΠD by the formulas of P. We omit the details here.
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4. Smoothing Functions for Variational Inequality Problems

In this section, we shall discuss a smoothing approximation of ΠX. It
has been discussed in Ref. 5 that ΠX can be approximated well by smoothing
functions obtained via convolution. If X is a rectangle, these smoothing
functions are computable. However, in general a multivariate integral is
involved in the convolution. This makes the convolution approach impracti-
cal for computing smoothing functions of ΠX. Here, we will study a class
of computable smoothing functions of ΠX when X can be expressed
explicitly as

X_{x∈ℜn�gi (x)⁄0, iG1, 2, . . . , m}, (26)

where each gi is a twice continuously differentiable convex function. Sup-
pose that the Slater constraint qualification holds; i.e., there exists a point
x̄ such that

gi (x̄)F0, for all i∈{1, 2, . . . , m}.

Then, for any x∈ℜn, there exists a vector λ∈ℜm
C such that

yAxC ∑
m

iG1

λ i∇gi (y)G0, (27)

λAp(λCg(y))G0, (28)

where p is the plus function. Suppose that P((, t) is the CHKS smoothing
function of p, given by

P((, t)_ (14(2Ct2Ct)�2, ((, t)∈ℜ2.

From the analysis given below, we can see that the CHKS smoothing func-
tion can be replaced by other smoothing functions, e.g., the neural network
smoothing function. For ease of discussion, we use only the CHKS smoo-
thing function.

Define A:ℜBℜm→ℜm by

Ai ((, z)_P((, zi), ((, z)∈ℜBℜm, iG1, 2, . . . , m.

Consider the perturbed system of (27) and (28),

D((y, λ ), ((, x))_�yAxC ∑
m

iG1

λ i∇gi (y)

λAA((, λCg(y))
�G0, (29)

where (y, λ )∈ℜnBℜm are variables and ((, x)∈ℜBℜn are parameters. For
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any fixed ((, x)∈ℜCCBℜn, the system (29) has a unique solution. In fact,
let y((, x) be the unique solution of the following problem:

min (1�2) ��yAx��2A(2 ∑
m

iG1

log(−gi (y)),

s.t. g(y)F0.

(30)

Let

λ i ((, x)G−(2(gi (y((, x)))−1, i∈{1, 2, . . . , m}.

Then, for each i,

Agi (y((, x))H0, λ i ((, x)H0 and λ i ((, x)[−gi (y((, x))]G(2.

On the other hand, suppose that (z((, x), µ ((, x))∈ℜnBℜm is a solution of

D((y, λ ), ((, x))G0.

Then, z((, x) is a solution of (30). Thus,

z((, x)Gy((, x).

Together with (29), this implies that

µ ((, x)Gλ ((, x).

We use (y((, x), λ ((, x)) to denote the unique solution of (29). Since
D′(y,λ )((y, λ ), ((, x)) is nonsingular for all λ¤0 and since ((, x)∈ℜCCBℜn,
by Ref. 25 (y((, x), λ ((, x)) is continuously differentiable on ℜCCBℜn.

Proposition 4.1. Suppose that the Slater constraint qualification holds.
Then, the following statements hold:

(i) y( · , · ) is continuously differentiable on ℜCCBℜn and, for any
x∈ℜn and (H0, y′x ((, x) is symmetric, positive semidefinite and

��y′x ((, x) ��⁄1.

Moreover, for any (H0 and z, x∈ℜn, we have

(y((, z)Ay((, x))T(zAx)¤ ��y((, z)Ay((, x) ��2. (31)

(ii) lim
(↓0, x→x0

y((, x)GΠX (x0).

Proof.

(i) By the arguments before this proposition, we know that y( · ) is
continuously differentiable on ℜCCBℜn. Now, we consider y′x ((, x) for
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some x∈ℜn and (H0. Since (y((, x), λ ((, x)) satisfies (29), by direct compu-
tation we have

�IC ∑
m

jG1

λ i ((, x)∇2gi (y((, x))C∇g(y((, x))S∇g(y((, x))T�y′x ((, x)GI, (32)

where S is a diagonal matrix with

SiiG−λ i ((, x)�gi (y((, x)), iG1, 2, . . . , m.

Thus, from (32), we know that y′x ((, x) is symmetric, positive semidefinite
and

��y′x ((, x) ��⁄1.

Moreover, (31) can be verified easily in terms of the properties of y′x ((, x).
. (ii) For x∈ℜn, define Hx :ℜnCm→ℜnCm by

Hx (y, λ )G�yAxC ∑
m

iG1

λ i∇gi (y)

−g(y)
� .

By the arguments before this proposition, there exists a (x0, y0, λ0) such that
λ0H0,Ag(y0)H0, and

y0Ax0C ∑
m

iG1

λ0
i ∇gi (y

0)G0.

Then, because all gi are convex functions, we have

{−g(y((, x))Cg(y0)}T(λ ((, x)Aλ0)

G{Hx0( y((, x), λ ((, x))AHx0( y0, λ0)}T �y((, x)Ay0

λ ((, x)Aλ0�
C(x0Ax)T( y((, x)Ay0)

¤ ��y((, x)Ay0��2C(x0Ax)T( y((, x)Ay0),

which together with

[−gi (y((, x))]λ i ((, x)G(2, for all i,

implies that

m(2C(−g(y0))Tλ0¤Ag(y((, x))Tλ0Ag(y0)Tλ ((, x)

C��y((, x)Ay0��2C(x0Ax)T( y((, x)Ay0).
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This shows that, for any (̄H0 and δH0,

{(y((, x), λ ((, x)) �0F(⁄(̄, ��xAx0��⁄δ}

is bounded. Suppose that (y*, λ*) is any accumulation point of
(y((, x), λ ((, x)) as (→0 and x→x0. Then,

D((y*, λ*), (0, x0))G0,

which implies that

y*GΠX(x0).

Since ΠX(x0) is single-valued,

lim
(↓0, x→x0

y((, x)GΠX(x0). �

Proposition 4.1 shows that y((, x) is a computable smoothing function
of ΠX(x) if X is represented by (26). In order to get y((, x), one needs to
solve (30), which itself is in general a nonlinear optimization problem and
thus is difficult to solve. However, to solve (30) is equivalent to solving (29),
and thus it is no more difficult than to compute ΠX(x) because in (29), for
any (H0, A((, · ) is continuously differentiable. In practical applications,
some VIPs are defined only on X (Ref. 26) and thus the computation of
ΠX(x) or its approximation is unavoidable. It can be seen later that not
only y((, x) approximates ΠX(x), but can be used also together with (10) to
design a class of Newton-type methods with the VIPs to be defined on X
only. This explains clearly why we need to introduce y((, x).

Theorem 4.1. Suppose that, at some point x∈ℜn, the vectors

{∇gi (ΠX(x))}, i∈I(x)_{ j �gj (ΠX(x))G0, jG1, 2, . . . , m}

are linearly independent. Then, we have that:

(i) � lim
(↓0, z→x

y′x ((, z)�⊆ ∂ΠX(x).

(ii) y( · ) is Lipschitz continuous near (0, x) and, for any z→x and
(↓0,

�y((, z)
λ ((, z)�A�y(0, x)

λ (0, x)�A�y′((, z)λ′((, z)��
(

zAx�Go(�� ((, zAx) ��). (33)
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(iii) If ∇2gi are Lipschitz continuous near ΠX(x), then for any z→x
and (↓0,

�y((, z)
λ ((, z)�A�y(0, x)

λ (0, x)�A�y′((, z)λ′((, z)��
(

zAx�GO(�� ((, zAx) ��2). (34)

Proof.

(i) First, since the vectors {∇gi (ΠX(x))}, i∈I(x) are linearly indepen-
dent, there exists a unique vector λ* such that (27) and (28) hold with
yGΠX(x) and λGλ*. Since P is Lipschitz continuous (Proposition 3.1), D
is locally Lipschitz continuous on ℜ2nCmC1. Let

B _{B∈ℜ(nCm)B(nCm) � there exists a matrix C∈ℜ(nCm)B(nC1)

such that (B C )∈∂D((Π(x), λ*), (0, x))}.

It is not difficult to verify that all B∈B are nonsingular (see e.g. Ref.
27). Then, by the implicit function theorem (Ref. 1, Section 7.1), there exist
a neighborhood N of (0, x) and Lipschitz functions y: N →ℜn and λ :
N →ℜm such that

D((y ((, z), λ ((, z)), ((, z))G0, for any ((, z)∈N .

For any ((, z)∈N and (≠0, (y, λ ) is continuously differentiable around
((, z) and satisfies

�IC ∑
m

iG1

λ i ((, z)∇2gi (y((, z)) ∇g(y((, z))

S [−∇g(y((, z))]T IAS
� �y′x ((, z)
λ′x ((, z)�G�I0� , (35)

where S is a diagonal matrix with

SiiGλ i ((, z)�[λ i ((, z)Agi ((, z)], iG1, 2,. . . , m.

Suppose that (U*, V*) is a limit point of (y′x ((, z), λ′x ((, z)) for ((, z)∈N

with (≠0 and ((, z)→(0, X ). Then, from (35), there exists a diagonal matrix
S* with

S*ii G�
0, if gi (y (0, x))F0,
α∈[0, 1], if gi (y(0, x))G0 and λ i (0, x)G0,
1, if λ i (0, x)H0,
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for iG1, 2, . . . , m, such that

�IC ∑
m

iG1

λ*i ∇2gi (ΠX(x)) ∇g(ΠX(x))

S*[−∇gTΠX(x)] IAS*
� �U*

V*�G�I0� , (36)

which by Ref. 28 implies that

U*∈∂ΠX(x).

So, (i) is proved.
(ii) Since P is semismooth at (0, x) by Proposition 3.1, D is semis-

mooth at ( y(0, x), λ (0, x), 0, x). Thus, for any
(y, λ , (, z)→ (y(0, x), λ (0, x), 0, x) and W∈∂D((y, λ ), ((, z)), we have

D((y, λ ), ((, z))AD((y(0, x), λ (0, x)), (0, x))AW �
yAy(0, x)

λAλ (0, x)

(A0

zAx
�

Go(�� (y, λ , (, z)A(y(0, x), λ (0, x), 0, x) ��).

In particular, for (≠0 and ((, z)→ (0, x), we have

D((y((, z), λ ((, z)), ((, z))AD((y(0, x), λ (0, x)), (0, x))

AD′((y((, z), λ ((, z)), ((, z)) �
y((, z)Ay(0, x)
λ ((, z)Aλ (0, x)
(A0
zAx

�
Go(�� (y((, z), λ ((, z), (, z)A(y(0, x), λ (0, x), 0, x) ��),

which together with the facts that

D((y((, z), λ ((, z)), ((, z))G0,

D((y(0, x), λ (0, x)), (0, x))G0,

implies

D′((y((, z), λ ((, z)), ((, z)) �
y((, z)Ay(0, x)
λ ((, z)Aλ (0, x)
(A0
zAx

�
Go(�� (y((, z), λ ((, z), (, z)A(y(0, x), λ (0, x), 0, x) ��).
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Since (y( · ), λ ( · )) is Lipschitz continuous on a neighborhood of (0, x) and
since, for (≠0,

D′(y, λ )((y((, z), λ ((, z)), ((, z)) �y′((, z)λ′((, z)�
CD′((, z)((y((, z), λ ((, z)), ((, z))G0,

for (≠0 and ((, z)→ (0, x), we have

D′(y, λ )((y((, z), λ ((, z)), ((, z))��y((, z)
λ ((, z)�A�y(0, x)

λ (0, x)�A�y′((, z)λ′((, z)�
B[y((, z)Ay(0, x)λ′((, z)Aλ (0, x)]�

Go(�� ((, zAx) ��).

Since ∂D( · ) is upper semicontinuous (Ref. 1), by the proof of (i), for any
(≠0 and ((, z)→0,

��[D′(y, λ )((y((, z), λ ((, z)), ((, z))]−1��

is uniformly bounded. So, (33) is proved.
(iii) If ∇2gi are Lipschitz continuous near ΠX(x), then D is strongly

semismooth at (y(0, x), λ (0, x), 0, x). By following the arguments in (ii), we
can prove (34). �

Now, we are ready to describe smoothing functions of H defined by
(7). For any (H0 and α¤0, define G( :ℜn→ℜn by

G( (x)_xAy((, xAH( (x)), x∈ℜn, (37)

where

H( (x)_F (x)Cα(x.

When αH0, (37) is a Tikhonov-type regularized smoothing function for
variational inequality problems. For any c¤0 and (¤0, define

L(,cG{x∈ℜn� ��G( (x) ��⁄c}.

Theorem 4.2. Suppose that the Slater constraint qualification holds.
If F is continuous and H( is strongly monotone on ℜn for some (H0, then:

(i) there exists a unique x* such that G( (x*)G0;
(ii) for any c¤0, L(,c is bounded.
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Proof.
(i) For any t∈[0, 1], define

G(,t(x)_xAy((, xA[tH( (x)C(1At)x]), x∈ℜn.

Let SOL(t) denote the solution set of G(,t(x)G0. We will first show that the
set

S_ *
t∈[0,1]

SOL(t)

is bounded.
By contradiction, suppose that S is not bounded. Then, there exist

sequences {tk} and {xk} such that tk∈[0, 1], xk∈SOL(tk), and {xk} is
unbounded. By (31) in Proposition 4.1, we have

(w*Axk)T[tkH( (x
k)C(1Atk)x

k]¤ (w*Axk)Tw*,

where w*_y((, 0). Thus, there exists a constant c1 such that

tk (H( (x
k)AH( (w*))T(xkAx*)C(1Atk)(x

kAw*)T(xkAw*)⁄c1 ��xkAw*��,

which contradicts our assumption that H( is a strongly monotone function.
This contradiction shows that the set S is bounded. By the homotopy invari-
ance property of degree theory (Refs. 25 and 29), we know that the solution
set SOL(1) of G( (x)G0 is nonempty.

Suppose that there are two distinct points x1, x2∈SOL(1). By (31) in
Proposition 4.1, we have

(x2Ax1)T(H( (x
2)AH( (x

1))⁄0,

which contradicts our assumption that H( is strongly monotone. This con-
tradiction shows that G( (x)G0 has a unique solution.

(ii) By contradiction, suppose that L(,c is not bounded. Then, there
exists a sequence {xk}∈L(,c and {xk} is unbounded. That is,

y((, xkAH( (x
k))GxkAG( (x

k),

��G( (x
k) ��⁄c.

By (31) in Proposition 4.1, we have

H( (x
k)T[w*A(xkAG( (x

k))]¤G( (x
k)T[w*A(xkAG( (x

k))],

where w*_y((, 0). Thus,

(H( (x
k)AH( (s

k))T(skAxk)¤ (G( (x
k)CH( (s

k))T(xkAsk), (38)
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where

sk_w*CG( (x
k).

Since {sk}, {G( (x
k)}, {H( (s

k)} are all bounded, (38) contradicts our assump-
tion that H( is strongly monotone. This contradiction shows that L(,c is
bounded. �

For any ((, x)∈ℜBℜn, define

G0(x)GxAΠX[xAF (x)] and G−�(�(x)GG�(�(x).

Theorem 4.3. Suppose that the Slater constraint qualification holds.
Suppose that F is a continuous monotone function of ℜn. If the solution set
of the VIP is nonempty and bounded, then there exists a δH0 such that the
following set is bounded:

Lδ_{((, x)∈ℜBℜn� �(�C��G( (x) ��⁄δ}.

Proof. Define T:ℜnC1→ℜnC1 by

T((, x)_�(G( (x)� , ((, x)∈ℜBℜn.

Then, from Proposition 4.1(ii), T is a continuous function. For any jH0,
define

G j
( (x)_xAy((, xA(H( (x)Cj −1x))

T j ((, x)_�(G j
( (x)� , ((, x)∈ℜBℜn.

Since F is monotone, by (31) in Proposition 4.1, it is easy to verify that, for
any jH0, Tj is a univalent function. Thus, T is a weakly univalent function.
By the assumption that the solution set of the VIP is nonempty and
bounded, the inverse image T −1(0) is nonempty and bounded. Therefore,
by Theorem 2.3, there exists a δH0 such that Lδ is bounded. �

When X is of a separable structure, in Theorem 4.3 the assumption that
F is a monotone function can be replaced by that F is a generalized P0-
function. See Ref. 30 for the definition of generalized P0-functions.

The smoothing function of H defined by (10) can be described by

G( (x)_F ( y((, x))Cαy((, x)CxAy((, x), (39)

where ((, x)∈ℜCCBℜn and α¤0. It is not difficult to give results similar
to Theorems 4.2 and 4.3 for the smoothing function (39). Here, we omit the
details.
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To the best of our knowledge, (37) and (39) are the first classes of
computable smoothing functions for the variational inequality problem
when the constraint set X is not a rectangle. More interestingly, the smoo-
thing function (39) requires F to be defined only on X. Actually, this motiv-
ates us to study computable smoothing functions for the projection operator
directly since, if F is defined only on X, then any numerical method for the
VIP must work on X directly, which needs to compute ΠX(x) or its
approximation.

5. New Version of the Smoothing Newton Method

In this section, we suppose that H:ℜn→ℜn is a locally Lipschitz func-
tion and that G( :ℜn→ℜn is a smoothing function of H.

Let

θ (x)_ (1�2) ��H(x) ��2, x∈ℜn,

θ ( (x)G(1�2) ��G( (x) ��2, ((, x)∈ℜBℜn.

Algorithm 5.1.

Step 0. Choose constants δ∈(0, 1), β∈(0,S ), σ∈(0, 1�2), ρ1∈(0,
CS ), and ρ2∈(2,CS ). Let x0∈ℜn be an arbitrary point; let
k_0 and y0_x0.

Step 1. Let dk∈ℜn satisfy

G(
k( yk)CG′(k( yk) dG0. (40)

If (40) is not solvable or if

A(dk )T∇θ (
k( yk)¤ρ1 ��d k��ρ2 (41)

does not hold, let

dkG−∇θ (
k( yk).

Step 2. Let lk be the smallest nonnegative integer l satisfying

θ (
k( ykCδ ld k)⁄θ (

k( yk)Cσδ l∇θ (
k( yk)Td k. (42)

If

��G(
k( ykCδ lkdk) ��⁄(kβ , (43)

or if

��H(ykCδ lkdk) ��⁄ (1�2) ��H(xk) ��, (44)
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let

ykC1_ykCδ lkd k, xkC1_ykC1,

and

0F(kC1⁄min{(1�2)(k , θ (xkC1)}. (45)

Otherwise, let

yk_ykCδ lkd k,

and go to Step 1.
Step 3. Replace k by kC1 and go to Step 1.

Remark 5.1.
(i) Compared to the methods proposed in Ref. 6, two fundamental

conditions used in Ref. 6 are weakened. In Ref. 6, the inequality
(4) is required to hold for all x∈ℜn and the following condition
is assumed to hold:

dist(G′(k(xk), ∂CH(xk))→0, as k→S. (46)

Here, (4) is replaced by (11) and (46) is not required at all.
(ii) In (44)–(45), the constant 1�2 can be replaced by any positive

constant in (0, 1) and β( in (43) can be replaced by any continu-
ous forcing function γ (() satisfying

γ (()¤0, ∀(∈[0,CS ),

and γ (()G0 if and only if (G0.

6. Convergence Analysis

Assumption 6.1.
(i) There exists a constant (̄H0 such that

D1_{x∈ℜn� ��G( (x) ��⁄β(, 0F(⁄(̄}

is bounded.
(ii) For any (H0 and δH0, the following set:

L(,δ_{x∈ℜn�θ ( (x)⁄δ}

is bounded and ∇θ ( (x)G0 for any (H0 and x∈ℜn imply that
θ ( (x)G0.
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(iii) There exists a constant cH0 such that

D2_{x∈ℜn�θ (x)⁄c}

is bounded.

Remark 6.1. In the previous section, we have discussed several cases
such that Assumption 6.1 holds. Related discussions to Assumption 6.1(i)
can be found in Refs. 31–34. See Refs. 7 and 16 for a condition to guarantee
Assumption 6.1(iii) to hold when nonlinear complementarity problems are
concerned.

Theorem 6.1. Suppose that G( :ℜn→ℜn is a smoothing function of H
and that Assumption 6.1 holds. Then, an infinite bounded sequence {xk} is
generated by Algorithm 5.1 and any accumulation point of {xk} is a solu-
tion of H(x)G0.

Proof. Without loss of generality, we suppose that

G(
k(xk)≠0, for all k¤0.

If only a finite sequence x0, x1, . . . , xk is generated by Algorithm 5.1, then
our algorithm is applied to solve

min
y∈ℜn

θ (
k( y),

starting with ykGxk. Thus, an infinite sequence {ykCj , jG0, 1, . . .} is gener-
ated. By Assumption 6.1, {ykCj , jG0, 1, . . .} must be bounded. Then,
{ykCj , jG0, 1, . . .} has at least one accumulation point, say y*. Then,

∇θ (
k( y*)G0;

according to Assumption 6.1, this implies that θ (
k( y*)G0. This means that

lim
j→S

θ (
k( ykCj)G0,

which shows that (43) must be satisfied for some j¤0. Thus, an infinite
sequence {xk} is generated and (k→0 as k→S. Define

K_{k � inequality (43) is satisfied for k}.

Suppose that

KG{k0 , k1 , . . . , kj , . . .}.

Then, for all k∈K sufficiently large,

xkC1∈D1 .
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If there are infinitely many elements in K, then by the fact that
limk→S(

kG0, we have

lim
k∈K,k→S

G(
k(xkC1)G0.

Since G( is a smoothing function of H, D1 is bounded, and since (k→0 as
k→0, we have

��G(
k(xkC1)AH(xkC1) ��→0, k→S, k∈K. (47)

For any k∈(kj , kjC1A1], we have

��H(xkC1) ��⁄ (1�2) ��H(xkjC1) ��⁄ (1�2)[β(kjC��H(xkjC1)AG(
kj(xkjC1) ��],

which together with (47) implies that

lim
k→S,k∉K

��H(xkC1) ��G0.

By Assumption 6.1(iii) this proves that {xkC1, k∉K} is bounded.
If there are only finitely many elements in K, then there exists some

k̄¤0 such that, for all k¤ k̄,

��H(xkC1) ��⁄ (1�2kAk̄) ��H(xk̄) ��,

which implies that

lim
k→S

H(xk)G0;

by Assumption 6.1(iii), this implies that {xk} is bounded.
Overall, we have proved that {xk} is bounded. It is easy to see that any

accumulation point of {xk} is a solution of H(x)G0. �

For variational inequality problems, we have the following result.

Corollary 6.1. Suppose that H is defined by (7), X is given by (26),
and F is a continuously differentiable monotone function. Suppose that the
Slater constraint qualification holds and that G( is defined by (37) with
αH0. If the solution set of (5) is nonempty and bounded, then a bounded
infinite sequence {xk} is generated by Algorithm 5.1 and any accumulation
point of {xk} is a solution of (5).

Proof. By Proposition 4.1, Theorem 4.2, and Theorem 4.3, we know
that Assumption 6.1 holds. Then, from Theorem 6.1, we get the results of
this corollary. �

Theorem 6.2. Suppose that G( :ℜn→ℜn is a smoothing function of H
and that Assumption 6.1 holds. Suppose that x̄ is an accumulation point
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of {xk} generated by Algorithm 5.1, that all V∈∂H(x̄) are nonsingular, and
that {�� (G′(k(xk))−1��} is uniformly bounded for all xk sufficiently close to x̄.
If G( approximates H at x̄ superlinearly [respectively quadratically], then
the whole sequence {xk} converges to x̄ superlinearly [respectively
quadratically].

Proof. By Theorem 6.1, x̄ is a solution of H(x)G0. Suppose that
{xkj} is a subsequence of {xk} that converges to x̄. Since {��G′(k(xk))−1��} is
uniformly bounded for all xk sufficiently close to x̄, (41) is satisfied for all
kj sufficiently large. So, when kj is sufficiently large, we have

dkjG−(G′(kj(xkj))−1G(
kj(xkj).

From Definition 2.1 and (40), for kj→S, we have

��xkjCd kjAx̄��GO(��G(
kj(xkj)AH(x̄)AG′(kj(xkj)(xkjAx̄) ��)

Go(��xkjAx̄��)CO((kj).

Since all V∈∂H(x̄) are nonsingular, from Refs. 14 and 35 there exist
c1 , c2H0 and a neighborhood N (x̄) of x̄ such that, for all x∈N (x̄),

c1 ��xAx̄��⁄ ��H(x) ��⁄c2 ��xAx̄��.

Thus,

��xkjCdkjAx̄��Go(��xkjAx̄��),

which implies that, for all kj sufficiently large, (44) is satisfied and

xkjC1GxkjCdkj.

By repeating the above process, we can prove that {xk} converges to x̄ and

��xkC1Ax̄��Go(��xkAx̄��).

If G( approximates H at x̄ quadratically, by following the above arguments,
we can prove that {xk} converges to x̄ quadratically. �

Corollary 6.2. Suppose that all the conditions in Corollary 6.1 hold.
Then, {xk} generated by Algorithm 5.1 has at least one accumulation point
x̄ such that H(x̄)G0. If all

V∈{IA∂ΠX(x̄AF (x̄))[IAF ′(x̄)]}

are nonsingular and if the vectors

{∇ gi (ΠX(x̄))}, i∈I(x̄)_{j �gj (ΠX(x̄)G0},
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are linearly independent, then {xk} converges to x̄ superlinearly. Further-
more, if all g′i are Lipschitz continuous around ΠX(x̄) and if F ′ is Lipschitz
continuous around x̄, then {xk} converges to x̄ quadratically.

Proof. By Theorem 4.1, Theorem 6.2, and Corollary 6.1, we get the
results of this corollary. �

In Corollary 6.2, we have assumed the condition that all

V∈{IA∂ΠX(x̄AF (x̄))[IAF ′(x̄)]}

are nonsingular. In Ref. 5, this condition has been discussed. In particular,
it was shown in Ref. 5 that, if F ′(x̄) is a positive-definite matrix, then this
condition holds.

7. Final Remarks

For the first time, we have provided some computable smoothing func-
tions for variational inequality problems with general constraints. This class
of smoothing functions is essential in solving the variational inequality
problem when it is not well defined outside X. Certainly, more smoothing
functions can be obtained via our discussion. When some special problems
are studied, stronger results can be obtained.
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