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a b s t r a c t 

Maritime transportation is the backbone of global supply chain. To improve maritime 

safety, protect the marine environment, and set out seafarers’ rights, port state control 

(PSC) empowers ports to inspect foreign visiting ships to verify them comply with various 

international conventions. One critical issue faced by the port states is how to optimally 

allocate the limited inspection resources for inspecting the visiting ships. To address this 

issue, this study first develops a state-of-the-art XGBoost model to accurately predict ship 

deficiency number considering ship generic factors, dynamic factors, and inspection his- 

torical factors. Particularly, the XGBoost model takes shipping domain knowledge regard- 

ing ship flag, recognized organization, and company performance into account to improve 

model performance and prediction fairness (e.g., for two ships that are different only in 

their flag performances, the one with a better flag performance should be predicted to 

have a better condition than the other). Based on the predictions, a PSC officer (PSCO) 

scheduling model is proposed to help the maritime authorities optimally allocate inspec- 

tion resources. Considering that a PSCO can inspect at most four ships in a day, we further 

propose and incorporate the concepts of inspection template and un-dominated inspection 

template in the optimization models to reduce problem size as well as improve computa- 

tion efficiency and model flexibility. Numerical experiments show that the proposed PSCO 

scheduling model with the predictions of XGBoost as the input is more than 20% better 

than the current inspection scheme at ports regarding the number of deficiencies detected. 

In addition, the gap between the proposed model and the model under perfect-forecast 

policy is only about 8% regarding the number of deficiencies detected. Extensive sensitiv- 

ity experiments show that the proposed PSCO scheduling model has stable performance 

and is always better than the current model adopted at ports. 

© 2021 Elsevier Ltd. All rights reserved. 

 

1. Introduction 

Maritime transport is the backbone linking global supply chains, supporting trade and enabling participation in global 

value chains ( Chang et al., 2020 ; Zhen et al., 2020 ; Wu et al., 2021 ). Maritime safety is one of the most essential prerequisites
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for running a successful business. It is a broad term ranging from ship construction to operation and management, and to

how professional the crews are. In recent years, shipping pollution has been receiving wide attention as the greenhouse gas 

and pollutants produced by ships significantly contribute to global climate change and acidification ( Christodoulou et al., 

2019 ; Bell et al., 2020 ). To enhance maritime safety and protect the marine environment, global and regional conventions

are implemented by the International Maritime Organization (IMO) and local governments ( Zhang et al., 2020 ). 

Generally, a ship is regarded as substandard if its hull, machinery, equipment, or operational safety is substantially below 

the standards required by the relevant conventions or if the crew is not in conformance with the safe manning document

( IMO, 2017 ). Effective identification and rectification of substandard ships is essential, as it guarantees efficient implemen- 

tation of various conventions. As a complement of flag state control, which is the first line of defense against substandard

shipping, port state control (PSC) renders port authorities the right to inspect foreign visiting ships. During PSC inspections, 

a condition found not to be in compliance with the requirements of the relevant convention is called a ship deficiency. If

fatal deficiencies are found onboard, an intervention action, which is also called detention, can be taken by the port state

( IMO, 2017 ). Ship deficiency and detention are seemed as the most crucial outcomes of PSC inspection ( Akpinar and Sahin,

2020 ). 

The general process of PSC inspections is as follows. In the morning of a working day, the port state authority selects

the foreign visiting ships with high risk regarding ship safety and marine pollution for inspection based on the selection 

criteria adopted in the region. Then, available qualified inspectors, who are also called PSC officers (PSCOs), are assigned 

and scheduled to inspect the selected high risk ships. It is generally believed that accurate identification of high-risk visiting 

ships is a pre-requirement while effective assignment and scheduling of available PSCOs is a foundation for effective PSC 

inspections. The reasons are as follows. First, it is not possible to inspect all visiting ships as port inspection resources,

especially the number of available PSCOs, are quite limited. Second, among all visiting ships, only a small portion of ships

need to be inspected. The annual report of Tokyo Memorandum of Understanding (MoU) in Asia-Pacific region shows that 

only 60% of the inspections conducted between 2009 and 2019 identified deficiencies, and no more than 6% inspections 

were with detention ( Tokyo MoU, 2020 ). Third, the proportion of ships inspected is crucial in port management. If too few

substandard ships are inspected at a port, ship owners may lack the motivation to intensively maintain ship conditions, 

which in return attracts more substandard ships to the port. On the contrary, if too many qualified ships are inspected,

the competitiveness of the port may be reduced and consequently leads ship owners to turn to other destinations with 

relaxed inspection policy ( Yang et al. 2018b , Yan et al., 2021c ). Therefore, accurate identification of high-risk ships and

rational allocation of inspection resources guarantee effective PSC inspections by picking out which ships are most worthy 

of inspection and finishing the inspection tasks efficiently without putting too much delay in shipment. They also help the 

port states to find a balance between stringent inspections of substandard ships and reducing un-necessary inspections of 

qualified ships and thus to better fulfill their responsibilities and enhance their competitiveness. 

One of the widely adopted ship selection scheme at the port states is the new inspection regime (NIR). It calculates ship

risk profile (SRP) based on ship generic parameters including ship type, ship age, flag performance, recognized organization 

(RO) performance, and company performance, and inspection historical factors including deficiency and detention conditions 

( Paris MoU, 2010 ; Tokyo MoU, 2014 ). It is noted that all the parameters are objective except for flag, RO, and company

performance, which is calculated by the MoUs. More specifically, ship flag performance is established annually by taking its 

ships’ inspection and detention conditions over the preceding three calendar years into account. Black-grey-white ship flag 

lists are published in an MoU’s annual report, where flag performance gets worse from white to grey and to black. RO is

a qualified organization which has been assessed and authorized by the flag state to provide necessary statutory services 

and certification of ships entitled to fly its flag ( IMO 2017 ). The performance of all ROs is established annually considering

their ships’ inspection and detention history over the preceding three calendar years. The RO performance list is published 

in an MoU’s annual report, where the performance of ROs gets worse from high, to medium, to low, and to very low. Ship

company is the International Safety Management (ISM) company of a ship, and its performance is determined by their ships’ 

detention and deficiency history calculated daily on the basis of a running 36-month period. Similar to ship RO performance, 

company performance gets worse from high, to medium, to low, and to very low. 

As ship flag, RO, and company play an important role in ship management, operation, and maintenance, they are taken 

into account in the popular SRP ship selection scheme applied at ports. In return, a ship’s performance in PSC inspection can

influence the reputation of its flag, RO, and company and their performance evaluated by PSC MoUs. Under this condition, it

is justifiable to conclude that given all other conditions being equal, a ship should be estimated to have worse performance

in PSC inspection (e.g. more deficiencies and higher probability of detention) if the performance of its flag/RO/company 

gets worse. However, such domain knowledge is seldom considered in current literature of high-risk ship selection mainly 

because combining domain knowledge with machine learning models is not a trivial task as it requires modifications of 

the prediction models or finding good properties of them. Besides, PSCO assignment and scheduling models, which require 

allocating the available and scarce inspection resources as well as arranging the starting and ending time of the required 

activities, are also rarely proposed in current research. This study aims to bridge this gap with the contributions summarized 

as follows. 

First, from a theoretical point of view, we first develop a machine learning prediction model considering proper and 

adequate domain knowledge to solve problems in maritime transportation. Specifically, a state-of-the-art tree-based model 

called XGBoost is developed to predict ship deficiency number in PSC inspection. In the XGBoost model, we combine the 

shipping domain knowledge regarding ship flag, RO, and company performance in a natural way. Based on the predictions, a 
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PSCO scheduling model for ship inspection is then proposed considering a PSCO’s work and rest time to guarantee inspection 

effectiveness. By taking the properties of the optimization model for PSCO scheduling into account, we propose the concepts 

of inspection template, un-dominated inspection template , and strengthened constraints to reduce problem size as well as 

improve model flexibility and solving efficiency . 

Second, from a practical point of view, a practical problem in PSC inspection, which is one of the most important ship-

ping policies, is addressed in this study. Numerical experiments show that the proposed combined model for ship deficiency 

number prediction and PSCO scheduling is more than 20% better than the current PSCO scheduling strategy at ports regard- 

ing the number of deficiencies identified. Meanwhile, the gap between the proposed model and the perfect-forecast policy 

is only about 8% regarding the number of deficiencies identified. The proposed model can help port state authorities to 

identify higher risk ships and schedule inspection resources more efficiently. Especially, it contributes to assisting the port 

states to achieve a balance between effectively identifying and inspecting substandard ships and reducing un-necessary in- 

spections of qualified ships and consequently frightening them from choosing this port in future shipment. Therefore, the 

main objectives of PSC to eliminate substandard shipping, to promote maritime safety and security, to protect the marine 

environment, and to safeguard seafarers’ working and living conditions on board ships can be enhanced. 

2. Literature review 

As PSC is critical for promoting maritime safety, guaranteeing the marine environment, and protecting seafarers’ rights, 

there has been a large body of literature on PSC inspection. Yan and Wang (2019) classified the studies on PSC into four

main categories, namely studies on exploring factors influencing PSC inspection results, studies on developing ship selection 

models, studies on exploring the effects of PSC, and studies on proposing suggestions for MoU management. In this study, we

focus on the studies on improving PSC efficiency, which develop models for ship selection and onboard inspection efficiency 

improvement. 

Both abstract ship risk level and concrete ship detention or deficiency condition have been used as the prediction targets 

in models for high-risk ship identification. For prediction models with abstract targets, Li (1999) proposed the concept of 

ship risk score and identified ship risk level considering several factors including ship age, flag, insurer, classification, and 

operator. Degré (2007) also adopted the concept of ship risk to select high-risk vessels for inspection. The risk concept in this

study was evaluated by the probability of the occurrence of casualties and its potential consequences. Based on the method 

to generate black-grey-white flag performance list in Paris MoU, Degré (2008) derived the black-grey-white ship category 

risk list with regard to the observed casualties over a given period. Information of past incidents and accidents was also

used by Heij and Knapp (2019) and Knapp and Heij (2020) , where combined models considering such information together

with historical detentions were used to target high-risk vessels and prioritize inspection areas. Dinis et al. (2020) adopted 

parameters from the NIR used in Paris MoU as risk variables to assess individual ship and maritime traffic risk level using

Bayesian network (BN) models. 

Ship detention or deficiency serves as the concrete prediction target in more current studies, as both of them are the

main outcomes of PSC inspections. Xu et al. (2007) proposed one of the pioneer machine learning-based models to predict

ship detention by developing support vector machine (SVM). In recent years, more advanced models are developed for accu- 

rate selection of high-risk ships. BN is a type of popular model for ship condition prediction. Yang et al. (2018a) developed

a BN for bulk carrier detention prediction at the ports in Paris MoU. Key factors influencing ship detention, such as the

number of deficiencies, inspection type, RO, and ship age were identified. Based on the output of the BN, a game model

was developed to determine the optimal inspection rate at the ports to improve inspection efficiency. BN model was also 

developed by Wang et al. (2019) to predict ship deficiency number using the real inspection records at the Hong Kong port.

To match ship deficiency condition with the expertise of PSCOs, Yan et al. (2020a) proposed three two-step models for ship

condition prediction and PSCO assignment. The structure of the PSCO assignment model was partially considered in some 

ship condition predictions models, which were based on random forest consisting of several multi-target regression trees. It 

is noted that the PSCO assignment model is quite different from the one proposed in this study as it aimed to match various

ship conditions with the expertise of the PSCOs. Yan et al. (2020b) developed a balanced random forest model to predict

ship detention probability, which addressed the problem of highly unbalanced distribution of inspection records with and 

without detention. A combined ship risk prediction model considering ship deficiency and detention simultaneously was 

developed by Yan et al. (2021a) to address different needs of the port states. 

To improve the efficiency of onboard inspection, association rule mining technologies are adopted to figure out the 

relationship between various factors. The generated rules can offer meaningful insights to onboard deficiency and de- 

tention identification. Tsou (2019) explored the detention database of Tokyo MoU using association rule mining tech- 

niques. The author identified the correlations between detention deficiencies and the correlations between deficiencies 

and ship-/inspection-related factors. Chung et al. (2020) analyzed the historical PSC inspection records in Taiwan Provence 

of China using Apriori algorithm. The correlations between ship characteristics and PSC deficiencies were identified. 

Yan et al. (2021b) also adopted Apriori algorithm to identify the relationship between ship deficiencies based on the in- 

spection records at the Hong Kong port. Onboard inspection schemes were then proposed according to the rules identified. 

Fu et al. (2020) analyzed the correlations between ship generic properties and ship deficiency and detention conditions 

using Apriori algorithm based on the inspection records in Tokyo MoU. 
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Although there are various studies proposing models for ship condition prediction and inspection efficiency improvement, 

there are several limitations in current research. First, current studies of high-risk ship selection have failed to consider ship- 

ping domain knowledge in ship risk prediction, including the monotonicity regarding ship flag/RO/company performance in 

ship risk prediction. It is likely that the prediction models ignoring such domain knowledge give opposite prediction results 

due to model inaccuracy and noises in training data ( Sill, 1997 ; Duivesteijn and Feelders, 2008 ; Daniels and Velikova, 2010 ;

Pei et al., 2016 ). This indicates that only by taking such shipping domain knowledge into account in ship risk prediction

models can fair and reasonable prediction results be generated. Here regarding such prediction results to be “fair” is be- 

cause for ship flag/RO/company which adopt more effective management measures on their ships, it can be expected that 

their ships’ performance in PSC inspection should be better than other flags/ROs/companies adopting worse management 

strategies. In return, reducing the inspection frequency of their ships can promote them to better fulfill their maintenance 

and operational duties and attract more shippers to choose their services. The reason to regard such prediction results to 

be “reasonable” is that considering monotonicity into a machine learning model “can be an important model requirement 

with a view toward explaining and justifying decisions” ( Duivesteijn and Feelders, 2008 ) to the decision makers. It is also

reported by Pazzani et al. (2001) that the learned rules with monotonicity constraints were significantly more acceptable to 

experts than rules learned without the monotonicity restrictions when experts expect certain monotonicity based on their 

experience. 

Second, there is little literature aiming to design tailored PSCO assignment or scheduling schemes for ship inspection, 

and thus to validate the superiority of the proposed ship risk prediction models over the current schemes at ports. Indeed,

prediction model accuracy is figured out in many current studies, and their superiority over current ship selection scheme 

is also presented. However, port inspection resources (e.g. the number of available PSCOs) are scarce and the arrival and 

departure time of ships are not fixed. This indicates that not all ships can be inspected in practice, and the gap between

the proposed and current schemes in practice remains to be validated. Formulation and solution techniques for assign- 

ment and scheduling models are proposed in current literature, and typical modeling approaches include column generation 

( Van Den Akker et al., 20 05 ; Huisman, 20 07 ; Janacek et al., 2017 ; Kulkarni et al., 2018 ) and Dantzig-Wolfe decomposition

( Janacek et al., 2017 ; Kulkarni et al., 2018 ; Muñoz et al., 2018 ). Nevertheless, there is no tailored modelling approach con-

sidering the problem structure and the corresponding properties of PSC inspection as well as proposing intuitive solving 

strategies that are comprehensible to the decision makers at port authorities. Therefore, it is of vital importance to develop 

tailored and easy-to-understand PSCO assignment and scheduling modeling approach based on ship risk prediction models 

to figure out their superiority in practice and improve the efficiency of PSC inspection. 

To address these issues, this study develops a highly accurate XGBoost model for ship deficiency number prediction 

considering shipping domain knowledge. It then proposes PSCO scheduling models based on the predictions which are 

consistent with the actual situation at the ports. Extensive computational experiments and sensitivity analysis are conducted 

to validate the model performance. 

3. Data and model validation metrics 

3.1. Data description 

The case dataset of this study contains 1,974 PSC initial inspection records and the corresponding ship related factors 

at the Hong Kong port from January 2016 to December 2018. Especially, PSC inspection records are downloaded from the 

public database provided by Tokyo MoU 

1 , and ship related factors are searched from World Shipping Register database. The 

prediction target is the number of deficiencies detected in the current PSC inspection. We consider 14 features that are 

regarded to be highly related to ship deficiency number in the current literature and by domain knowledge, namely ship 

age, gross tonnage (GT), length, depth, beam, type, flag performance, RO performance, and company performance in Tokyo 

MoU, last PSC inspection date in Tokyo MoU, the number of deficiencies in last inspection in Tokyo MoU, the number of total

detentions in all historical PSC inspections, the number of flag changes, and whether the ship has a casualty in last 5 years.

Moreover, as required by the Tokyo MoU, from the best to the worst, the states of ship flag performance are white, grey,

and black, the states of ship RO and company performance are high, medium, low, and very low, respectively. After data

preprocessing, the whole dataset contains 1,926 samples. The explanation, method of feature encoding, and the descriptive 

statistics of the prediction target and the 14 features in the whole dataset are shown in Appendix A . 

3.2. Model validation metrics 

The deficiency number prediction models are validated using two common metrics for regression problems in machine 

learning: mean squared error (MSE) and mean absolute error (MAE). Given a total of n samples in the dataset, the real

output y i and the predicted output ˆ y i for sample i, i = 1, ..., n , the definitions of MSE and MAE are as follows: 

MSE = 

1 

n 

n ∑ 

i =1 

( ̂  y i − y i ) 
2 
, (1) 
1 http://www.tokyo-mou.org/inspections _ detentions/psc _ database.php 
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MAE = 

1 

n 

n ∑ 

i =1 

∣∣ ˆ y i − y i 
∣∣. (2) 

4. Introduction and construction of XGBoost model 

4.1. The structure of XGBoost model 

Ensemble models in machine learning combine the predictions of multiple simpler base models to improve the overall 

model prediction performance ( Friedman et al., 2001 ). Two main ensemble models are bagging (bootstrap aggregating) and 

boosting. Bagging builds several base models independently and then average their predictions. Boosting builds sequential 

and dependent base models in the way that one base model is built considering the errors of the base models built so far

and then produces a powerful ensemble ( Friedman et al., 2001 ). In boosting models, a base model is also called a weak

learner which may be only slightly better than random guessing. Meanwhile, the main idea of boosting is to add new weak

learners to the ensemble sequentially, and in each iteration, the weak learner is trained with respect to the error of the

whole ensemble learned so far ( Natekin and Knoll, 2013 ). As boosting is purely algorithm-driven, a gradient-descent based

formulation of boosting methods is derived which is called gradient boosting machine (GBM) ( Freund and Schapire, 1997 ;

Friedman et al., 20 0 0 ). The principal idea of GBM is to construct new weak learners to be maximally correlated with the

negative gradient of the loss function associated with the whole ensemble. 

XGBoost (short for eXtreme Gradient Boosting) is an implementation of GBM that uses tree-structured weak learners 

( Chen and Guestrin, 2016 ). It is highly effective (which allows parallel and distributed computing) and scalable (which is

able to handle datasets containing billions of examples in distributed or memory-limited settings). Due to limited space, the 

detailed process to construct XGBoost model is presented in Appendix B . 

4.2. Feature monotonic constraints in XGBoost 

Apart from the state-of-the-art prediction performance, XGBoost also has the nice property to enforce monotonic con- 

straint on the feature(s) regarding the prediction target ( Chen, 2016 ). Suppose we have a total of m features and the feature

vector is denoted by x = ( x 1 ,..., x m 

′ 
,..., x m ).We put a monotonically increasing constraint on feature m̄ , which means that

for two samples i 1 and i 2 that have the same feature values except for x ̄m , i.e. x m 

′ 
i 1 

= x m 

′ 
i 2 

, m 

′ = 1 , ..., m̄ − 1 , m̄ + 1 , ..., m and

x ̄m 

i 1 
< x ̄m 

i 2 
, the predicted target for i 1 should be no more than that for i 2 , i.e. ˆ y i 1 ≤ ˆ y i 2 . As the monotonic constraint works in

the context that all the features are equal in the samples except for the feature which is enforced to be monotonic (denote

the set of samples by I ′ ), the prediction process of the samples in I ′ in a tree can be simplified to only contain the splits on

the monotonic feature (as using all other features and values will always lead the samples to the same tree nodes and thus

have the same output). In this context, the working process to impose monotonic constraint on a feature can be illustrated

as follows. 

We still use feature m̄ which we put a monotonically increasing constraint on as an example. An illustration of the 

tree structure is shown in Figure 1 . The output of all samples in the root node is W 0 . From splitting the root node, we

would expect the weight assigned to the right child not to be lower than the weight assigned to the left child while using

the monotonic feature for splitting. When feature m̄ is picked to split the root node, if a candidate value of m̄ leads to a

higher weight in the left child than that in the right child, this candidate value will be abandoned for the current node

splitting. That is, when enumerating all possible values of feature m̄ to split the root node, only the values leading to no

lower weights in right child than in left child will be retained for further comparison. If all possible splits lead to higher

output in the left child than in the right child, the node would not be split any more. If feasible splits exist and the optimal

splitting point is found, we could have W L ≤ W R , where W L is the output of the left child node while W R is the output of

the right child node. When splitting node L to left child LL and right child LR , only the splits that lead to W LL ≤ W LR will

be considered, where W LL is the output of LL and W LR is the output of LR . As the weight of LR should be no more than

the weight of node R , we further impose an upper bound for W LR as W LR ≤ mean ( W L , W R ) = 

W L + W R 
2 ≤ W R . Similarly, apart

from ensuring W RL ≤ W RR ,where W RL is the output of RL and W RR is the output of RR , we also impose a lower bound for

W RL as W RL ≥ mean ( W L , W R ) = 

W L + W R 
2 ≥ W L . Consequently, in this tree level we can guarantee W LL ≤ W LR ≤ mean( W L ,W R ) ≤

W RL ≤ W RR . As a tree is split in a recursive manner, the monotonicity of the whole tree can be guaranteed. A more detailed 

explanation of the situations if more than one feature is imposed by monotonic constraints is given in Appendix C . 

It should also be noted that as XGBoost allows for feature subsampling when constructing each tree, the monotonic 

feature may not be included in some trees. For those trees, as the samples in I ′ have the same feature values except for the

feature with monotonic constraint, all the samples will be assigned to the same leaf node and thus have the same output.

As XGBoost is an additive model, the predicted output of each sample is the sum of the outputs in all the trees where the

monotonicity constraints are preserved. Therefore, the feature monotonicity of the final output in the whole model can be 

preserved. 
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Fig. 1. Illustration of feature monotonicity on XGBoost. 

Table 1 

Hyperparameters in XGBoost model ∗ . 

Hyperparameter Meaning 

learning_rate (c ∗∗) Step size shrinkage used to update the predicted values after 

each boosting step to prevent overfitting which can be 

applied to Eq.(B4) . 

n_estimators (a) The number of weak learners (decision trees) in the XGBoost 

model (i.e. K in Eq. (B1) ). 

max_depth (b) The maximum depth of each tree. 

min_child_weight (b) The minimum sum of sample weight (Hessian) (i.e. H t 
j 
) 

needed in a child node. In a regression tree with loss 

function as MSE, the sum of sample weight in a node equals 

the number of samples contained in the node. 

delta (b) The minimum loss reduction required to make a split for a 

node. 

sub_sample (b) The fraction of samples to be randomly sampled for each 

tree. 

colsample_bytree (b) The fraction of columns (features) to be randomly sampled 

for each tree. 

reg_gamma (b) L 1 regularization term on tree complexity (i.e. γ in Eq. (B9) ). 

reg_lambda (b) L 2 regularization term on tree complexity (i.e. λ in Eq. (B9) ). 

Note ∗: to avoid ambiguity, we have renamed some hyperparameters. For example, in the 

XGBoost Module for Python, ‘ delta ’ is called ‘ lambda ’, and ‘ reg_gamma ’ is called ‘ reg_alpha ’. 

Note ∗∗: this indicates the hyperparameter category. 

 

 

 

 

 

4.3. Construction of monotonic XGBoost 

The whole dataset is randomly divided into training set (80% samples) and test set (20% samples, denoted by test set

i), which contain 1,524 samples and 384 samples, respectively. The XGBoost model with monotonic constraints enforced on 

three features, i.e. ship flag, RO and company performance, is constructed using the training set (which we call monotonic 

XGBoost). Hyperparameters contained in XGBoost are in three categories: a. general parameter, which guides the overall 

functioning; b. booster parameters, which guide the individual booster at each iteration; and c. learning task parameter, 

which guides the optimization performed. We use regression decision tree as the weak learner in XGBoost model. The 

hyperparameters tuned in this study are summarized in Table 1 . 

Table 1 shows that there are totally nine hyperparameters that need to be tuned in an XGBoost model, which can be a

huge burden if we apply cross validation with grid search to tune the hyperparameter tuple directly. To address this issue,

we propose a three-step hyperparameter tuning method after giving the initial values of the hyperparameters based on 

experience. In the first step, the hyperparameters are tuned in turns according to their categories using grid search based on

5-fold cross validation with MSE as the metric, and their initial tuned values can be found. In the second step, an extended
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Table 2 

Finally adopted hyparameter values in monotonic XGBoost. 

Hyperparameter n_estimators learning_rate max_depth min_child_weight delta 

value 200 0.02 5 4 0.15 

Hyperparameter sub_sample colsample_bytree reg_gamma reg_lambda 

value 0.75 0.4 0.1 0.1 

Table 3 

Features of an example in test set i except for flag, 

RO, and company performance. 

Feature Value 

age 12 

GT 6813 

length 132.6 

depth 9.2 

beam 19.2 

type container ship 

last inspection date 4.3 

last deficiency number 6 

total detentions 0 

the number of flag changes 0 

casualty in the last 5 years 0 

Table 4 

An example of construction variant samples and the prediction results. 

Sample flag RO company Output of monotonic XGBoost Increase 

between 

consecutive 

values 

Output of 

normal 

XGBoost 

Increase 

between 

consecutive 

values 

Original sample 1 1 3 5.3443 (true: 5) \ 5.6563 (true: 

5) 

\ 

variant sample 1 1 1 3 5.3443 \ 5.6563 \ 
variant sample 2 2 1 3 5.9879 0.6437 5.9409 0.2846 

variant sample 3 3 1 3 6.3320 0.3441 5.8450 -0.0959 

variant sample 4 1 1 3 5.3443 \ 5.6563 \ 
variant sample 5 1 2 3 5.5915 0.2473 5.6383 -0.0180 

variant sample 6 1 3 3 5.5915 0 5.6383 0 

variant sample 7 1 1 1 3.9397 \ 3.9384 \ 
variant sample 8 1 1 2 4.6101 0.6703 4.4111 0.4728 

variant sample 8 1 1 3 5.3443 0.7342 5.6563 1.2452 

variant sample 10 1 1 4 7.2423 1.8981 7.5755 1.9192 

 

 

 

 

 

 

 

 

 

searching space for all the hyperparameters consisting of the initial tuned value and two more candidate values near the 

tuned value for each hyperparameter is formed. Then, grid search based on 5-fold cross validation with MSE as the metric

is conducted on all hyperparameters simultaneously. In the third step, ‘ learning_rate ’ is further reduced and ‘ n_estimators ’ is

further increased to improve model generalization ability. The finally adopted values for the hyperparameters are shown in 

Table 2 . 

After hyperparameter tuning using cross validation on the training set, the final monotonic XGBoost model is constructed 

using the whole training set with the optimal hyperparameter values presented in Table 2 . Its performance is validated by

test set i. The MAE of the monotonic XGBoost model is 2.372 and the MSE is 12.470. 

4.4. Analysis of monotonic XGBoost 

We form another test set (denote by test set ii) as an extension of test set i to validate the monotonicity in the output

of the monotonic XGBoost model regarding the three monotonic features: flag performance, RO performance, and company 

performance. For each sample in test set i, we form 10 variant samples by setting the values for flag performance from 1 to

3 (i.e. from white to black), RO performance from 1 to 3 (i.e. from high to low), and company performance from 1 to 4 (i.e.

from high to very low) respectively while keeping the other features and their values unchanged. Totally we can have 3,840

samples (3, 840 = 384 × 10) in test set ii. We use a random sample in test set i as an example to show the construction

process and the predicted results using the normal XGBoost model and the monotonic XGBoost model. The sample features 

except for flag, RO, and company performance are shown in Table 3 . The flag, RO and company performance together with

the prediction results are shown in Table 4 . 
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Table 5 

Increase in predicted deficiency number of consecutive states in test set ii. 

State change Flag performance RO performance Company performance 

1- > 2 0.8030 0.2530 0.5312 

2- > 3 0.2236 0 0.7787 

3- > 4 \ \ 1.4919 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 indicates that in the monotonic XGBoost model, the predicted deficiency number increases as the performance 

of flag, RO and company gets worse, respectively. Moreover, increase between consecutive states of company performance is 

most significant in this example: on average, 1.1009 more deficiencies can be detected if it gets worse by one state. Mean-

while, change in RO performance is the least obvious: when its RO performance change from 1 (high) to 2 (medium), only

0.2473 more deficiencies will be detected; the number of detected deficiencies remains unchanged while the RO perfor- 

mance changes from 2 (medium) to 3 (low). Meanwhile, it can also be seen in Table 4 that in a normal XGBoost model, the

monotonicity of the three features cannot be fully guaranteed: when flag performance changes from medium to low, and 

when RO performance changes from high to medium, the predicted deficiency number decreases instead, which is against 

domain knowledge. 

We further calculate the average increase between consecutive states of each feature over the whole test set as shown 

in Table 5 . 

Table 5 indicates that when the states of flag performance change from high to medium and from medium to low, the

increase of deficiency number gets smaller. While the state values increase by 1 in company performance, the increase of 

deficiency number gets larger. On the contrary, when RO performance gets from 2 (medium) to 3 (low), 0 more deficiency

number will be detected as suggested by the monotonic XGBoost model. This is because there is only one sample in the

training set with RO performance as low, which makes it hard for the model to capture the change in deficiency number

when RO performance gets from medium to low. It should also be noted that although in Tokyo MoU the worst performance

for RO is “very low”, as there are no such inspection records between 2016 and 2018, we only form variant samples with

RO performance to be high, medium, and low. 

4.5. Comparison with other popular machine learning models 

We compare the performance of the other popular machine learning models with the monotonic XGBoost model using 

test set i and the same training set. Especially, we compare the performance of normal XGBoost, CART based regression deci-

sion tree (DT) ( Breiman et al., 1984 ), random forest (RF) ( Breiman, 2001 ), gradient boosting decision tree (GBDT) (Friedman,

2001), monotonic light gradient boosting machine (LightGBM) ( Ke et al., 2017 ), least absolute shrinkage and selection oper-

ator (LASSO) regression ( Santosa and Symes, 1986 ), ridge regression ( Hoerl and Kennard, 1970 ), and support vector machine

(SVM) ( Drucker et al., 1996 ) with the monotonic XGBoost model. It should be noted that apart from LightGBM, none of the

other machine learning models can guarantee the monotonic constraints of the three features. For SVM, DT, RF, LASSO re- 

gression and ridge regression, grid search with 5-fold cross validation is applied directly for hyperparameter tuning as they 

have fewer hyperparameters. For normal XGBoost, GBDT and monotonic LightGBM, the hyperparameter tuning method is 

similar to that used in the monotonic XGBoost model. The MSE and MAE in test set i are shown in Table 6 . 

Table 6 shows that the prediction performance of monotonic XGBoost ranks first regarding both MSE and MAE among all 

the machine learning models considered. Regarding MSE, monotonic LightGBM ranks second, followed by normal XGBoost. 

Regarding MAE, SVM is slightly worse than monotonic XGBoost, followed by normal XGBoost. Ridge regression has the 

worst performance regarding both metrics. Especially, the monotonic XGBoost performs better than the normal XGBoost 

whose hyperparameter values are tuned by the same hyperparameter tuning method regarding both MSE and MAE, which 

is in line with the comment that if reasonable monotonic constraints on certain features are enforced, model prediction 

performance should be improved, meaning that the constrained models may generalize better ( Sill, 1997 ; Duivesteijn and 

Feelders, 2008 ; Daniels and Velikova, 2010 ; Pei et al., 2016 ). 

To conclude, a tree-based gradient boosting machine called XGBoost, where shipping domain knowledge regarding ship 

flag/RO/company performance for ship risk prediction in PSC inspection can be incorporated in a natural and rational way, is 

developed and validated in this section. The structure of XGBoost and detailed steps to develop an XGBoost model, especially 

how to incorporate monotonic constraints in the model are first introduced. The performance of the developed XGBoost 

model is then validated and compared with other popular machine learning models. It is shown that the XGBoost model 

considering domain knowledge has the best performance among all the machine learning models concerned. 

5. PSC officer scheduling problem 

The PSC officer (PSCO) scheduling model aims to assign the available PSCOs to inspect the foreign visiting ships that 

need to be inspected as required (i.e. ships with no previous inspection records and ships out of/within the inspection time

window). Human and time inspection resources, the predicted deficiency condition of the ships, and the berthing time of 

the ships at port should be considered in the model. As there are many foreign ships visiting a port for each day while
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Table 6 

MSE and MAE in test set i of the machine learning models. 

Model monotonic XGBoost ∗ normal XGBoost DT RF GBDT Monotonic LightGBM 

∗ LASSO regression ridge regression SVM 

MSE 12.470 12.779 15.625 13.612 13.322 12.747 15.089 15.765 13.421 

Rank 1 3 8 6 4 2 7 9 5 

MAE 2.372 2.422 2.672 2.459 2.461 2.475 2.806 2.909 2.411 

Rank 1 3 7 4 5 6 8 9 2 

Note ∗: monotonicity of the three features can be preserved. 

6
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Table 7 

Relationship between time periods and units. 

Time period Time unit Time period Time unit Time period Time unit 

8:00 to 8:30 1 11:00 to 11:30 7 a 14:00 to 14:30 13 

8:30 to 9:00 2 11:30 to 12:00 8 14:30 to 15:00 14 

9:00 to 9:30 3 12:00 to 12:30 9 b 15:00 to 15:30 15 

9:30 to 10:00 4 12:30 to 13:00 10 15:30 to 16:00 16 

10:00 to 10:30 5 13:00 to 13:30 11 c 16:00 to 16:30 17 

10:30 to 11:00 6 13:30 to 14:00 12 16:30 to 17:00 18 

a: The latest time unit to start inspection before lunch break. 

b: The earliest time unit to start inspection after lunch break. 

c: The latest time unit to start lunch break. 

Table 8 

Notation used in the problem. 

Sets 

S The set of foreign ships that need to be inspected for one 

day. 

P The set of PSCOs on duty for that day. 

H The set of inspection templates. An inspection template is a set 

of ships which is feasible to be inspected by one PSCO while 

guaranteeing his/her lunch break within the daily work time. 
˜ H The set of un-dominated inspection templates . 

Indices 

s The index for a ship in S . 

p The index for a PSCO in P . 

τ The index for a time unit. 

η The index of an inspection template in H . 

Parameters 

T The total number of time units for a working day. 

d s The predicted deficiency number of ship s using the XGBoost 

model. 

D η The number of deficiencies that can be detected if inspection 

template η is adopted. 

e s τ Binary parameter indicating whether ship s is available for 

inspection in time unit τ . 

δη
s Binary parameter indicating whether ship s is contained in 

inspection templat e η. 

B = [ b s ′ s ′ ′ ] | S | × | S | Binary matrix indicating the relationship between each of the 

two ships that need to be inspected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the inspection resources are scarce, the PSCO scheduling model aims to decide the set of ships to be inspected and assign

the selected ships to the PSCOs so as to maximize the inspection benefit, which is represented by the total number of

deficiencies that can be identified. 

Denote the set of foreign ships that need to be inspected on one day as S and one ship as s ∈ S . Denote the set of PSCOs

on duty for this day as P and one PSCO as p ∈ P . The work time for the PSCOs is stable for each day: they work from 8:00

to 11:00 in the morning, and 14:00 to 17:00 in the afternoon. They spend one hour for lunch break during 11:00 to 14:00,

and the other two hours for working. For example, if PSCO p has lunch break during 12:00 to 13:00, his/her work time

should be from 8:00 to 12:00 and from 13:00 to 17:00. A typical PSC inspection takes about 2 hours, and thus we assume

the duration of a PSC inspection to be two hours for all ships. For ship s ∈ S , its deficiency number d s is predicted by the

monotonic XGBoost model which should be treated as a parameter. Each ship berths at the port for a period in each day,

and the available time for ship s during 8:00 to 17:00 (i.e. the daily work time for PSCOs) for PSC inspection is reported to

the port state in advance. We divide the work hours from 8:00 to 17:00 for PSCOs into T = 18 time units with each time

unit as 0.5 hour, indexed by τ . The relationship between the time periods and the time units is illustrated in Table 7 . 

Based on the ship berthing information reported in advance, we further introduce a parameter e s τ which is set to 1 if

ship s stays at the port in the whole period of time unit τ . For example, if ship s stays at the port from 01:00 to 12:00, we

should set e s τ = 1 , τ = 1, 2, ..., 8 and e s τ = 0 , τ = 9, 10, ..., 18. We assume that the inspection starting time of a ship and the

lunch break starting time of a PSCO are at the beginning of one time unit. The PSCO scheduling problem aims to select the

ships for inspection, to decide the inspection starting time of the selected ships, to assign the selected ships to the PSCOs,

and to decide the lunch break starting time of the PSCOs to maximize the inspection benefits. The notation used in the

PSCO scheduling problem is listed in Table 8 . 
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5.1. PSCO scheduling model M1 

To formulate the PSCO scheduling problem, we define two types of main binary decision variables: x sp τ , which is set to 1

if ship s is inspected by PSCO p in time unit τ and 0, otherwise; and r τp , which is set to 1 if PSCO p has lunch break in time

unit τ and 0, otherwise. Besides, we also introduce three types of auxiliary binary decision variables: y sp , which is set to 1

if ship s is inspected by PSCO p and 0, otherwise; σ τ
sp , which is set to 1 if ship s starts to be inspected by PSCO p from time

unit τ and 0, otherwise; and θτ
p , which is set to 1 if PSCO p starts to have lunch break from time unit τ and 0, otherwise.To

maximize the inspection benefit by maximizing the estimated total number of deficiencies that can be detected, an integer 

linear optimization model M1 is proposed as follows. 

[M1] 

max 
∑ 

s ∈ S 

∑ 

p∈ P 
d s y sp (3) 

s.t. ∑ 

p∈ P 
y sp ≤ 1 , ∀ s ∈ S (4) 

x spτ ≤ e s τ , ∀ s ∈ S, ∀ p ∈ P, τ = 1 , ..., T (5) 

x spτ ≤ 1 − r τp , ∀ s ∈ S, ∀ p ∈ P, τ = 1 , ..., T (6) 

∑ 

s ∈ S 
x spτ ≤ 1 , ∀ p ∈ P , τ = 1 , ..., T (7) 

T ∑ 

τ=1 

x spτ = 4 y sp , ∀ s ∈ S, ∀ p ∈ P (8) 

τ+3 ∑ 

τ ′ = τ
x spτ ′ ≥ 4 σ τ

sp , ∀ s ∈ S, ∀ p ∈ P , 1 ≤ τ ≤ 15 (9) 

T ∑ 

τ=1 

σ τ
sp = y sp , ∀ s ∈ S , ∀ p ∈ P (10) 

σ τ
sp = 0 , ∀ s ∈ S, ∀ p ∈ P, 16 ≤ τ ≤ 18 (11) 

12 ∑ 

τ=7 

r τp = 2 , ∀ p ∈ P (12) 

r τp = 0 , ∀ p ∈ P, τ ∈ [ 1 , 6 ] ∪ [ 13 , 18 ] (13) 

τ+1 ∑ 

τ ′ = τ
r τ

′ 
p ≥ 2 θτ

p , ∀ p ∈ P , 7 ≤ τ ≤ 11 (14) 

T ∑ 

τ=1 

θτ
p = 1 , ∀ p ∈ P (15) 

θτ
p = 0 , ∀ p ∈ P, τ ∈ [ 1 , 6 ] ∪ [ 12 , 18 ] (16) 

x spτ ∈ { 0 , 1 } , ∀ s ∈ S, ∀ p ∈ P, τ = 1 , ..., T (17)

y sp ∈ { 0 , 1 } , ∀ s ∈ S, ∀ p ∈ P (18) 

σ τ
sp ∈ { 0 , 1 } , ∀ s ∈ S, ∀ p ∈ P, τ = 1 , ..., T (19)
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r τp ∈ { 0 , 1 } , ∀ p ∈ P, τ = 1 , ..., T (20) 

θτ
p ∈ { 0 , 1 } , ∀ p ∈ P, τ = 1 , ..., T . (21) 

Objective function (3) maximizes the inspection benefits by maximizing the estimated total number of deficiencies that 

can be detected. Constraints (4) ensure that each ship can only be inspected by at most one PSCO. Constraints (5) and (6)

guarantee that a ship can only be inspected when it is at port and when the corresponding PSCO does not have lunch break.

Constraints (7) ensure that a PSCO can only inspect one ship in one time unit. Constrains (8) to (11) guarantee that if a ship

is inspected, it should be inspected during 4 consecutive time units, and the start inspection time unit is between 1 and 15.

Constraints (12) to (16) guarantee that each PSCO can have a one-hour consecutive lunch break between time units 7 and

12. Constraint (17) to (21) ensure the domain of the decision variables. 

5.2. PSCO scheduling model M2 

As the PSCOs are indifferent from each other, there will be an exponential number of optimal solutions to mathematical 

model M1, which will reduce the efficiency to solve M1. A possible approach is dynamic programming. For example, Wang

et al. (2018) applied dynamic programming for the selection of waste disposal ports in cruise shipping; Yi and Sutrisna

(2021) proposed a novel dynamic programming method that elegantly addresses the drone scheduling problem for con- 

struction site surveillance. However, after examination, we find that our problem suffers from the “curse-of-dimensionality”

and cannot use dynamic programming. As the total work time of a PSCO for one day is 8 hours and an inspection would

take 2 hours, a PSCO can inspect 0, 1, 2, 3, or 4 ships for one day. Therefore, the PSCO scheduling problem can be reformu-

lated as identifying and assigning the sets of ships that can be inspected by one PSCO to the available PSCOs. Define L as

the number of ships inspected by one PSCO, L = 0, 1, 2, 3, 4. Given the value for L , the total number of combinations of L

ships from the total | S | ships is C L | S| , C L | S| = ( 
| S| 
L 

) = 

| S| ! 
L !(| S|−L )! 

. Given a combination of L ships, denoted by set S ′ , S ′ ⊂S , | S ′ | = L .

we examine whether it is feasible to inspect all the ships in S ′ by one PSCO. If it is feasible, then we call set an inspection

template and our aim is to choose inspection templates (each template is assigned to one PSCO) that maximize the total

number of deficiencies that can be detected while ensuring a ship is included in at most one chosen template (i.e. a ship

is inspected at most once). Here the concept of “template” is similar with the concept of berth template ( Zhen, 2015 ) and

yard template ( Zhen 2016 ), which have been widely used in some pioneering work such as Zhen et al. (2011) in the field of

port and shipping management. 

To examine whether it is feasible to inspect all the ships in S ′ by one PSCO, | S ′ | = L , we note that a PSCO has to carry

out L + 1 activities to inspect all the ships in S ′ between time unit τ = 1 (8:00) and τ = 18 (17:00), that is, inspecting

each of the L ships and having lunch break. We define α as an activity, and each activity has a duration t α , an earliest start

time ω α , and a latest completion time ϖα . If an activity α is inspecting a ship, denoted by ship s , then t α = 4, ω α is the

start time of the ship’s berthing between τ = 1 and τ = 18 of the day, i.e., ω α = min { τ = 1 , ..., 18 | e s τ = 1 } , ϖα is the ship’s

departure time if it departs before τ = 18 and otherwise ϖα = 18, i.e., � α = max { τ = 1 , ..., 18 | e s τ = 1 } ; if an activity α is

having lunch break, then t α = 2, ω α = 7, ϖα = 12. There are a total of ( L + 1)! different sequences for the PSCO to conduct

the activities (note that some, or even all of the sequences may be infeasible). For a particular sequence, we denote the

activities carried out by α1 → α2 → ... → αL + 1 , that is, α� is the � th activity, t α� 
, ω α� 

, � α� 
are the duration, earliest start

time, and latest completion time of activity α� , respectively. To check whether the L + 1 activities can be carried out in the

above sequence, we define T � as decision variable representing the start time of carrying out activity α� , then the L + 1

activities can be carried out in the above sequence by one PSCO if and only if there is a solution T � , � = 1, ..., L + 1, that

satisfies the following constraints: 

T � ≥ ω α� 
, � = 1 , ..., L + 1 (22) 

T � + t α� 
− 1 ≤ � α� 

, � = 1 , ..., L + 1 (23) 

T � +1 ≥ T � + t α� 
� = 1 , ..., L. (24) 

Note that if an activity α� with duration t α� 
starts at the beginning of time unit T � , its completion time should be at the

end of time unit T � + t α� 
− 1 . 

Proposition 1: For an activity sequence , whether constraints (22)–(24) have a feasible solution can be checked below: for 

activity α1 , let its start time T ∗1 = ω α1 
; for activity αl , l = 2, ..., L + 1, let its start time T ∗� = max {T ∗

� −1 + t α� −1 
, ω α� 

} , � = 2,

..., L + 1; if T ∗� ≤ � α� 
− t α� 

+ 1 , l = 1, ..., L + 1, then the activity sequence is feasible; otherwise it is infeasible. 

Proof : 

The “if” part of the proposition is straightforward because it is easy to check that (T ∗� , � = 1 , ..., L + 1) is indeed feasible

to constraints (22)–(24). To prove the “only if” part, suppose that constraints (22)–(24) have a feasible solution (T # � , � =
1 , ..., L + 1) � = (T ∗� , � = 1 , ..., L + 1) . Denote by ˆ � the index of the first different elements of vectors (T # � , � = 1 , ..., L + 1) and
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(T ∗� , � = 1 , ..., L + 1) , that is T # � = T ∗� , � = 1 , ..., ̂  � − 1 and T # 
ˆ � 

� = T ∗
ˆ � 

. If ˆ � = 1 , we define a new vector (T & � , � = 1 , ..., L + 1) such

that T & 
1 

= ω α1 
and T & � = T # � , � = 2, ..., L + 1. If ˆ � = 2 , ..., L + 1 , we define a new vector (T & � , � = 1 , ..., L + 1) such that

T & � = T # � , � = 1 , ..., ̂  � − 1 , T & 
ˆ � 

= max {T & 
ˆ � −1 

+ t α ˆ � −1 
, ω α ˆ � 

} and T & � = T # � , � = 

ˆ � + 1 , ..., L + 1 . In both cases, it is easy to check that

(T & � , � = 1 , ..., L + 1) is feasible to constraints (22)–(24). We can now set (T ∗� , � = 1 , ..., L + 1) ← (T & � , � = 1 , ..., L + 1) and re-

peat the above procedure. It can be seen that by repeating the above procedure at most L + 1 times, we will generate a

feasible solution (T & � , � = 1 , ..., L + 1) that is identical to (T ∗� , � = 1 , ..., L + 1) . In other words, constraints (22)–(24) have a

feasible solution only if (T ∗� , � = 1 , ..., L + 1) is feasible. This concludes the proof of the proposition. �
We use the following example to illustrate the steps to decide whether an activity sequence α1 → α2 → ... → αL + 1 is 

feasible. 

Example 1 . Given L = 3 and S ′ = { s 1 , s 2 , s 3 } for activity sequence α1 → α2 → α3 → α4 . Particularly, activities α1 , α2 , and

α4 are ship inspections for s 1 , s 2 , and s 3 respectively and activity α3 is lunch break. The berthing periods of s 1 , s 2 , and s 3 are

during 8:00 to 13:00, 9:00 to 18:30, and 13:00 to 17:30, respectively. Therefore, we have ω α1 
= 1 and � α1 

= 10 for activity

α1 , ω α2 
= 3 and � α2 

= 18 for activity α2 , ω α3 
= 7 and � α3 

= 12 for activity α3 , and ω α4 
= 11 and � α4 

= 18 for activity

α4 . The earliest start time of each activity should be T ∗
1 

= ω α1 
= 1 , T ∗

2 
= max {T ∗

1 
+ 4 , ω α2 

} = 5 , T ∗
3 

= max {T ∗
2 

+ 4 , ω α3 
} =

9 , and T ∗
4 

= max {T ∗
3 

+ 2 , ω α4 
} = 11 . The earliest start time of each activity satisfies T ∗

1 
≤ � α1 

− 4 + 1 = 7 , T ∗
2 

≤ � α2 
− 4 +

1 = 15 , T ∗3 ≤ � α3 
− 2 + 1 = 11 , and T ∗4 ≤ � α4 

− 4 + 1 = 15 , and thus the activity sequence is feasible and S ′ is an inspection

template . �
Proposition 2: Given a combination of L = 1, 2, 3 ships denoted by S̄ , if it is not an inspection template , any set of L + 1

ships (denoted by ˆ S ) containing all ships in S̄ , i.e. S̄ ⊂ ˆ S cannot be an inspection template . 

Proposition 3: Given an inspection template containing L = 2, 3, 4 ships denoted by S̄ , all subsets of S̄ containing

L ′ = L − 1 ships are inspection templates . 

Proposition 2 and Proposition 3 are the basis of inspection template construction. They are intuitive and thus we omit 

their proof. Based on the two propositions, the following two properties of inspection templates can be derived to reduce the

trials and the total number of generated inspection templates . 

Property 1: If there is a combination with L = 1 ship associated with berthing period smaller than 4 time units or from

time unit 8 to time unit 11, or with zero predicted deficiency number, we can simply ignore it as it cannot be inspected

during its berthing period or inspecting the ship will not bring benefits. 

Property 2 : Candidate L ≥ 2 inspection templates can be formulated by combining all pairs of L − 1 inspection templates 

with the first L − 2 items the same. 

Property 1 and Property 2 can highly improve the efficiency of inspection templates generation. The overall procedure to 

generate the set of all inspection templates (denoted by H ) is shown in Procedure 1. 

After obtaining H and δη
s , s ∈ S , η ∈ H by executingProcedure 1, the estimated number of deficiencies that can be detected

in inspection template η is D η = 

∑ 

s ∈ S 
δη

s d s , η ∈ H . To assign the inspection templates to the PSCOs, we introduce binary decision

variable z η which is set to 1 if inspection template η ∈ H is adopted and 0, otherwise. The PSCO scheduling problem aiming

to maximize the total number of detected deficiencies based on inspection templates can be formulated by mathematical 

model M2. 

[M2] 

max 
∑ 

η∈ H 
D ηz η (25) 

s.t. ∑ 

η∈ H 
z η ≤ | P | (26) 

∑ 

η∈ H 
δη

s z η ≤ 1 , ∀ s ∈ S (27) 

z η ∈ { 0 , 1 } , ∀ η ∈ H . (28) 

Objective function (25) maximizes the estimated total number of deficiencies that can be detected. Constraint (26) en- 

sures that the total number of adopted inspection templates should be no more than the total number of PSCOs. Constraints

(27) guarantee that each ship can only be inspected at most once. 

5.3. PSCO scheduling model M3 

Model M2 considers all the inspection templates in H indifferently, which is time-consuming when | H | is large. Mean-

while, it is noted that if we reformulate constraints (27) which require that a ship can only be inspected at most once,

we can only consider the inspection templates that are not contained in any other inspection template(s) , which we denote

by un-dominated inspection templates , as inspecting them can always detect more deficiencies than inspecting the inspec- 

tion templates contained in them according to Property 1 . In this way, the number of inspection templates considered in
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the PSCO scheduling optimization model can be reduced largely. However, one problem is that the number of deficiencies 

of one ship might be calculated several times in the objective function of M2 as it can be contained in several inspection

templates selected by a solution. To overcome this issue, we further introduce binary decision variables ξ s , s ∈ S which is set

to 1 if ship s is inspected and 0, otherwise. In addition, we form set ˜ H which contains all un-dominated inspection templates

using Procedure 1 by adding only the inspection templates with L = 1, 2, 3 that cannot be further combined with others to

generate larger valid inspection templates and all the inspection templates with L = 4. Mathematical model M3 is developed 

based on inspection template set ˜ H and decision variables ξ s , s ∈ S and z η , η ∈ H to reduce the number of inspection templates

considered in the master problem as follows. 

[M3] 

max 
∑ 

s ∈ S 
d s ξs (29) 

s.t. 

ξs ≤
∑ 

˜ η∈ ̃ H 

δ ˜ η
s z ˜ η, ∀ s ∈ S (30) 

∑ 

˜ η∈ ̃ H 

z ˜ η ≤ | P | (31) 

z ˜ η ∈ { 0 , 1 } , ∀ ̃  η ∈ 

˜ H (32) 

ξs ∈ { 0 , 1 } , ∀ s ∈ S. (33) 

Like Eq. (25) , objective function (29) also maximizes the total estimated number of deficiencies that can be detected. 

Constraints (30) indicate the relationship between ξ s and z ˜ η . Constraints (31) require the maximum number of un-dominated 

inspection templates that can be selected. Constraints (32) and (33) guarantee the domain of the decision variables. It should 

be noted that although M3 does not require that each ship can only be inspected at most once, the objective function only

calculates its estimated deficiency number once it is inspected and thus model M3 is equivalent to model M2. 

To further improve the efficiency of model M3, we propose the following proposition: 

Proposition 4 : For two ships s 1 and s 2 , if d s 1 > d s 2 and { e s 2 τ | e s 2 τ = 1 , ∀ τ ∈ T } ⊆ { e s 1 τ | e s 1 τ = 1 , ∀ τ ∈ T } , i.e. ship s 1 has larger

estimated number of deficiencies than ship s 2 and the set of berthing period of ship s 2 is a sub-set of that of ship s 1 (we

denote the relationship between s 1 and s 2 by “s 1 dominates s 2 ”), we must have ξs 1 ≥ ξs 2 in an optimal solution. 

Proof : 

Consider two ships s 1 and s 2 with d s 1 > d s 2 and { e s 2 τ | e s 2 τ = 1 , ∀ τ ∈ T } ⊆ { e s 1 τ | e s 1 τ = 1 , ∀ τ ∈ T } , i.e. s 1 dominates s 2 . If an

optimal solution chooses a set of ships S ′ for inspection, there can be several situations regarding ships s 1 and s 2 : 

Situation 1: if s 1 ∈ S ′ and s 2 ∈ S ′ , ξs 1 ≥ ξs 2 is satisfied. 

Situation 2: if s 1 �∈ S ′ and s 2 �∈ S ′ , ξs 1 ≥ ξs 2 is satisfied. 

Situation 3: if s 1 ∈ S ′ and s 2 �∈ S ′ , ξs 1 ≥ ξs 2 is satisfied. 

Situation 4: if s 1 �∈ S ′ and s 2 ∈ S ′ , we can expect that another feasible set of ships ˜ S ′ formulated by substituting ship s 2 by

s 1 in S ′ can increase the value of the objective function by d s 1 − d s 2 and thus S ′ should not be an optimal solution, which

is contradictory to the given conditions. Therefore, Situation 4 cannot be a case in any optimal solution, and ξs 1 ≥ ξs 2 can

always be satisfied in the optimal solution(s). �
To incorporate Proposition 4 into model M3, we introduce a binary matrix B = [ b s ′ s ′ ′ ] | S | × | S | which can be derived directly

from ship visiting information and deficiency condition to indicate whether ship s ′ ∈ S dominates s ′ ′ ∈ S . If s ′ dominates s ′ ′ ,
we set b s ′ s ′ ′ = 1; otherwise, b s ′ s ′ ′ = 0. Especially, we require b s ′ s ′ ′ = 0 if s ′ = s ′ ′ . The following strengthened constraints

based on B can be added to M3 to improve its efficiency: 

ξs ′ − ξs ′′ ≥ b s ′ s ′′ − 1 , s ′ ∈ S, s ′′ ∈ S. (34) 

6. Computational experiments 

We take the port of Hong Kong as an example to validate the proposed PSCO scheduling models M1, M2, and M3.

Particularly, we first compare the computing performance of the three models in section 6.1 . Then, comparisons between 

the current and proposed PSCO scheduling models are conducted in section 6.2 . In section 6.3 , results of extensive sensitivity

analysis are presented to further validate the proposed models. 

6.1. Comparison of computing performance of M1, M2, and M3 

To compare the computing performance of M1, M2, and M3 (including generation of all inspection templates, un-dominated 

inspection templates , and binary matrix B = [ b s ′ s ′ ′ ] | S | × | S | ), we set the number of PSCOs to 4, 6, 8 and 10, and the number

of ships that need to be inspected to 30, 40, 50, and 60 and combine them one by one in several scenarios. Ships for
65 



R. Yan, S. Wang, J. Cao et al. Transportation Research Part B 149 (2021) 52–78 

Table 9 

Comparison of computing performance of M1, M2, and M3. 

No. of PSCOs Scenarios Model Number of ships 

30 40 50 60 

4 Average total computation time ∗ M1 5.75 7.80 10.18 13.35 

M2 0.48 2.30 9.11 25.47 

M3 0.46 2.09 7.95 23.89 

Standard deviation of computation time ∗ M1 4.21 2.69 7.98 7.51 

M2 0.18 0.74 3.52 8.65 

M3 0.16 0.64 2.87 8.01 

The number of inspection templates in H M2 1883.0 5465.8 13834.8 26972.7 

The number of un-dominated inspection templates in ˜ H M3 1189.6 3871.7 10456.4 21226.0 

(| ̃ H | − | H | ) / | H | × 100% \ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over random scheduling case \ 22.10% 34.57% 35.56% 43.72% 

Average gap between M1/M2/M3 and the perfect-forecast policy \ 9.64% 11.24% 16.28% 17.52% 

6 Average total computation time M1 19.16 30.85 36.26 47.98 

M2 0.47 2.32 8.58 25.06 

M3 0.46 2.07 7.83 23.25 

Standard deviation of computation time M1 10.74 13.49 23.90 28.24 

M2 0.18 0.70 3.37 8.13 

M3 0.15 0.63 3.16 6.61 

The number of inspection templates in H M2 1883.0 5465.8 13834.8 26972.7 

The number of un-dominated inspection templates in ˜ H M3 1189.6 3871.7 10456.4 21226.0 

(| ̃ H | − | H | ) / | H | × 100% \ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over random scheduling case \ 13.93% 20.17% 24.57% 29.81% 

Average gap between M1/M2/M3 and the perfect-forecast policy \ 5.88% 7.83% 10.90% 12.95% 

8 Average total computation time M1 31.97 64.18 102.95 195.14 

M2 0.52 2.21 8.22 24.78 

M3 0.49 2.00 7.66 24.04 

Standard deviation of computation time M1 57.54 48.71 70.15 257.11 

M2 0.23 0.67 3.08 7.39 

M3 0.23 0.62 2.83 8.03 

The number of inspection templates in H M2 1883.0 5465.8 13834.8 26972.7 

The number of un-dominated inspection templates in ˜ H M3 1189.6 3871.7 10456.4 21226.0 

(| ̃ H | − | H | ) / | H | × 100% \ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over random scheduling case \ 6.04% 13.74% 18.32% 24.73% 

Average gap between M1/M2/M3 and the perfect-forecast policy \ 4.19% 5.94% 7.52% 8.97% 

10 Average total computation time M1 89.53 614.45 295.13 377.39 

M2 0.49 2.24 8.53 25.22 

M3 0.43 2.05 7.46 22.36 

Standard deviation of computation time M1 195.82 1492.04 340.93 366.52 

M2 0.19 0.67 3.39 7.80 

M3 0.17 0.64 2.73 6.44 

The number of inspection templates in H M2 1883.0 5465.8 13834.8 26972.7 

The number of un-dominated inspection templates in ˜ H M3 1189.6 3871.7 10456.4 21226.0 

(| ̃ H | − | H | ) / | H | × 100% \ 36.82% 29.16% 24.42% 21.31% 

Average improvement of M1/M2/M3 over random scheduling case \ 1.21% 8.07% 13.90% 18.55% 

Average gap between M1/M2/M3 and the perfect-forecast policy \ 1.40% 3.94% 5.74% 6.47% 

Note ∗: the computation time of M2 includes the time to generate all inspection templates , and the computation time of M3 includes the time to 

generate matrix B and all un-dominated inspection templates . 

 

 

 

 

 

 

inspection are selected from test set i and the number of deficiencies of them is predicted by the XGBoost model developed

in Section 3 . We assume that a ship can arrive at a port at any time during a day, and their staying period ranges from

0 to 18 consecutive time units from 8:00 to 17:00. As all the PSCO scheduling models M1, M2, and M3 are integer linear

programming (ILP) models, they are solved by the off-the-shelf optimization solver CPLEX. In addition, we compare the 

performance of PSCO scheduling decisions generated by M1, M2, and M3 with the current greedy PSCO scheduling strategy 

applied at the Hong Kong port, whose detailed description is presented in Appendix D . We call the current scheduling

strategy “random scheduling case”, and it aims to assign as many ships as possible to each available PSCO for inspection

in a greedy manner. Besides, we present the performance of the proposed PSCO scheduling model utilizing the predicted 

deficiency number from a perfect-foresight prediction which knows the actual deficiency number of all ships in advance 

(denoted by “perfect-forecast policy”). The identified deficiency number based on the perfect-foresight policy is an upper 

bound in theory which cannot be achieved. 

All experiments are conducted on a laptop (Intel Core i7, 3.40 GHz, 16GB RAM) using programming language Python. The 

inspection templates in M2 are generated using Procedure 1 , and the un-dominated inspection templates in M3 are generated

based on Procedure 1 . Table 9 summarizes the computing performance of the three models, including the average compu- 

tation time (in CPU seconds), the standard deviation of computation time, the number of inspection templates generated, 

the number of un-dominated inspection templates generated, the reduction in percentage of the number of un-dominated 
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inspection templates compared to that of all the inspection templates , the average improvement of M1/M2/M3 over random 

scheduling case, and the average gap between M1/M2/M3 and the perfect-forecast policy in all cases of each scenario. 

For the average computation time, it is indicated in Table 9 that in almost all the cases, much less time is required to

solve M2 and M3 compared to the time used to solve M1, except when the number of PSCOs is 4 and the number of ships

is 60. The difference of the computation time between M1 and M2/M3 becomes larger as the number of PSCOs increases.

Meanwhile, the difference of the computation time between M2 and M3 shows an increasing trend when there are more 

visiting ships. To be more specific, when the number of PSCOs is fixed and the number of ships increases, i.e. from left to

right in each row of the table, the computation time of all the three models shows an increasing trend as expected.When

the number of ships is fixed and the number of PSCOs increases, i.e. from top to bottom in each column of the table, the

model computation time increases faster and faster in M1. Meanwhile, there are only some minor fluctuations in the model 

computation time of M2 and M3. This is because the number of PSCOs has no influence on the generation of inspection

templates and un-dominated inspection templates , which occupies most of the computation time of M2 and M3, respectively. 

The standard deviation of model computation time of M1 is much larger than that of M2 and M3 in most of the cases

listed in Table 9 , and M2 is a little bit larger than M3 in most cases. Particularly, in M1, when the number of ships is fixed

and the number of PSCOs increases, the standard deviation of computation time shows a rapid upward trend. There is also a

general upward trend in the standard deviation of computation time when the number of ships increases while the number 

of PSCOs remains unchanged in M1. Meanwhile, in M2 and M3 with similar pattern, the standard deviation of computation 

time increases dramatically when the number of ships increases given a certain number of PSCOs. When the number of 

PSCOs increases with a fixed number of ships, there are many fluctuations in the standard deviation of the computation 

time of both M2 and M3. 

When the number of visiting foreign ships increases from 30 to 60, the numbers of inspection templates and un-dominated 

inspection templates grow, while the difference between them decreases. On average, the number of un-dominated inspection 

templates considered in M3 is about 72% of the inspection templates considered in M2. In addition, M1/M2/M3 perform 

better than the currently implemented random PSCO scheduling strategy at the ports in all cases. When the number of 

PSCOs increases given a certain number of visiting ships, the advantage of M1/M2/M3 over random scheduling and the 

advantage of perfect-forecast policy over M1/M2/M3 are reduce. When there are more visiting ships while the number of 

PSCOs is fixed, both the gap between M1/M2/M3 and random scheduling and the gap between perfect-forecast policy and 

M1/M2/M3 increase. 

To summarize, the average model computation time and its standard deviation of M2 are much smaller than those of 

M1 in most cases, and the average total model computation time and its standard deviation of M3 are smaller than those

of M2 in most cases as shown in Table 9 . Besides, model computation time of M2 and M3 is less sensitive to the increase

of the number of PSCOs given a fixed number of ships, as the process to generate inspection templates and un-dominated 

inspection templates is not influenced by the number of PSCOs. In all scenarios, the proposed M1/M2/M3 perform better 

than the current random scheduling strategy, and the gap between M1/M2/M3 and the perfect-forecast policy decreases 

when there are more PSCOs or fewer visiting ships. We can therefore conclude that M3 is the most efficient, stable, and

flexible model among M1, M2, and M3. Especially, M3 is more suitable to be applied to the ports where there are a larger

number of available PSCOs or more visiting ships. 

6.2. Comparison of current and the proposed PSCO scheduling strategies 

We compare the performance of current PSCO scheduling strategy applied at port and the proposed models in this 

section. For each day, we randomly select 20 ships from test set i as the visiting ships that need to be inspected at the

Hong Kong port. We further assume that the number of PSCOs on duty for that day is 3, and their daily work time is fixed

as mentioned in section 3 . As M1, M2 and M3 are equivalent and section 6.1 shows that M3 is more efficient than M1 and

M2, the following experiments are only conducted on M3. We randomly generate 30 groups of ships from test set i in the

experiment. The performance of random scheduling case (average of 100 runs), M3, and the perfect-forecast policy solved 

by M3 and their comparisons are presented in Table 10 . 

Table 10 shows that the average improvement of M3 with the prediction of XGBoost as the input over the random PSCO

scheduling case is over 20%. This implies that the combination of XGBoost model for ship deficiency number prediction and 

the mathematical models M1/M2/M3 for PSCO scheduling can identify 20% more deficiencies than the current PSCO schedul- 

ing scheme with the same inspection resources. Besides, the gap between the proposed model and the perfect-forecast 

policy is about 8%, which indicates that the proposed combined model can identify about 92% of all existing deficiencies. 

6.3. Sensitivity analysis 

In this section, we analyze how the number of ships to be inspected, the number of available PSCOs for conducting

inspection, and ship berthing duration and period will influence the performance of M3 (and M1, M2). Four groups of 

sensitivity analysis (SA) are performed: SA1: different numbers of ships for inspection; SA2: different numbers of available 

PSCOs; SA3: different berthing durations of ships; SA4: different berthing periods of ships. In each group of SA, the number

of deficiencies identified is calculated based on 10 runs. 
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Table 10 

Performance and comparison of PSCO scheduling models. 

Group Actual identified 

deficiency number 

of random 

scheduling case 

Actual identified 

deficiency number 

of M3 

Identified 

deficiency number 

under 

perfect-forecast 

policy as solved by 

M3 

Improvement of 

M3 over random 

scheduling case 

Gap between M3 

and the 

perfect-forecast 

policy 

1 16 24 30 46.6% 20.0% 

2 59 68 71 15.4% 4.2% 

3 36 37 43 4.0% 14.0% 

4 46 74 78 61.8% 5.1% 

5 56 57 65 2.3% 12.3% 

6 53 58 62 10.4% 6.5% 

7 27 41 41 51.5% 0.0% 

8 65 73 78 12.6% 6.4% 

9 55 71 72 29.6% 1.4% 

10 37 41 51 9.9% 19.6% 

11 43 57 65 33.8% 12.3% 

12 17 25 31 46.6% 19.4% 

13 59 75 79 27.0% 5.1% 

14 42 47 63 12.5% 25.4% 

15 42 54 56 29.6% 3.6% 

16 60 69 75 15.2% 8.0% 

17 59 66 66 11.6% 0.0% 

18 41 48 55 15.9% 12.7% 

19 39 55 59 39.8% 6.8% 

20 55 66 67 20.8% 1.5% 

21 61 64 68 5.4% 5.9% 

22 46 49 54 7.2% 9.3% 

23 34 48 49 42.5% 2.0% 

24 33 45 46 36.2% 2.2% 

25 32 36 37 11.6% 2.7% 

26 63 77 78 22.1% 1.3% 

27 29 39 47 35.4% 17.0% 

28 47 55 58 18.3% 5.2% 

29 51 56 65 9.5% 13.8% 

30 50 61 72 22.2% 15.3% 

Average 45.0067 54.5333 59.3667 21.2% 8.1% 

Table 11 

Performance of the groups in SA1. 

Group SA1G1 SA1G2 SA1G3 SA1G4 SA1G5 SA1G6 SA1G7 SA1G8 

Number of ships 15 20 25 30 35 40 45 50 

Random scheduling case 34.1 44.4 48.3 52.9 54.5 55.7 55.9 57.4 

M3 41.2 54.4 58.0 66.8 71.5 78.8 81.2 84.0 

Perfect-foresight policy 44.3 59.1 66.1 76.6 82.9 91.4 97.7 104.8 

Superiority of M3 over random scheduling case 20.9% 22.5% 20.0% 26.2% 31.2% 41.4% 45.3% 46.3% 

Gap between M3 andthe perfect-foresight policy 7.5% 8.6% 14.0% 14.7% 15.9% 16.0% 20.3% 24.8% 

 

 

 

 

 

 

 

6.3.1. SA1: different numbers of ships for inspection 

First, we analyze how the number of ships that need to be inspected would influence the performance of M3. We set the

number of ships to 15, 20, 25, 30, 35, 40, 45, and 50, respectively while fixing the number of PSCOs to 3 in SA1G1 to SA1G8.

The performance of random scheduling case (based on 100 runs), M3, and the perfect-foresight policy and their comparison 

are presented in Table 11 . 

Table 11 shows that when the number of ships increases from 15 to 50 while the number of PSCOs remains unchanged,

the numbers of deficiencies identified in random scheduling case, M3, and the perfect-foresight policy increase. This can 

be explained as follows. In random scheduling case which aims to assign as many ships to each PSCO as possible, a larger

number of ships can be inspected by one PSCO as the total number of visiting ships increases. For M3 and the perfect-

foresight policy, although the inspection resources are fixed, more ships with larger number of deficiencies can be selected 

for inspection when the total number of visiting ships grows. Meanwhile, Table 11 also indicates that both the superiority of

M3 over random scheduling case and the gap between M3 and the perfect-foresight policy show an increasing trend. This 

is because as the perfect-foresight policy can capture the ships with more deficiencies more efficiently than M3, the gap 

between them became larger as the number of visiting ships increases. This explanation can also be applied for the changes

in the gap between M3 and random scheduling case. 
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Table 12 

Performance of the groups in SA2. 

Group SA2G1 SA2G2 SA2G3 SA2G4 

Number of PSCOs 2 3 4 5 

Random scheduling case 37.4 53.1 63.9 70.5 

M3 51.8 66.8 77.8 86.4 

Perfect-foresight policy 61.6 76.6 86.1 92.9 

Superiority of M3 over random scheduling case 38.5% 25.8% 21.8% 22.6% 

Gap between M3 andthe perfect-foresight policy 18.9% 14.7% 10.7% 7.5% 

Table 13 

Performance of the groups in SA3. 

Group SA3G1 SA3G2 SA3G3 SA3G4 SA3G5 SA3G6 SA3G7 SA3G8 

Berthing duration of all ships 2 hours 3 hours 4 hours 5 hours 6 hours 7 hours 8 hours 9 hours 

Random scheduling case 38.3 42.8 48.4 50.7 52.2 45.9 48.8 51.3 

M3 58.9 62.6 66.4 72.4 74.4 72.0 74.2 75.0 

Perfect-foresight policy 71.8 82.9 89.3 94.5 96.0 90.7 95.1 95.0 

Superiority of M3 over random scheduling case 53.6% 46.1% 37.2% 42.9% 42.4% 56.8% 52.0% 46.1% 

Gap between M3 andthe perfect-foresight policy 21.9% 32.4% 34.5% 30.5% 29.0% 26.0% 28.2% 26.7% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.2. SA2: different numbers of available PSCOs 

Second, we analyze how the number of available PSCOs to carry out PSC inspection would influence the performance 

of M3. We set the number of ships for inspection to 30, and the number of PSCOs to 2, 3, 4, and 5 in SA2G1 to SA2G4,

respectively. The performance of random scheduling case (based on 100 runs), M3, and the perfect-foresight policy and their 

comparison are presented in Table 12 . 

Table 12 indicates that when the number of ships that need to be inspected remains to be 30 while the number of

PSCOs increases from 2 to 5, the total number of deficiencies that can be detected grows as expected. In addition, both the

superiority of M3 over random scheduling case and the gap between M3 and the perfect-foresight policy show a decreasing 

trend. Particularly, such decreasing trend is more obvious in the gap between M3 and the perfect-foresight policy. This can 

be explained by the fact that as the number of available PSCOs increases, more ships can be assigned for inspection and

thus to reduce the superiority of models with better performance as more ships with large number of deficiencies can 

be captured. Especially, for M3 which is based on the prediction given by XGBoost, more ships with larger real deficiency

number can be captured for inspection although the XGBoost model is not perfect. As a consequence, the gap between M3

and the perfect-foresight policy gets closer more quickly than the superiority of M3 over random scheduling case as the 

number of inspected ships grows. 

6.3.3. SA3: different berthing durations of ships 

Third, we analyze model performance when the berthing duration of ships varies. We assume that the number of ships 

for inspection is 30 and the number of available PSCOs is 3. As only when a ship berths at a port for no less than two

hours can the ship be inspected, we consider eight groups where the berthing duration of all ships is 2, 3, …., 8, 9 hours

respectively denoted by SA3G1 to SA3G8. The consecutive berthing time units are randomly generated for all ships in each 

group. The performance of random scheduling case (based on 100 runs), M3, and the perfect-foresight policy and their 

comparison are presented in Table 13 . 

Table 13 shows that as the berthing duration of all ships increases, the total number of deficiencies detected also shows

an upward trend although there are fluctuations due to the randomness in ship conditions. Meanwhile, there is no obvious 

pattern in the change of the gap between random scheduling case and M3 and the gap between M3 and the perfect-

foresight policy when ship berthing duration increases. The superiority of M3 over random scheduling case is maximized at 

56.8% when the berthing duration of all ships is 7 hours. The gap between M3 and the perfect-foresight policy is maximized

at 34.5% when the berthing duration of all ships is 4 hours. 

6.3.4. SA4: different berthing periods of ships 

Fourth, we analyze how ship berthing period (during the work time of PSCOs) can influence the model performance. 

We set the number of ships for inspection to be 30 and the number of available PSCOs to be 3. We consider four groups

of berthing periods as denoted by SA4G1 to SA4G4, respectively. In SA4G1, the berthing period of all ships is only in the

morning (from 8:00 to 12:30). In SA4G2, the berthing period of all ships is only in the afternoon (from 12:30 to 17:00).

In SA4G3, the berthing period of one-third of the ships is in the morning, in the afternoon, and both in the morning and

in the afternoon, respectively. In SA4G4, the berthing period of half of the ships is in the morning and the other half is

in the afternoon. The berthing duration is randomly generated for all ships. The performance and comparison of random 

scheduling case (based on 100 runs), M3, and the perfect-foresight policy are presented in Table 14 . 

Table 14 shows that the number of deficiencies identified is smaller when there is more overlap in ship berthing pe-

riod (i.e. in SA4G1 and SA4G2) than less overlap (i.e. in SA4G3 and SA4G4). Meanwhile, the average gaps between random
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Table 14 

Performance of the groups in SA4. 

Group SA4G1 SA4G2 SA4G3 SA4G4 

Distribution of berthing period All ships in the 

morning 

All ships in the 

afternoon 

1/3 ships in the 

morning, 1/3 ships in 

the afternoon, and 1/3 

ships in the morning 

and afternoon 

1/2 ships in the 

morning and 1/2 ships 

in the afternoon 

Random scheduling case 23.1 22.2 47.1 50.5 

M3 41.4 40.8 69.5 66.2 

Perfect-foresight policy 61.1 59.1 88.2 87.1 

Superiority of M3 over random scheduling case 79.4% 83.5% 47.7% 31.0% 

Gap between M3 and the perfect-foresight policy 47.6% 44.9% 26.9% 31.6% 

Procedure 1. 

Generation of the set of inspection templates H . 

Input : the set of foreign ships that need to be inspected S , duration of a PSC inspection, ship 

berthing information e s τ , s ∈ S , τ = 1 , ..., T , the duration and period of PSCO lunch break, the total 

number of time units T . 

Output : the set of all feasible inspection templates H , binary parameter δη
s , s ∈ S , η ∈ H indicating 

whether ship s is contained in inspection template η. 

Initialize H = ∅ , δη
s , s ∈ S , η ∈ H . 

for L = 0, 1, 2, 3, 4 do if L < 2: Formulate all combinations containing L ships that can be inspected 

based on Property 1 from S denoted by Q. 

else: Formulate the combinations containing L ships as denoted by Q such that each combination 

contains two items of L − 1 ships from H and they have the same L − 2 ship based on Property 2 . 

end if 

for each combination ˆ Q ∈ Q do Initialize feasibility = False. 

Formulate set Q that contains all permutations (i.e. activity sequences ) of the activities of inspecting 

the ships in ˆ Q and having lunch break. 

for each activity sequenceq ∈ Q do 

Test the feasibility of q using Proposition 1 . 

if q is feasible: 

Add ˆ Q to H by updating H = H ∪ ˆ Q . Update parameter δη
s = 1 , s ∈ ˆ Q , η ∈ H . 

Update feasibility = True. 

Break 

else: 

Continue 

end if 

end for 

if feasibility = True: 

Break 

else: 

Continue 

end for 

end for 

Return H and δη
s . 

 

 

 

 

 

scheduling case and M3 as well as between M3 and the perfect-foresight policy in SA4G1 and SA4G2 are much larger than

those in SA4G3 and SA4G4. This is also because more ships can be inspected when their berthing period is more scattered,

which would reduce the superiority of prediction models with better performance. 

7. Conclusion 

PSC inspection is a safeguard of maritime safety, the marine environment, and the rights of seafarers. To improve ship 

selection efficiency, this study first proposes an accurate XGBoost model to predict ship deficiency number. Particularly, 

domain knowledge regarding ship flag, RO, and company performance is considered in the XGBoost model, which improves 

its accuracy and fairness. Based on the predictions, an initial PSCO scheduling model is proposed to assign the PSCOs to

inspect the predicted high-risk ships which also considers the number of available PSCOs and their work and rest time. 

To reduce problem size and improve model computation efficiency and flexibility, concepts of inspection template and un- 

dominated inspection template are further proposed and incorporated in the PSCO scheduling models. 

In numerical experiments, we use the real PSC inspection records at the Hong Kong port from January 2016 to December

2018 as the case dataset to construct and validate the proposed models. Numerical experiments show that the MSE and 

MAE of the XGBoost model is 12.5 and 2.4 in the test set, respectively, which are better than the other popular machine

learning models compared in this study. Moreover,when ship flag performance gets worse from white to grey and from 
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grey to black, 0.8 and 0.2 more deficiency will be detected on average, respectively. When RO performance gets worse from

high to medium, 0.3 more deficiency will be detected on average. When company performance gets worse from high to 

medium, from medium to low, and from low to very low, 0.5, 0.8, and 1.5 more deficiencies will be detected on average,

respectively. When combining the predictions with PSCO scheduling models, it is shown that the superiority of the proposed 

PSCO scheduling models over the current inspection scheme regarding the number of deficiencies identified is more than 

20%. The gap between the proposed model and the model under perfect-forecast policy is about 8% regarding the number 

of deficiencies identified. Meanwhile, computation efficiency and flexibility of the PSCO scheduling model with inspection 

templates are higher than the initial PSCO scheduling model. Problem size can be reduced and the computation efficiency 

can be further improved in the PSCO scheduling model which takes un-dominated inspection templates and the relationship 

between each of the two ships into consideration. Extensive sensitivity analysis shows that when changing the numbers of 

ships for inspection, the numbers of available PSCOs, the berthing durations of ships, and the berthing periods of ships, the

performance of the proposed PSCO scheduling model is stable and it is always better than the current model used at ports.

This study addresses an important practical problem in maritime industry. Theoretically, it proposes the first ship risk 

prediction model for PSC inspection considering domain knowledge. It also develops the first PSCO scheduling models based 

on the predictions to efficiently allocate scarce inspection resources for ship inspection. Moreover, the concepts of inspection 

template and un-dominated inspection template are proposed and incorporated in the PSCO scheduling model to improve 

computation efficiency and model flexibility. Practically, it helps port states to identify high-risk ships and assign the PSCOs 

more efficiently. Therefore, the main objectives of PSC to eliminate substandard shipping and safeguard the sea can be 

enhanced. 
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Appendix A. Introduction ofprediction target and features 

Table A1 
Table A1 

Variable explanation, encoding method, and descriptive statistics. 

Variable name Explanation Encoding Mean 

value 

Min 

value 

Max 

value 

deficiency number The number of deficiencies 

identified in the current PSC 

initial inspection. 

No encoding 4.31 0 51 

age The time interval (in years) 

between the keel laid date and 

the current PSC inspection date. 

No encoding 10.8 0 47 

GT A nonlinear measure of a ship’s 

internal volume, with 100 cubic 

feet as the unit. 

No encoding 44,908 497 

266,681 

length The overall maximum length of a 

ship (in meters). 

No encoding 214.88 32.29 400 

depth The vertical distance (in meters) 

measured from the top of the keel 

to the upper deck at side 

measured inside the plating. 

No encoding 17.79 4.28 36.02 

beam The width of ship hull (in meters). No encoding 31.93 7.38 60.05 

( continued on next page ) 
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Table A1 ( continued ) 

type Ships in the dataset are classified 

into the following types: bulk 

carrier, container ship, general 

cargo/multipurpose, passenger 

ship, tanker, and other. 

One-hot encoding: is_bulk_carrier: 

1 for bulk carrier and 0, 

otherwise; is_container_ship: 1 for 

container ship and 0, otherwise; 

is_ general cargo/multipurpose: 1 

for general cargo/multipurpose 

and 0, otherwise; is_ 

passenger_ship: 1 for passenger 

ship and 0, otherwise; is_tanker: 1 

for tanker and 0, otherwise; 

is_other: 1 for other ship types 

and 0, otherwise. 

\ \ \ 

flag performance Ship flag performance is 

calculated based on the flag 

Black-Grey-White list provided by 

Tokyo MoU ( Tokyo MoU, 2018 ). 

Label encoding: white- > 1 ∗; grey- 

> 2; black- > 3. 

\ \ \ 

RO performance Ship RO performance is calculated 

based on RO performance list 

provided by Tokyo MoU 

( Tokyo MoU, 2018 ). 

Label encoding: high- > 1; 

medium- > 2; low- > 3. 

\ \ \ 

company 

performance 

Ship company performance is 

calculated based on company 

performance matrix provided by 

Tokyo MoU ( Tokyo MoU, 2018 ) 

Label encoding: high- > 1; 

medium- > 2; low- > 3; very 

low- > 4. 

\ \ \ 

last inspection 

date 

The time interval between the last 

and current PSC initial inspections 

within Tokyo MoU (in months). 

For ships that are inspected for 

the first time (i.e. with no 

previous inspection records), the 

state of this variable is set to be 

“−1”. 

No encoding. 10.2 0 180.7 

last deficiency 

number 

The number of deficiencies 

identified in last PSC initial 

inspection within Tokyo MoU. For 

ships that are inspected for the 

first time, the state of this variable 

is set to be “−1”. 

No encoding. 2.46 0 38 

total detentions The total number of detentions of 

a ship in all previous PSC 

inspections since the keel laid 

date. 

No encoding. 0.59 0 18 

the number of flag 

changes 

The total number of times of ship 

flag change from keel laid date to 

the current PSC inspection date. 

No encoding. 0.66 0 8 

casualty in last 5 

years 

A binary variable indicating 

whether a ship was involved in 

casualties in the last five years. 

One-hot encoding: 

casualty-in-5-years: 1 for any 

casualty occurs in the last 5 years 

and 0, otherwise. 

\ \ \ 

Note ∗: this indicates that the state of “white” is encoded to be “1”. 

 

 

 

Appendix B. Detailed construction process of a XGBoost model 

The detailed procedure of constructing a XGBoost model is as follows ( Chen, 2014 ; Chen and Guestrin, 2016 ). Given a

dataset with n samples and m features, denoted by D = {( x i , y i ), i = 1, ..., n }, x i ∈ R m , y i ∈ R , a tree ensemble model uses K

additive functions to predict the target y i (the predicted value is denoted by ˆ y i ) is 

ˆ y i = φ( x i ) = 

K ∑ 

k =1 

f k ( x i ) , f k ∈ F , (B1) 

where F is a space of functions that contains all CART based regression trees. In XGBoost, the learning objective function to

be minimized, which aims to draw a balance between model accuracy and complexity, is as follows: 

ob j = 

n ∑ 

i =1 

l( y i , ̂  y i ) + 

K ∑ 

k =1 

�( f k ) . (B2) 
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The first term in Eq. (B2) is the training loss regarding all training samples, and the second term is the tree complexity.

In regression problems, a common choice for the training loss function is half of the MSE, which is given by 

n ∑ 

i =1 

l( y i , ̂  y i ) = 

1 

2 

n ∑ 

i =1 

( y i − ˆ y i ) 
2 
, (B3) 

where the multiplication of 1/2 is for the ease of calculation. Eq. (B3) is also the loss function used in this study. As XGBoost

is developed based on additive training, the prediction value after finishing 0 to t = 1, ..., K iterations can be written as 

ˆ y (0) 
i 

= 0 , 

ˆ y (1) 
i 

= f 1 ( x i ) = 

ˆ y (0) 
i 

+ f 1 ( x i ) , 

ˆ y (2) 
i 

= f 1 ( x i ) + f 2 ( x i ) = 

ˆ y (1) 
i 

+ f 2 ( x i ) , 
... 

ˆ y (t) 
i 

= 

t ∑ 

k =1 

f k ( x i ) = 

ˆ y (t−1) 
i 

+ f t ( x i ) . 

(B4) 

By combining Eqs. (B2) to ( B4 ), the objective function in the t th iteration can be given by 

ob j 
(t) = 

1 
2 

n ∑ 

i =1 

( y i − ˆ y (t) 
i 

) 
2 + 

t ∑ 

k =1 

�( f k ) 

= 

1 
2 

n ∑ 

i =1 

( y i − ( ̂  y (t−1) 
i 

+ f t ( x i ))) 
2 + �( f t ) + 

t−1 ∑ 

k =1 

�( f k ) . 

(B5) 

Eq. (B5) contains three terms. The first term is the loss function of the t th iteration. The second term is the penalty

for tree complexity in the t th iteration. The last term is the sum of penalties for tree complexity of all the first t − 1

iterations. Define g t 
i 
= ∂ 

ˆ y 
(t−1) 
i 

l( y i , ̂  y (t−1) 
i 

) and h t 
i 
= ∂ 2 

ˆ y 
(t−1) 
i 

l( y i , ̂  y (t−1) 
i 

) as the first and second order gradients of the loss function

in Eq. (B5) . The concrete expressions for g t 
i 

and h t 
i 

can be given if the loss function is explicitly defined. As we choose

Eq. (B3) as the loss function in this study, we can have g t 
i 
= ∂ 

ˆ y 
(t−1) 
i 

l( y i , ̂  y (t−1) 
i 

) = ˆ y (t−1) 
i 

− y i and h t 
i 
= ∂ 2 

ˆ y 
(t−1) 
i 

l( y i , ̂  y (t−1) 
i 

) = 1 . It

should be mentioned that the values for g t 
i 

and h t 
i 

for sample i of the t th iteration are fixed as they are only related to the

output generated in the ( t − 1)th iteration. The second order Taylor expansion at ˆ y (t−1) 
i 

of Eq. (B5) should be 

ob j 
(t) � 

n ∑ 

i =1 

[ 

1 

2 

n ∑ 

i =1 

( y i − ˆ y (t−1) 
i 

) 
2 + g t i f t ( x i ) + 

1 

2 

h 

t 
i f t ( x i ) 

2 

] 

+ �( f t ) + 

t−1 ∑ 

k =1 

�( f k ) . (B6) 

In the first term of Eq. (B6) , 1 
2 

n ∑ 

i =1 

( y i − ˆ y (t−1) 
i 

) 
2 

is the loss of the ( t − 1)th iteration and thus it is a constant. The last

term of Eq. (B6) , i.e. 
t−1 ∑ 

k =1 

�( f k ) , is the penalty of tree complexity of all the first t − 1 iterations and thus is also a constant.

All the constants can be removed. Therefore, we represent the objective function in the t th iteration as 

ob j (t) = 

n ∑ 

i =1 

[ 
g t i f t ( x i ) + 

1 

2 

h 

t 
i f t ( x i ) 

2 
] 

+ �( f t ) . (B7) 

The goal of the t th iteration is to construct a tree to minimize Eq. (B7) , which requires to decide the outputs of the leaf

nodes and the structure of the tree. We first assume that the tree structure is fixed and discuss the way to determine the

outputs of the leaf nodes. Define a tree by a vector of outputs (which are also called weights) in leaves, and a leaf index

mapping function that maps a sample to a leaf as 

f t (x ) = w 

t 
q t (x ) , w 

t ∈ R 

T t , q t : R 

m → { 1 , 2 , ..., T t } , (B8) 

where T t is the number of leaves in the tree, w 

t is the vector of outputs in all the leaves, and q t is the function assigning

each sample to the corresponding leaf in the t th iteration. We use the following toy example to exemplify the notations

used in Eq. (B8) . 

Suppose that we have a total of six samples in a toy training set, and the developed regression tree in the t th iteration

is shown in Figure B1 . The notations in Eq. (10) can be exemplified as follows: T t = 3, w 

t = {2, −1, 0.5}, q t (ship1) = 1,

q t (ship2) = 1, q t (ship3) = 1, q t (ship4) = 2, q t (ship5) = 2, and q t (ship6) = 3. It should be noted that the leaf output in

XGBoost is different from the leaf output in traditional CART regression tree: the leaf output in XGBoost is calculated by

optimization models whereas the leaf output in CART regression tree is simply the mean of the output of the samples in

that leaf node in regression problems. The tree complexity in the objective function of XGBoost is defined as 

�( f t ) = γ T t + 

1 

2 

λ
T t ∑ 

j=1 

w 

t 
j 

2 
, (B9) 
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Fig. B1. . A toy regression tree in the t th iteration of a XGBoost model. 

 

 

 

 

 

 

where the first term is the penalty on the total number of leaves and the second term is the penalty on the sum of squares

of the weights in the leaves in the t th iteration. γ and λ are two hyperparameters that need to be tuned and are used to

balance model accuracy and complexity. Define the sample set in leaf j on the tree of the t th iteration as I t 
j 
= { i | q t ( x i ) = j} ,

i = 1, ..., n , we can regroup the objective function in Eq. (B7) by leaf and combine with Eq. (B9) to be 

ob j (t) = 

n ∑ 

i =1 

[
g t 

i 
f t ( x i ) + 

1 
2 

h 

t 
i 
f t ( x i ) 

2 
]

+ �( f t ) 

= 

n ∑ 

i =1 

[ 
g t 

i 
w 

t 
q t ( x i ) 

+ 

1 
2 

h 

t 
i 
w 

t 
q t ( x i ) 

2 
] 

+ γ T t + 

1 
2 
λ

T t ∑ 

j=1 

w 

t 
j 

2 

= 

T t ∑ 

j=1 

[ 

( 
∑ 

i ∈ I t 
j 

g t 
i 
) w 

t 
j 
+ 

1 
2 
( 
∑ 

i ∈ I t 
j 

h 

t 
i 
+ λ) w 

t 
j 

2 

] 

+ γ T t . 

(B10) 

For simplicity, we define G 

t 
j 
= 

∑ 

i ∈ I t 
j 

g t 
i 

and H 

t 
j 
= 

∑ 

i ∈ I t 
j 

h t 
i 
, Eq. (B10) can be written as 

ob j (t) = 

T t ∑ 

j=1 

[ 
G 

t 
j w 

t 
j + 

1 

2 

(H 

t 
j + λ) w 

t 
j 

2 
] 

+ γ T t . (B11) 

As we have assumed that the tree structure (i.e. q t ) is fixed, and thus G 

t 
j 
, H 

t 
j 
, and T t are all fixed. The optimal output w 

t 
j 

(denoted by w 

t 
j 
∗) can be found by letting the first derivative of obj ( t ) with respect to w 

t 
j 

be 0, which is 

w 

t 
j ∗ = −

G 

t 
j 

H 

t 
j 
+ λ

. (B12) 

The optimal value of the objective function is 

ob j (t) ∗ = −1 

2 

T t ∑ 

j=1 

G 

t 
j 

2 

H 

t 
j 
+ λ

+ γ T t . (B13) 

After the outputs in the tree leaves are determined by assuming the tree structure is given, the last question is how

to decide the tree structure (i.e. split a node into two child nodes) in an XGBoost tree. In practice, we grow the tree in a

greedy manner by splitting nodes from the tree root by enumerating all values (or quantiles of values) of all features (or a

subset of features) and calculating the reduction in objective function after adding a candidate split by 

gain = ob j (t) 
L + R − (ob j (t) 

L 
+ ob j (t) 

R 
) 

= 

1 
2 

[ 
G t L 

2 

H t 
L 
+ λ + 

G t R 
2 

H t 
R 
+ λ − (G t L + G t R ) 

2 

H t 
L 
+ H t 

R 
+ λ

] 
− γ , 

(B14) 
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where ob j (t) 
L + R , ob j (t) 

L 
, and ob j (t) 

R 
are the objective functions of the node for splitting, the objective function of the left child 

node if adding this candidate split, and the objective function of the right child node if adding this candidate split, respec-

tively. gain is calculated for each candidate split of the current node. As G 

t 
L 

and G 

t 
R 

( H 

t 
L 

and H 

t 
R 

) are the sum of first (second)

derivative of the samples contained in left and right child leaf respectively, different splits would lead to different values 

for G 

t 
L 

and G 

t 
R 

( H 

t 
L 

and H 

t 
R 

). If gain < 0, the candidate split is not considered. For all positive values for gain , we choose the

feature and value corresponding to the maximum value of gain to split the node as it could reach the maximum reduction

of the objective function after the splitting. 

Appendix C. Monotonic constraints imposed on multiple features 

We also present the situation where we have more than one feature imposed by monotonic constraint. Suppose we have 

a total of m features, and opposite monotonic constraints are imposed on two features, namely m 1 (monotonically increas- 

ing) and m 2 (monotonically decreasing). As mentioned in Section 4.2 , for each feature imposed by monotonic constraint, it 

works in the context that all the features (including other features imposed by monotonic constraint, if any, and normal 

features) are with the same value respectively except for this monotonic feature in the samples. This means that although 

we put monotonic properties on two features, they can be viewed as independent of each other. To be more specific, for

m 1 , it works in the samples with feature m 2 and all the other m − 2 features the same; for m 2 , it works in the samples

where feature m 1 and all the other m − 2 features are the same. In this way, to illustrate the splitting process using either

of the two features imposed by monotonic constraint, we can simplify the tree structure to only contain the nodes using

the monotonic features concerned for splitting and their child nodes. Then, we can further split the tree into two sub-trees

where each tree containing nodes using either monotonic feature for splitting and their child nodes like that presented in 

Figure C1 . We further use the following example to present the process. Suppose we have a total of m = 3 features, and we

have a total of n = 7 samples as shown as follows. 

For samples 1 to 4, monotonically increasing constraint on m 1 should be followed. For samples 1 and 5 to 7, monoton-

ically decreasing constraint on m 2 should be followed. Suppose the developed tree structure as well as the splitting point 

and samples contained in each node is shown in Figure C1 . 
Fig. C1. Tree structure to demonstrate monotonicity. 

Table C1 

Samples used to show model monotonicity. 

Sample ID /Feature value m 1 (monotonically increasing) m 2 (monotonically decreasing) m 3 (no constraint) 

1 1 1 0 

2 2 1 0 

3 3 1 0 

4 4 1 0 

5 1 2 0 

6 1 3 0 

7 1 4 0 
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Fig. C2. Structure of sub-tree containing nodes use m 1 as splitting feature. 

Fig. C3. Structure of sub-tree containing nodes use m 2 as splitting feature. 

 

 

 

 

 

 

 

 

 

 

It is indicated in Figure C1 that as the tree grows, m 1 and m 2 are interactively used as the splitting feature. As m 1 and

m 2 are independent, we can divide the developed tree into two sub-trees with each sub-tree only containing the nodes and

their child nodes using m 1 or m 2 as the splitting feature as shown as Figure C2 and Figure C3 . 

In Figure C2 , we can expect that the predicted target value of sample 1 is the smallest, followed by sample 2 and sample

3, and finally sample 4 if the monotonic constraints shown in Figure 1 are imposed. Similarly, if we apply the opposite

monotonic constraints shown in Figure 1 to Figure C3 , we can expect that the predicted outputs of samples 1 and 5 are the

largest, followed by sample 6, and then by sample 7. If three or more features are imposed by monotonic constraints, and

no matter if they are opposite, they can be processed in the above way to guarantee their respective monotonicity. 

Appendix D. Current PSCO scheduling strategy 

The current PSCO scheduling strategy adopted at the Hong Kong port is in a greedy manner: it aims to assign as many

ships as possible to one PSCO for inspection on the morning of each workday. The set of ships assigned to one PSCO should

satisfy that (a) they are berthing at the port when inspecting. (b) The PSCO can only inspect one ship in a time unit. (c) The

lunch break and off work time of the PSCO should be guaranteed. Denote the number of PSCOs on duty for that day by | P |.

The procedure of the current scheduling strategy is presented in Figure D1 . 
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Fig. D1. Procedure of current PSCO scheduling strategy. 
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