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Abstract. We first propose a semi-proximal augmented Lagrangian-based decomposition
method to directly solve the primal form of a convex composite quadratic conic-
programming problem with a primal block-angular structure. Using our algorithmic
framework, we are able to naturally derive several well-known augmented Lagrangian-
based decomposition methods for stochastic programming, such as the diagonal qua-
dratic approximation method of Mulvey and Ruszczyński. Although it is natural to
develop an augmented Lagrangian decomposition algorithm based on the primal
problem, here, we demonstrate that it is, in fact, numerically more economical to solve
the dual problem by an appropriately designed decomposition algorithm. In partic-
ular, we propose a semi-proximal symmetric Gauss–Seidel-based alternating direction
method of multipliers (sGS-ADMM) for solving the corresponding dual problem.
Numerical results show that our dual-based sGS-ADMM algorithm can very efficiently
solve some very large instances of primal block-angular convex quadratic-program-
ming problems. For example, one instance with more than 300,000 linear constraints
and 12.5 million nonnegative variables is solved to the accuracy of 10-5 in the relative
KKT residual in less than a minute on a modest desktop computer.

Funding: D. Sun received financial support from The Hong Kong Polytechnic University [2017 Post-
doctoral Fellowships Scheme]. K.-C. Toh received financial support from the Ministry of Education,
Singapore, Academic Research Fund [Grant R-146-000-257-112).

Keywords: diagonal quadratic approximation method • symmetric Gauss–Seidel decomposition • ADMM •
semi-proximal augmented Lagrangian method • primal block-angular structure

1. Introduction
In this paper, we focus on solving convex composite quadratic conic-programming problems with a primal block-
angular structure. In particular, the convex objective function of the optimization problem is separable with
respect to N blocks of variables, and there are N groups of constraints, each involving only a single distinct
block of variables. At the same time, all the blocks of variables are connected by a group of linking linear
constraints. Without specially designed strategies to exploit the underlying block-angular structure, a generic
algorithm can be inefficient for solving such a problem because the constraints cannot be decomposed completely.

In practical applications, quadratic and linear problems with primal block-angular structure appear in many
contexts, such as multicommodity flow problems (Assad 1978) and statistical disclosure control (Hundepool
et al. 2012). These problems are often very large-scale in practice, and even highly practical interior-point
methods, such as those implemented in Gurobi or Mosek, may not be efficient enough to solve them. In the
literature, specialized algorithms designed to solve these problems have been studied extensively. Three of the
most widely known algorithmic classes are (i) decomposition methods based on augmented Lagrangian
and proximal-point algorithms (Ruszczyński 1986, 1989, Rockafellar and Wets 1991, Mulvey and Ruszczyński
1992, Ruszczyński 1995, 1999); (ii) interior-point log-barrier Lagrangian decomposition methods, such as those
studied in Zhao (1999, 2001, 2005) and Mehrotra and Ozevin (2007, 2009); and (iii) standard interior-point
methods that incorporate novel numerical linear algebraic techniques to exploit the underlying block-angular
structure when solving the large linear systems arising at each iteration—for example, in Birge and Qi (1988),
Choi and Goldfarb (1993), Gondzio et al. (1997), Schultz and Meyer (1991), Todd (1988), and Sun and
Liu (2006), as well as Gondzio and Sarkissian (2003) and Gondzio and Grothey (2009).

254

 pp. 254–277Vol. 3, No. 3, Summer 2021,

http://pubsonline.informs.org/journal/ijoo
mailto:mattohkc@math.nus.edu.sg
https://orcid.org/0000-0002-2348-6133
https://orcid.org/0000-0002-2348-6133
mailto:defeng.sun@polyu.edu.hk
https://orcid.org/0000-0003-0481-272X
https://orcid.org/0000-0003-0481-272X
mailto:mattohkc@math.nus.edu.sg
https://orcid.org/0000-0001-7204-8933
https://orcid.org/0000-0001-7204-8933
https://doi.org/10.1287/ijoo.2019.0048


Besides quadratic and linear problems, semidefinite programming (SDP) problems with primal block-
angular structure are beginning to appear in the literature more frequently. Such problems are gaining more
attention as researchers become more sophisticated in using SDP to model their application problems. For
example, Hanasusanto and Kuhn (2018) reformulated a two-stage distributionally robust linear program as a
completely positive cone program that has a block-angular structure and applied the reformulation to solve a
multi-item newsvendor problem. Although linear-programming problems with primal block-angular struc-
ture have been studied extensively, the more complicated SDP version has yet to attract much attention. Apart
from Mehrotra and Ozevin (2007), Sivaramakrishnan (2010), and Zhu and Ariyawansa (2011), we are not
aware of other works.

By focusing on designing efficient algorithms for solving general conic-programming problems with primal
block-angular structure, we can, in general, also use the same algorithmic framework to solve the primal
block-angular linear-programming and quadratic-programming (QP) problems efficiently through designing
novel numerical linear algebraic techniques to exploit the underlying structure. In this paper, our main
objective is to design efficient, robust, and distributed algorithms for solving large-scale conic-programming
problems with primal block-angular structure.

The existing approaches in the literature naturally inspired us to start by designing a decomposition-based
algorithm to directly solve the primal problem. More specifically, we will design an inexact semi-proximal
augmented Lagrangian method (spALM) for the primal problem, which attempts to exploit the block-angular
structure to efficiently solve the spALM subproblem at each iteration in parallel. Our algorithm is motivated
by the recent theoretical advances in the inexact semi-proximal augmented Lagrangian method that is de-
veloped in Chen et al. (2017), where one of the key advantages of the algorithm is that the subproblems can be
solved approximately with progressive accuracy. Note that, following their terminology, “semi-proximal”
means that the proximal term we use in the algorithm is a seminorm induced by a suitable positive semi-
definite matrix. The primary motivation for using a positive semidefinite matrix rather than the usual positive
definite one is to allow a more general choice of the proximal term. We will also elucidate the connection
of our algorithm to the well-known diagonal quadratic approximation (DQA) algorithm of Mulvey and
Ruszczyński (1992).

In the pioneering work of Kontogiorgis et al. (1996), an alternating direction method of multipliers
(ADMM)-based framework was designed for a class of convex primal block-angular problems wherein the
variables are duplicated, and auxiliary variables are introduced. This approach allowed the first ADMM
subproblem at each iteration to be solvable in a distributed fashion. Additionally, the second ADMM subproblem
is a simple quadratic program, which appears to be readily solvable at the first glance. However, the problem
might still be difficult to solve if the size of the original problem is very large. To overcome the potential
computational inefficiency induced by the extra variables and constraints, and also the relatively expensive
step of having to solve a QP subproblem at each iteration in the primal approach, in this paper, we will
solve (P) via its corresponding dual problem. Specifically, we will design and implement a semi-proximal
symmetric Gauss–Seidel-based alternating direction method of multipliers (sGS-ADMM) to directly solve the
dual problem, which will also solve the primal problem as a by-product. The advantage of tackling the dual
problem directly is that no extra variables are introduced to decouple the constraints, and no coupled QP
subproblems are needed to be solved at each iteration. We should mention that the sGS-ADMM we proposed
in this paper is designed based on the abstract framework developed in Chen et al. (2017).

We consider the following primal block-angular optimization problem:

P( ) min
∑N
i�0

fi xi( ) :� ∑N
i�0

θi xi( ) + 1
2〈xi,Qixi〉 + 〈ci, xi〉[ ]

s.t.

A0 A1 . . . AN

0 D1 0 ..
.

0 0 . .
. ..

.

0 0 0 DN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
B

x0
x1

..

.

xN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

b0
b1

..

.

bN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

xi ∈ Ki, i � 0, 1, . . . ,N,

where for each i � 0, 1, . . . ,N; θi : X i → (−∞,∞] is a proper closed convex function; Qi : X i → X i is a positive
semidefinite linear operator; Ai : X i → Y0 and Di : X i → Y i are given linear maps; ci ∈ X i and bi ∈ Y i are given
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data; Ki ⊂ X i is a closed convex set that is typically a cone, but not necessarily so; and X i,Y i are real finite
dimensional Euclidean spaces, each equipped with an inner product 〈·, ·〉 and its induced norm ·‖ ‖. We should
mention that the addition of the proper closed convex functions in the objective can give us the flexibility to
handle nonlinear terms, or even nonsmooth terms, such as �1 regularization terms. In the setting of a doubly
nonnegative SDP where xi belongs to an SDP cone (Sni+ ), and at the same time also required to be nonnegative,
one can handle the intersection of these conic constraints by setting θi(xi) � δ(Rni×ni+ )(xi) and Ki � S

ni+ . Here, for a
given convex set K in an Euclidean space, δK is the indicator function defined by:

δK x( ) � 0, if x ∈ K,
+∞, otherwise.

{
We should also mention that a constraint of the form bi −Dixi ∈ Ci, where Ci is a closed convex set can be put in
the form in (P) by introducing a slack variable si, so that [Di, I](xi; si) � bi and (xi; si) ∈ Ki × Ci.

We assume that the constraint matrix B in (P) has full row-rank. Let ni � dim(X i) and mi � dim(Y i), then (P)
has

∑N
i�0 mi linear constraints and

∑N
i�0 ni decision variables. Thus, even if mi and/or ni are moderate numbers,

the overall dimension of the problem can grow rapidly when N is large.
In the important special case of a block-angular linear-programming problem for which Qi � 0 and θi � 0

for all i � 0, . . . ,N, the Dantzig–Wolfe decomposition method is a well-known classical approach for solv-
ing such a problem. The method may be viewed as a dual approach based on the partial Lagrangian function∑N

i�0 〈ci, xi〉 − 〈u, b0 −∑N
i�0 Aixi〉, and has the attractive property that at each iteration, xi can be computed

individually from a smaller linear program (LP), for i � 0, . . . ,N. However, it is generally acknowledged that
an augmented Lagrangian approach has a number of important advantages over the Lagrangian dual method.
For example, Ruszczyński (1995) stated that the dual approach based on the ordinary Lagrangian could suffer
from the nonuniqueness of solutions of the subproblems. In addition, it is numerically easier to solve the
subproblems of the augmented Lagrangian approach. In that paper, the well-known diagonal quadratic
approximation method is introduced. Given that DQA is a very successful decomposition method, and that it
has been a popular tool in stochastic programming, it is, thus, worthwhile for us to analyze its connection to
the spALM algorithm we have proposed to see whether further enhancements are possible.

To summarize, our first contribution is in proposing several variants of augmented Lagrangian-based
algorithms for directly solving the primal form (P) of the convex composite quadratic conic-programming
problem with a primal block-angular structure. We also show that they can be considered as generalizations of
the well-known DQA method. Although primal-based algorithms appear to be the most natural ones for
solving the problem (P), we demonstrate in this paper that a suitably designed dual-based algorithm can be
more efficient. In fact, we are not aware of a systematic comparison of the performance of primal-based
algorithms versus dual-based algorithms, even for the case of linear primal block-angular problems. Our
second contribution is in the design and implementation of a specialized algorithm (semi-proximal sGS-
ADMM) for solving the dual problem of (P). We also develop essential numerical procedures for the efficient
implementation of the algorithm. The algorithm is easy to implement and is highly amenable to paralleli-
zation. Hence, we expect it to be highly scalable for solving large-scale problems with millions of variables and
constraints. Finally, we have conducted comprehensive numerical experiments to evaluate the performance of
our algorithms for solving (P) and its dual problem against some other highly competitive state-of-the-art
solvers, such as the BlockIP solver in Castro (2016).

This paper is organized as follows. We derive the dual of the primal block-angular problem (P) in Section 2.
In Section 3, we present our inexact semi-proximal augmented Lagrangian methods for solving the primal
problem (P). We also elucidate the connection of a certain variant of the spALM to the well-known DQA
algorithm. In Section 4, we propose a semi-proximal sGS-ADMM for solving the dual problem of (P) and
describe its efficient implementation. For all the algorithms we introduce, we conduct comprehensive nu-
merical experiments to evaluate their performance, and the numerical results are reported in Sections 3.3
and 5. We conclude the paper in the final section.

1.1. Notation
We denote [P;Q] or (P;Q) as the matrix obtained by appending the matrix Q to the last row of the matrix P,

whereas we denote [P,Q] or (P,Q) as the matrix obtained by appending Q to the last column of matrix P,
assuming that they have the same number of columns or rows, respectively. We also use the same notation
symbolically for P and Q, which are linear maps with compatible domains and codomains.
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For any linear map T : X → Y, we denote its adjoint as T ∗. If X � Y, and T is self-adjoint and positive
semidefinite, then, for any x ∈ X , we use the notation ‖x‖T :� ̅̅̅̅̅̅̅̅̅̅〈x,T x〉√

. Note that ·‖ ‖T is merely a seminorm if
T is not positive definite.

Let f : X → (−∞,+∞] be an arbitrary closed proper convex function. We denote dom f as its effective
domain and ∂f as its subdifferential mapping. The Fenchel conjugate function of f is denoted as f ∗.

The Moreau–Yosida proximal mapping of f is defined by Proxf (y) :� argminx{ f (x) + 1
2 ‖x − y‖2}.

diag(M) denotes the vector extracted from the diagonal entries of a matrix M, whereas diag(M1,M2, . . . ,Mk)
denotes the block diagonal matrix constructed from given square matrices M1,M2, . . . ,Mk.

ΠK(·) is the projection operator onto the convex set K, which is defined by∏
K

x( ) :� argmin
y

1
2

x − y‖ ‖2 | y ∈ K

{ }
.

2. Derivation of the Dual of (P)
For notational convenience, we define

X � X0 ×X1 × · · · × XN , Y � Y0 × Y1 × · · · × YN , K � K0 ×K1 × · · · ×KN . (1)
Every x ∈ X , y ∈ Y, c ∈ X , and b ∈ Y can be expressed as

x � x0; x1; · · · ; xN( ), y � y0; y1; · · · ; yN( )
, c � c0; c1; · · · ; cN( ), b � b0; b1; · · · ; bN( ). (2)

We also define A, Q, and θ as follows:

A � A0,A1, . . . ,AN[ ], Q � diag(Q0,Q1, . . . ,QN), θ x( ) � ∑N
i�0

θi xi( ). (3)

Using the notation in (1)–(3), we can write (P) compactly in the form of a general convex composite quadratic
conic-programming problem:

min θ x( ) + 1
2
〈x,Qx〉 + 〈c, x〉 | Bx − b � 0, x ∈ K

{ }
. (4)

In order to derive its dual problem, we introduce two auxiliary variables u, v ∈ X , to decouple the variables for
the smooth part of the objective function (the quadratic-linear term 1

2 〈x,Qx〉 + 〈c, x〉) from the possibly nonsmooth
term θ, and the constraint “x ∈ K.” By doing so, Problem (4) can equivalently be written as follows:

min θ u( ) + 1
2 〈x,Qx〉 + 〈c, x〉 + δK v( )

s.t. Bx − b � 0, u − x � 0, v − x � 0.
(5)

Consider the following Lagrangian function for (5):

L x, u, v; y, s, z
( ) � θ u( ) + 1

2
〈x,Qx〉 + 〈c, x〉 + δK v( ) − 〈y,Bx − b〉 − 〈s, x − u〉 − 〈z, x − v〉

� 1
2
〈x,Qx〉 + 〈c −B∗y − s − z, x〉 + θ u( ) + 〈s,u〉 + δK v( ) + 〈z, v〉 + 〈y, b〉,

where x,u, v, s, z ∈ X , y ∈ Y. Then, the dual of (5) is given by

max
y,s,z

inf
x,u,v

L x, u, v; y, s, z
( )

� max
y,s,z

inf
x

1
2
〈x,Qx〉 + 〈c −B∗y − s − z, x〉

[ ]
+ inf

u
θ u( ) + 〈s, u〉[ ] + inf

v
δK v( ) + 〈z, v〉[ ] + 〈y, b〉

{ }
.

Note that in the above, we used “inf” because for some given dual variables y, s, z, the Lagrangian function
L(x, u, v; y, s, z) may approach −∞ when we take infimum over the primal variables x,u, v.
To obtain the dual problem more explicitly, we consider the inner infimum problems with respect to the

variables x, u, and v below. From the definition of Fenchel conjugate functions, we have

inf
u

θ u( ) + 〈s, u〉[ ] � −θ∗ −s( ); inf
v

δK v( ) + 〈z, v〉[ ] � −δ∗K −z( ).
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Now, for a given subspace W ⊆ X containing Range(Q), the range space of Q, we have

inf
x

1
2
〈x,Qx〉 + 〈c − B∗y − s − z, x〉

{ }
� − 1

2 〈w,Qw〉, if c −B∗y − s − z � −Qw for some w ∈ W,
−∞, otherwise.

{
We should emphasize that the result above is invariant to the choice of W as long as it contains Range(Q).
Specifically, for any solution w′ to the optimality condition Qx � −(c −B∗y − s − z), one can express it as
w′ � w + w⊥, with w ∈ W and w⊥ ∈ W⊥ (the orthogonal complement of W). Now, as long as Range(Q) ⊂ W,
we have W⊥ ⊂ Null(Q), and hence 〈w′,Qw′〉 � 〈w,Qw〉. The purpose of having the flexibility of choosing W is
for the convergence of the sGS-ADMM algorithm that we will design later for solving the dual problem. More
specifically, because Q is only assumed to be positive semidefinite, a certain linear system involving Q in the
sGS-ADMM algorithm might be singular, and the sequence of iterates generated by the algorithm may be
unbounded. But by choosing the subspace W � Range(Q), we can remove the issues of singularity and
unboundedness; see Section 4.2.2 for more details.

With the simplification in the last paragraph, the dual problem of (5) (and, hence, (P)) is given more
explicitly as follows:

−min θ∗ −s( ) + 1
2 〈w,Qw〉 − 〈b, y〉 + δ∗K −z( )

s.t. −Qw + B∗y + s + z � c,

s ∈ X , y ∈ Y, w ∈ W.

(6)

Assuming that both the primal and dual problems satisfy the (generalized) Slater’s condition, then the optimal
solutions for both problems exist, and they satisfy the following Karush–Kuhn–Tucker (KKT) optimality
conditions (Karush 1939, Kuhn and Tucker 1951):

Bx − b � 0,
−Qw +B∗y + s + z − c � 0, Qw −Qx � 0, w ∈ W,
−s ∈ ∂θ x( ) ⇔ x − Proxθ x − s( ) � 0,
x −ΠK x − z( ) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (7)

It is not difficult to check that for all z � (z0; z1; . . . ; zN), s � (s0; s1; . . . ; sN) ∈ X , we have

δ∗K −z( ) � ∑N
i�0

δ∗Ki
−zi( ), θ∗ −s( ) � ∑N

i�0
θ∗i −si( ). (8)

By applying the structure in (1)–(3) and (8) to (6), we obtain explicitly the dual of (P):

D( ) −min
∑N
i�0

θ∗i −si( ) + δ∗Ki
−zi( ) + 1

2
〈wi,Qiwi〉 − 〈bi, yi〉

[ ]

s.t.

A∗
0

A∗
1

..

.

A∗
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y0 +

−Q0w0 + s0 + z0
D∗

1y1 −Q1w1 + s1 + z1

..

.

D∗
NyN −QNwN + sN + zN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� c,

wi ∈ Wi, i � 0, 1, . . . ,N,

(9)

where for each i � 0, 1, . . . ,N, Wi ⊂ X i is a given subspace containing Range(Qi).

3. Inexact Semi-proximal Augmented Lagrangian Methods for the Primal Problem (P)
Following the existing approaches in the literature, such as in Mulvey and Ruszczyński (1992), Rockafellar and
Wets (1991), and Ruszczyński (1986, 1989, 1995, 1999), it is natural for us to first attempt to design augmented
Lagrangian-based decomposition algorithms for the primal problem (P). To do so, first we rewrite (P) in the
following form:

min
∑N
i�0

fi xi( ) + δFi xi( )[ ] | Ax � b0, x � x0; x1; . . . ; xN( ) ∈ X
{ }

, (10)
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where F0 � K0, and Fi � {xi ∈ X i | Dixi � bi, xi ∈ Ki}, i � 1, . . . ,N. For a given parameter σ > 0, we consider the
following augmented Lagrangian function associated with (10):

Lσ x; y0
( ) � ∑N

i�0
fi xi( ) + δFi xi( )[ ] + σ

2
Ax − b0 − σ−1y0

⃦⃦ ⃦⃦2 − 1
2σ

y0‖ ‖2. (11)

The augmented Lagrangian method for solving (10) has the following template.

ALM. Given σ > 0 and y00 ∈ Y0. Perform the following steps at the k-th iteration for k � 0, 1, . . .
Step 1. xk+1 ≈ argmin{Lσ(x; yk0) | x ∈ X}
Step 2. yk+10 � yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the step length (Bertsekas 1975).
Because of the presence of the term σ

2 Ax − b0 − σ−1y0
⃦⃦ ⃦⃦2 in Lσ, the subproblem in Step 1 of the ALM is not

decomposable. This is an undesirable feature of the method, in which it destroys the computationally attractive
separable structure in the Dantzig–Wolfe decomposition method.

Here, we propose to add a semi-proximal term to the augmented Lagrangian function to overcome the difficulty
of nonseparability. In this case, the function Lσ(x; yk0) in Step 1 of ALM is majorized by an additional semi-proximal
term at the point xk—that is, instead of the problem in Step 1 of ALM, we solve

xk+1 ≈ argmin
x

Lσ
(
x; yk0

) + σ

2
x − xk‖ ‖2

T

{ }
,

where T is a given positive semidefinite self-adjoint linear operator, which should be chosen appropriately to
decompose the computation of the xi’s in Step 1 of ALM, while at the same time, the added proximal term
should be as small as possible in order not to perturb Lσ(x; yk0) by too much. In this paper, we choose T to be
the following positive semidefinite linear operator:

T � diag(J 0, . . . ,J N) −A∗A, (12)
where J i � βiI +A∗

i Ai, with βi � ∑N
j�0,j ��i A∗

i Aj
⃦⃦ ⃦⃦

2, for each i � 0, 1, . . . ,N, and ·‖ ‖2 denotes the spectral norm.
The special choice of T in (12) is especially a good one when Ai and Aj are nearly orthogonal to one another
for most of the index pairs (i, j)—in which case, A∗

i Aj
⃦⃦ ⃦⃦

2 will take on a small value relative to Ai‖ ‖2 + Aj
⃦⃦ ⃦⃦

2,
and, hence, βi will also be a small constant.

With the choice in (12), we can decompose the computation of xk+1 into the computation of its individual blocks
by using the following equality:

Lσ x; yk0
( ) + σ

2
x − xk‖ ‖2

T � ∑N
i�0

fi xi( ) + δFi xi( )( ) + σ

2
Ax − b0 − σ−1y0

⃦⃦ ⃦⃦2 − 1
2σ

y0‖ ‖2 + σ

2
x − xk‖ ‖2

T

� ∑N
i�0

fi xi( ) + δFi xi( )( ) − 1
2σ

y0‖ ‖2

+σ

2
x, A∗A + T

( )
x

〈 〉
− 2 x,A∗ b0 + σ−1y0

( ) + T xk
〈 〉

+ b0 + σ−1y0
⃦⃦ ⃦⃦2 + xk‖ ‖T

[ ]
� ∑N

i�0
fi xi( ) + δFi xi( ) + σ

2
〈xi,J ixi〉 − 2 xi,A∗

i b0 + σ−1y0 −Axk
( ) + J ixki

〈 〉[ ]( )
+ σ

2
b0 + σ−1y0

⃦⃦ ⃦⃦2 + xk‖ ‖T
[ ]

− 1
2σ

y0‖ ‖2. (13)
Based on the above equality, the inexact semi-proximal ALM (spALM) for solving the primal block-angular
problem (P) through the formulation in (10) is given as follows.

spALM. Given σ > 0 and y00 ∈ Y0. Let {εk} be a given summable sequence of nonnegative numbers. Perform the
following steps at the kth iteration for k � 0, 1, . . .

Step 1. Compute

xk+1 ≈ x̂k+1 :� argmin
x∈X

Lσ x; yk0
( ) + σ

2
x − xk‖ ‖2

T

{ }
, (14)

with residual

dk+1 ∈ ∂xLσ xk+1; yk0
( ) + σT xk+1 − xk

( )
, (15)
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satisfying dk+1‖ ‖ ≤ εk. Let Gi :� Qi + σJ i, αk
i :� Qixki + ci + σA∗

i (Axk − b0 − σ−1yk0) − Gixki . Because of the separa-
bility of the variables in (14) because of the specially chosen T , one can compute in parallel for
i � 0, 1, . . . ,N,

xk+1i ≈ x̂k+1i :� argmin
xi

θi xi( ) + 1
2
〈xi,Gixi〉 + 〈αk

i , xi〉 | xi ∈ Fi

{ }
, (16)

with the residual dk+1i :� vk+1i + Gixk+1i + αk
i for some vk+1i ∈ ∂(θi + δFi)(xk+1i ) and satisfying

dk+1i

⃦⃦⃦ ⃦⃦⃦ ≤ 1̅̅̅̅̅̅̅̅
N + 1

√ εk. (17)

Step 2. yk+10 � yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

Observe that with the addition of the semi-proximal term σ
2 x − xk‖ ‖2

T to the augmented Lagrangian function
in Step 1 of spALM, we have decomposed the large coupled problem involving x in ALM into N + 1 smaller
independent problems that can be solved in parallel. For the case of a quadratic or linear program, we can
employ a powerful solver such as Gurobi or Mosek to efficiently solve these smaller problems.

In order to judge how accurately the decomposed subproblems in Step 1 must be solved, we need to analyze
the stopping condition for (16) in detail—that is, we need to evaluate dk+1i by estimating vk+1i for i � 0, 1, . . . ,N.
This can be done by considering the dual of the Subproblem (16), which can be written as:

−min θ∗i −si( ) + 1
2 〈xi,Gixi〉 − 〈bi, yi〉 + δ∗Ki

−zi( )
s.t. −Gixi +D∗

i yi + si + zi � αk
i ,

si ∈ X i, yi ∈ Y i, xi ∈ X i, i � 1, . . . ,N.

(18)

Note that for i � 0, we have a similar problem as the above, but the terms involving yi are absent. For the
discussion below, we will just focus on the case where i � 1, . . . ,N; the case for i � 0 can be derived similarly.
We can estimate vk+1i by setting

vk+1i � −sk+1i −D∗
i y

k+1
i − zk+1i ∈ ∂ θi + δFi

( )
xk+1i

( )
,

for a computed dual solution (xk+1i , yk+1i , sk+1i , zk+1i ) of (18) at the (k + 1)-th iteration satisfying −sk+1i ∈ ∂θi(xk+1i )
and −zk+1i ∈ ∂δKi(xk+1i ). (Note that one can show that −D∗

i y
k+1
i − zk+1i ∈ ∂δFi (xk+1i ).) From here, it follows that

dk+1i � vk+1i + Gixk+1i + αk
i is the residual of the equality constraint in the Dual Problem (18).

Remark 1. In the spALM algorithm, some of the dual variables for (D) are not explicitly constructed. Here,
we describe how they can be estimated. Recall that for (D), we want to obtain

−Qixi +A∗
i y0 +D∗

i yi + si + zi − ci � 0 ∀ i � 0, 1, . . . ,N.

Note that for convenience, we introduced D∗
0 � 0. From the KKT conditions for (16) and (18), we have the

following relation for a computed solution (xk+1i , yk+1i , sk+1i , zk+1i ) of (18):
−Gixk+1i +D∗

i y
k+1
i + sk+1i + zk+1i − αk

i �: Rd
i ≈ 0.

By using the expression for Gi, αk
i , and yk+10 , we obtain that

−Qixk+1i +A∗
i y

k+1
0 +D∗

i y
k+1
i + sk+1i + zk+1i − ci

� Rd
i + σJ i xk+1i − xki

( ) + σA∗
i A xk − xk+1

( ) + τ − 1( )σA∗
i b0 −Axk+1
( )

.

Note that the right-hand-side quantity in the above equation will converge to zero based on the convergence of
spALM and the KKT conditions for (16) and (18). Thus, by using the dual variables computed from solving (18),
we can generate the dual variables for (D), where we have estimated wk+1

i for (D) by setting it to be xk+1i .

3.1. Convergence of the Inexact spALM
The convergence of the inexact spALM for solving (10) can be established readily by using known results in
Chen et al. (2019). To do that, we need to first reformulate (10) into the form required in Chen et al. (2019)
as follows:

min h x( ) + ψ x( ) | Ax � b0, x � x0; x1; . . . ; xN( ) ∈ X{ }
, (19)
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where h(x) � ∑N
i�0[12 〈xi,Qixi〉 + 〈ci, xi〉] and ψ(x) � ∑N

i�0[θi(xi) + δFi (xi)]. Its corresponding KKT residual mapping
is given by

R x, y0
( ) � b0 −Ax

x − Proxψ x −Qx − c −A∗y0( )( )
∀ x ∈ X , y0 ∈ Y0.

Then (x, y0) is a solution of the KKT system of (19) if and only if R(x, y0) � 0.
Next we state the global convergence theorem of the inexact spALM for the convenience of the reader.

Define the self-adjoint positive definite linear operator V : X → X by

V :� τσ Q + σT + 2 − τ

6
σAA∗

( )
,

where τ ∈ (0, 2) is the steplength in the spALM. The global convergence of the inexact spALM is given in the
following theorem.

Theorem 1. Assume that the solution set to the KKT system of (10) is nonempty and (x, y0) is a solution. Then, the sequence{(xk, yk0)} generated by spALM is well-defined such that for any k ≥ 1,

xk+1 − x̂k+1
⃦⃦ ⃦⃦2

Q+σT +σAA∗ ≤ dk+1, xk+1 − x̂k+1
〈 〉

,

and for all k � 0, 1, . . .,

xk+1 − x
⃦⃦ ⃦⃦2

V̂
+ yk+10 − y0

⃦⃦⃦ ⃦⃦⃦2( )
− xk − x

⃦⃦ ⃦⃦2
V̂
+ yk0 − y0

⃦⃦⃦ ⃦⃦⃦2( )
≤ − 2 − τ

3τ
yk0 − yk+10

⃦⃦ ⃦⃦2 + xk+1 − xk
⃦⃦ ⃦⃦2

V
− 2τσ〈dk, xk+1 − x〉

( )
,

where V̂ � V + 2−τ
6 σAA∗. Moreover, the sequence {(xk, yk0)} converges to a solution to the KKT system of (10).

Proof. Our algorithm can be viewed as a special case of the inexact majorized indefinite-proximal ALM algorithm
proposed in Chen et al. (2019). Thus, the result can be proved directly from the convergence result in Chen et al.
(2019, theorem 1). □

The local linear convergence of spALM can also be established if the KKT residual mapping R satisfies the
following error bound condition: There exist positive constants κ and r such that dist((x, y0),Ω) ≤ κ R(x, y0)⃦⃦ ⃦⃦
for all (x, y0) satisfying (x, y0) − (x∗, y∗0)

⃦⃦ ⃦⃦ ≤ r, where Ω is the solution set of (19) and (x∗, y∗0) is a particular
solution of (19). In order to save some space, we will not state the theorem here, but refer the reader to Chen
et al. (2019, theorem 2).

3.2. Derivation of a New Diagonal Quadratic Approximation Method and Its Connection to the DQA
Method of Ruszczyński

In Ruszczyński (1989) and Mulvey and Ruszczyński (1992), the diagonal quadratic approximation augmented
Lagrangian method was proposed to solve a subclass of problems of the form (P). As already mentioned, DQA
is a very successful decomposition method that is frequently used in stochastic programming.

Given the success of the DQA method, it is natural for us to look for an extension of the method to solve the
more general problem (P). Here, our goal is to derive a new variant of the DQA method based on algorithm
ALM. For the ease of reference, we call this new variant ALM-DQA-mod. The idea behind the derivation of the
new method is that, instead of adding a proximal term to the augmented Lagrangian function Lσ(x; yk0) in
Step 1 of ALM to decompose the computation of xk+1, we apply a proximal gradient method to solve the problem,
min{Lσ(x; yk0) | x ∈ X}, in Step 1 directly. In the proximal gradient method, we add a suitable proximal term to
decompose the inner computation of the variable x. Specifically, starting from the initial point x̂0 � xk, the sth
step of the proximal gradient method solves the following subproblem to update x̂s—that is,

x̂s+1 ≈ argmin Lσ x; yk0
( ) + σ

2
x − x̂s‖ ‖2

T̂
| x ∈ X

}
, s � 0, 1, . . . ,

{
where the proximal term σ

2 x − x̂s‖ ‖2
T̂

is added to decompose the computation of x̂s+1. In the above, the linear
operator T̂ is given by

T̂ � diag(E0, . . . ,EN) −A∗A, (21)
where Ei � (N + 1)A∗

i Ai for all i � 0, 1, . . . ,N. Note that it is not difficult to show that T̂ � 0.

261
Lam, Sun, and Toh: Semi-proximal ALM for Primal Block-Angular CCQCPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 3, pp. 254–277, © 2021 INFORMS



By expanding the function Lσ(x; yk0) + σ
2 x − x̂s‖ ‖2

T̂
as a separable function of the blocks xi for i � 0, 1, . . . ,N

as in (13), we see that the computation of x̂s+1i can be done in a separable manner. The details of our
ALM-DQA-mod algorithm are given as follows.

ALM-DQA-mod. Given σ > 0, y00 ∈ Y0 and x0 ∈ X . Perform the following steps at each iteration.
Step 1. Solve xk+1 ≈ argmin{Lσ(x; yk0) | x ∈ X} by a proximal gradient method.
Let {εs} be a given summable sequence of nonnegative numbers. Set x̂0 � xk.
For s � 0, 1, . . ., iterate the following step
Step 1a. Compute x̂s+1 ≈ argmin{Lσ(x; yk0) + σ

2 x − x̂s‖ ‖2
T̂
| x ∈ X}. As the problem is separable, one can compute

in parallel for i � 0, 1, . . . ,N,

x̂s+1i ≈ argmin fi xi( ) + σ

2
xi − x̂si ,Ei xi − x̂si

( )〈 〉 + 〈xi − x̂si , σA
∗
i Ax̂s − b0 − σ−1yk0
( )〉 | xi ∈ Fi

{ }
� argmin θi xi( ) + 1

2
〈xi, Qi + σEi( )xi〉 + xi, α̂s

i

〈 〉 | xi ∈ Fi

{ }
,

(22)

where α̂s
i � Qix̂si + ci + σA∗

i (Ax̂s − b0 − σ−1yk0) − (Qi + σEi)x̂si .
Step 1b. If the residual ds+1i satisfies ds+1i

⃦⃦ ⃦⃦ ≤ εs/
̅̅̅̅̅̅̅̅
N + 1

√
, where ds+1i :� vs+1i +Qix̂s+1i + ci + σA∗

i (Ax̂s+1 − b0 −
σ−1yk0) for some vs+1i ∈ ∂(θi + δFi)(x̂s+1i ), then set xk+1 � x̂s+1 and proceed to Step 2; otherwise, proceed to
Step 1(a).

Step 2. yk+10 � yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

Note that in ALM-DQA-mod, the reason we choose to use T̂ instead of the operator T in (12) for the
proximal term is to clarify the connection of our new method to the DQA method of Ruszczyński (1989).
In order not to disrupt the flow of the presentation, the details on the connection between the two methods
are presented in the appendix. In a nutshell, we may view the DQA method in Ruszczyński (1989) as an
augmented Lagrangian method for which the subproblem in Step 1 of Algorithm ALM is solved by a majorized
proximal gradient method with the proximal term chosen to be σ

2 x − x̂s‖ ‖2
T̂

at each step. But for ALM-DQA-
mod, it uses a proximal gradient method with the same proximal term to solve the subproblem in Step 1
of ALM.

Remark 2.
a. Here, we should point out the distinction between spALM and ALM-DQA-mod. At each iteration, the

former solves the Proximal Subproblem (14) only once and follows by an update of the variable yk0, whereas
the latter solves multiple proximal subproblems before updating the variable yk0.

b. With the derivation of ALM-DQA-mod as an augmented Lagrangian method with its subproblems
solved by a specially chosen proximal gradient method, we can leverage on this viewpoint to design an
accelerated variant of this method. Specifically, we can moderately improve the efficiency in solving the
subproblems by using an inexact Nesterov’s accelerated proximal gradient method. We refer the reader to the
online version (arXiv:1812.04941) of this manuscript for such an extension that is named as ALM-iAPG.

3.3. Numerical Performance of spALM and ALM-DQA-mod
In the previous subsections, we have derived two augmented Lagrangian-based decomposition methods,
spALM and ALM-DQA-mod, for directly solving (P). Naturally, one would be curious about their relative
performance in practice. In this subsection, we compare their performance for solving several linear and
quadratic test instances. The detailed description of the data sets is given in Section 5. For all the instances, we
have m1 � m2 � · · · � mN �: m̄ and n1 � n2 � · · · � nN �: n̄. The values of m̄ and n̄ are reported in the com-
parison table.

Table 1 compares the performance of the primal-based solvers spALM and ALM-DQA-mod for solving
the Primal Problem (P) through (10). We also compare their performance to that of the sGS-ADMM that is
designed to directly solve the Dual Problem (9). Although the details of the dual approach will only be
presented in the next section, we give the comparison here to save some space and, at the same time, to
contrast directly the performance of the primal-based algorithms against the dual-based algorithm. As we are
not aware of a systematic comparison of the performance of primal-based algorithms versus a dual-based
algorithm, we believe such a comparison is a valuable one, even though we shall see later that the dual-based algorithm
is much more efficient.
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For the two primal approaches, we use eight parallel workers to solve the subproblem in Step 1. Although
our dual-based algorithm (sGS-ADMM) can also be parallelized to solve the subproblems, their computations
are already so efficient that it becomes counterproductive to parallelize the computations due to the overhead
incurred by MATLAB. Thus, we have implemented our dual approach serially. More details on this issue are
given in a later section on sGS-ADMM. We set the maximum number of iterations to be 5,000 for the primal
approaches and 10,000 for the dual approach, respectively. Here, we observe that, although the primal
variants generally take a smaller number of outer iterations than sGS-ADMM, they always require much
longer runtime to achieve the same accuracy level in terms of the relative KKT residual. In addition, ALM-
DQA-mod is slightly slower than spALM, though the difference is not too significant.

Although the performance of primal-based algorithms is not as good as sGS-ADMM, we believe that it is
still worthwhile to present them in this paper because existing decomposition algorithms are primarily based
on the primal approach. A key observation we can make from the comparison is that the inferior performance
of the primal-based algorithms is due to their need to solve complicated constrained subproblems in Step 1 of
the algorithms, which can incur heavy computational costs that make their overall runtimes longer than that
of the sGS-ADMM. As we shall see in the next section, the sGS-ADMM is designed in such a way that only
simple subproblems are solved at each iteration. As the simple subproblems generally can be solved ana-
lytically, the computational costs incurred are relatively low. The inferior performance of the two primal
approaches has, thus, motivated us to instead focus on the dual approach of designing an efficient algorithm
for the Dual Problem (9).

4. A Semi-proximal Symmetric Gauss–Seidel-Based ADMM for the Dual Problem (D)
In the previous section, we have designed the spALM algorithm to solve the Primal Problem (P) directly. One
can also attempt to solve (P) via its Dual Problem (D) given in (9). Based on the structure in (D), we find that
it is highly conducive for us to employ a symmetric Gauss–Seidel-based ADMM (sGS-ADMM) to solve the
problem, as we shall see later when the details are presented.

To derive sGS-ADMM for solving (D), it is more convenient for us to express (D) in a more compact form
as follows:

min p s( ) + f y1:N ,w, s
( ) + q z( ) + g y0, z

( ) | F ∗ y1:N ;w; s
[ ] + G∗ y0; z

[ ] � c
{ }

, (23)

Table 1. Comparison of Computational Results Between sGS-ADMM and Two Variants of ALM for Primal
Block-Angular Problems

Data m0 m̄ n0 n̄ N

sGS-ADMM spALM DQA-mod

Iter Time Acc Iter Time Acc Iter Time Acc

qp-rand0-t1 1 1 20 20 10 321 0.16 2.1-6 153 3.48 4.1-9 9 5.55 1.4-6
qp-rand1-t1 50 50 80 80 10 421 0.19 8.8-6 262 13.47 9.7-6 25 75.39 9.6-6
qp-rand7-t2 10 10 20 20 10 1,501 0.57 2.5-6 2,759 63.36 2.5-6 23 71.55 7.4-6
qp-rand8-t2 50 50 80 80 10 141 0.14 3.9-6 96 4.84 8.9-6 26 50.00 7.7-6
tripart1 2,096 192 2,096 2,096 16 1,981 1.87 9.1-6 3,641 173.33 9.5-6 620 238.69 9.2-6
tripart2 8,432 768 8,432 8,432 16 6,771 32.80 9.3-6 5,000 861.58 8.1-6 1,465 1,019.56 1.0-5
qp-tripart1 2,096 192 2,096 2,096 16 653 0.84 9.9-6 314 15.05 7.0-6 28 27.97 8.2-6
qp-tripart2 8,432 768 8,432 8,432 16 971 5.84 9.4-6 336 56.98 1.0-5 49 123.65 8.9-6
qp-pds1 87 126 372 372 11 971 0.39 1.0-5 207 6.05 9.6-6 243 38.84 9.2-6
qp-SDC7-t1 10,000 200 0 10,000 100 31 1.31 7.8-6 10 14.82 3.3-6 9 22.25 4.8-6
qp-SDC8-t2 10,000 200 0 10,000 100 31 1.33 3.2-6 9 13.94 3.7-6 2 10.02 4.9-6
qp-SDC9-t1 10,000 200 0 10,000 100 31 1.31 9.8-6 10 15.09 3.4-6 10 24.99 4.8-6
qp-SDC10-t2 10,000 200 0 10,000 100 31 1.32 3.1-6 9 14.31 3.9-6 3 11.16 5.0-6
qp-SDC11-t1 10,000 200 0 10,000 100 32 1.35 7.2-6 10 15.46 3.2-6 10 26.86 7.2-6
qp-SDC12-t2 10,000 200 0 10,000 100 31 1.32 2.9-6 9 14.55 4.2-6 3 11.08 7.3-6
qp-SDC13-t1 10,000 200 0 10,000 200 41 3.22 9.0-6 10 47.77 2.5-6 10 61.41 5.2-6
qp-SDC14-t1 20,000 300 0 20,000 200 34 6.52 9.2-6 10 119.61 2.4-6 9 125.61 7.4-6
qp-SDC15-t1 40,000 400 0 40,000 200 31 10.93 4.7-6 10 238.47 2.1-6 9 282.97 4.6-6
M64-64 405 64 511 511 64 1,991 2.23 1.0-5 5,000 318.05 1.7-4 437 853.24 9.9-6

Notes. Here, “Iter” is the number of outer iterations performed, “Time” is the total runtime in seconds, and “Acc” is the accuracy of the computed
solution that is defined in Section . Under the column “Acc,” we record the accuracy “x.ye-0z” using the format “x.y-z” to save some space.

263
Lam, Sun, and Toh: Semi-proximal ALM for Primal Block-Angular CCQCPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 3, pp. 254–277, © 2021 INFORMS

5



where y1:N � [y1; . . . ; yN], and
F ∗ :� D∗,−Q, I

[ ]
, G∗ :� A∗, I[ ]

,

p s( ) :� θ∗ −s( ), f y1:N ,w, s
( )

:� −〈b1:N , y1:N〉 + 1
2
〈w,Qw〉 + δW w( ),

q z( ) :� δ∗K −z( ), g y0, z
( )

:� −〈b0, y0〉.
Here, we take W � Range(Q). This is a multiblock linearly constrained convex programming problem for
which the direct application of the multiblock extension of the classical two-block ADMM is not guaranteed to
converge. Thus, we adapt the recently developed inexact sGS-ADMM (Li et al. 2016, Chen et al. 2017) whose
convergence is guaranteed to solve the Dual Problem (D).

Given a positive parameter σ, the augmented Lagrangian function for (D) is given by

Lσ y,w,s,z;x
( )� p s( )+ f y1:N ,w,s

( )+q z( )+g y0,z
( )+σ

2
F ∗ y1:N ;w;s

[ ]+G∗ y0;z
[ ]− c+ 1

σ
x

⃦⃦⃦⃦ ⃦⃦⃦⃦2
− 1
2σ

x‖ ‖2

�∑N
i�0

θ∗i −si( )+δ∗Ki
−zi( )+1

2
〈wi,Qiwi〉−〈bi,yi〉

[ ]
+σ

2
−Q0w0+A∗

0y0+ s0+z0− c0+σ−1x0
⃦⃦⃦ ⃦⃦⃦2− 1

2σ
x0‖ ‖2.

+∑N
i�1

σ

2
−Qiwi+A∗

i y0+D∗
i yi+ si+ zi− ci+σ−1xi

⃦⃦⃦ ⃦⃦⃦2− 1
2σ

xi‖ ‖2
[ ]

. (24)

In order to develop sGS-ADMM, we need to analyze the block structure of the quadratic terms in
Lσ(y,w, s, z; x) corresponding the blocks [y1:N ;w; s] and [y0; z]. They are, respectively, given as follows:

FF ∗ :�
DD∗ −DQ D

−QD∗ Q2 −Q
D∗ −Q I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0 −DQ D

0 0 −Q
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

UF

+
DD∗ 0 0
0 Q2 0
0 0 I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟

DF

+ U∗
F ,

GG∗ :� AA∗ A

A∗ I

[ ]
� 0 A

0 0

[ ]
⏟̅̅ ⏞⏞̅̅ ⏟

UG

+ AA∗ 0
0 I

[ ]
⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟

DG

+ U∗
G.

Based on the above (symmetric Gauss–Seidel) decompositions, we define the following positive semidefinite
linear operators associated with the decompositions:

sGS FF ∗( ) � U∗
FD−1

F UF , sGS GG∗( ) � U∗
GD−1

G UG. (25)
Note that here we view Q as a linear operator defined on W, and because we take W � Range(Q), Q2 is
positive definite on W, and, hence, DF is invertible. Because A is assumed to have full row-rank, DG is
also invertible.

The basic template of the sGS-ADMM for (23) is given as follows.

sGS-ADMM (Basic Template). Given (y0,w0, s0, z0, x0) ∈ Y ×W ×X ×X ×X , perform the following steps at the
k-th iteration for k � 0, 1, . . .

Step 1. Compute

yk+11:N ,w
k+1, sk+1

( ) � argmin
y1:N∈Y1×···×YN ,w∈W,s∈X

p s( ) + f y1:N ,w, s
( )

+ σ
2 F ∗ y1:N ;w; s

[ ] + G∗ yk0; z
k

[ ] − c + 1
σ x

k
⃦⃦⃦ ⃦⃦⃦2

+ σ
2 y1:N ;w; s

[ ] − yk1:N ;w
k; sk

[ ]⃦⃦⃦ ⃦⃦⃦2
sGS FF ∗( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭.

Step 2. Compute

yk+10 , zk+1
( ) � argmin

y0∈Y0,z∈X

q z( ) + g y0, z
( ) + σ

2 F ∗ yk+11:N ;w
k+1; sk+1

[ ] + G∗ y0; z
[ ] − c + 1

σ x
k

⃦⃦⃦ ⃦⃦⃦2
+ σ

2 y0; z
[ ] − yk0; z

k
[ ]⃦⃦⃦ ⃦⃦⃦2

sGS GG∗( )

{ }
.

Step 3. Compute xk+1 � xk + τσ(F ∗[yk+11:N ;w
k+1; sk+1] + G∗[yk+10 ; zk+1] − c), where τ ∈ (0, 1+

̅̅
5

√
2 ) is the steplength

determined by Glowinski (1984).
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Now, we explain the motivation for adding the proximal terms in Steps 1 and 2 involving the special sGS
operators in (25). For simplicity, we focus the discussion on Step 2 and the case where K is a closed convex
cone. Observe that the minimization problem involved in Step 2 is a convex quadratic-programming problem
in the variable (y0, z), and z is constrained to be in K∗. If we were to solve this problem directly for (yk+10 , zk+1)
by using an appropriate solver, such as Gurobi, it would make each sGS-ADMM iteration very expensive.
Fortunately, with the specially designed proximal term involving the sGS operator sGS(GG∗), one can make
use of the sGS-decomposition theorem in Li et al. (2019) to decompose the computation of yk+10 and zk+1 into a
cyclic manner that is outlined in Step 2(a) to Step 2(c) of the computational version of the sGS-ADMM
described below. In this way, the computation of yk+10 and zk+1 can be done by solving much simpler
minimization subproblems, and the overall cost is expected to be much lower than solving the problem in
Step 2 directly. In a similar way, the computation of (yk+11:N ,w

k+1, sk+1) in Step 1 can also be decomposed into a
cyclic manner by employing the special proximal term involving the sGS operator sGS(FF ∗).

With the above preparations, we can now give the detailed description of sGS-ADMM algorithm for
solving (9).

sGS-ADMM (Computational Version) on (9). Given (y0,w0, s0, z0, x0) ∈ Y ×W ×X ×X ×X . For k � 0, 1, . . ., com-
pute (yk+1,wk+1, sk+1, zk+1, xk+1) in the following order.

Step 1a. ȳk1, . . . , ȳ
k
N

( ) � argmin
y1∈Y1,...,yN∈YN

Lσ yk0, y1, . . . , yN
( )

,wk, sk, zk; xk
( ){ }

Step 1b. w̄k
0, . . . , w̄

k
N

( ) � argmin
w0∈W0,...,wN∈WN

Lσ yk0, ȳ
k
1, . . . , ȳ

k
N

( )
, w0,w1, . . . ,wN( ), sk, zk; xk( ){ }

Step 1c. sk+10 , . . . , sk+1N

( ) � argmin
s0∈X0,...,sN∈XN

Lσ yk0, ȳ
k
1, . . . , ȳ

k
N

( )
, w̄k, s0, s1, . . . , sN( ), zk; xk( ){ }

Step 1d. wk+1
0 , . . . ,wk+1

N

( ) � argmin
w0∈W0,...,wN∈WN

Lσ yk0, ȳ
k
1, . . . , ȳ

k
N

( )
, w0,w1, . . . ,wN( ), sk+1, zk; xk( ){ }

Step 1e. yk+11 , . . . , yk+1N

( ) � argmin
y1∈Y1,...,yN∈YN

Lσ yk0, y1, . . . , yN
( )

,wk+1, sk+1, zk; xk
( ){ }

Step 2a. ȳk0 � argmin
y0∈Y0

Lσ y0, yk+11 , . . . , yk+1N

( )
,wk+1, sk+1, zk; xk

( ){ }
Step 2b. zk+10 , . . . , zk+1N

( ) � argmin
z0∈X0,...,zN∈XN

Lσ ȳk0, y
k+1
1 , . . . , yk+1N

( )
,wk+1, sk+1, z0, . . . , zN( ); xk( ){ }

Step 2c. yk+10 � argmin
y0∈Y0

Lσ y0, yk+11 , . . . , yk+1N

( )
,wk+1, sk+1, zk+1; xk

( ){ }
Step 3. xk+1 � xk + τσ −Qwk+1 + B∗yk+1 + sk+1 + zk+1 − c

( )
,

where τ ∈ (0, 1+
̅̅
5

√
2 ) is the steplength.

4.1. Convergence Theorems of sGS-ADMM
The convergence theorem of sGS-ADMM can be established directly by using known results from Chen
et al. (2017) and Zhang et al. (2018). Here, we present the global convergence result and the linear rate of
convergence for the convenience of the reader. In order to state the convergence theorems, we need
some definitions.

Denote u :� (y,w, s, z, x) ∈ U :� Y ×W ×X ×X ×X . We consider the KKT mapping R : U → U of (4) de-
fined by

R u( ) :�

Bx − b
−Qw +B∗y + s + z − c

Qw −Qx
x − Proxθ x − s( )
x −ΠK x − z( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (26)

Note that the set of KKT points of (P) and (D) is precisely the set Ω̄ :� {u ∈ U | R(u) � 0}. The KKT mapping R
is said to satisfy the error bound condition at 0 ∈ U with modulus κ > 0 if there exist ε > 0 such that for all u
satisfying R(u)⃦⃦ ⃦⃦ ≤ ε, we have

dist u, Ω̄
( ) ≤ κ R u( )⃦⃦ ⃦⃦

.

Now, we are ready to present the convergence theorem of sGS-ADMM.
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Theorem 2. Let {uk :� (yk,wk, sk, zk; xk)} be the sequence generated by sGS-ADMM. Then, we have the following results.
a. The sequence {(yk,wk, sk, zk)} converges to an optimal solution of the compact form (6) of the Dual Problem (D),

and the sequence {xk} converges to an optimal solution of the compact form (4) of the Primal Problem (P).
b. Suppose that the sequence {uk} converges to a KKT point ū :� (ȳk, w̄k, s̄k, z̄k, x̄k), and the KKT mapping R satisfies

the error bound condition at 0 ∈ U. Then, the sequence {uk} is linearly convergent to ū.

Proof.
a. We can regroup the variables (y,w, s, z, x) in the order (((s0, . . . , sN), (w0, . . . ,wN), (y1, . . . , yN)), ((z0, . . . , zN), y0),

(x0, . . . , xN)). Then, the sequence generated by sGS-ADMM is exactly the same as the sequence generated by
sGS-imsPADMM given in Chen et al. (2017); thus, the global convergence result follows directly.

b. By regrouping (y,w, s, z, x) in the same order as in (a), we can recover the sequence generated by al-
gorithm 2 in Zhang et al. (2018). Because the mapping R satisfies the error bound condition at 0 ∈ U, it is also
metrically subregular at ū for 0 ∈ U. From here, the result follows directly by applying the convergence result
in Zhang et al. (2018, proposition 4.1). □

Remark 3. By theorem 1 and remark 1 in Li et al. (2018), we know that when (P) is a convex programming problem
such that for each i � 0, . . . ,N, θi is piecewise linear-quadratic or strongly convex, and Ki is polyhedral, then R
satisfies the error bound condition at 0 ∈ U. Thus, sGS-ADMM converges locally at a linear rate to an optimal
solution of (P) and (D) under the previous conditions on θi and Ki. In particular, for the special case of a primal
block-angular quadratic-programming problem where θi ≡ 0 and Ki � R

ni+ for all i, we know that sGS-ADMM is
not only locally linearly convergent, but can even be proven to converge globally linearly.

4.2. Computational Details for Implementing sGS-ADMM
In this subsection, we discuss in detail how we can solve each of the subproblem in sGS-ADMM efficiently.
These issues are critical for the overall computational efficiency of the algorithm, and one of our contributions
in this paper is in proposing efficient numerical techniques to solve the subproblems.

4.2.1. Steps 1(a) and 1(e). Given the augmented Lagrangian function in (24), the subproblem we need to solve
in Step 1(a) is:

ȳk1, . . . , ȳ
k
N

( ) � argmin
y1∈Y1,...,yN∈YN

∑N
i�1

−〈bi, yi〉 + σ

2
−Qiwk

i +A∗
i y

k
0 +D∗

i yi + ski + zki − ci + σ−1xki
⃦⃦⃦ ⃦⃦⃦2[ ]

.

This minimization problem is separable in yi for i � 1, . . . ,N. Hence, it can be solved in parallel—that is,

ȳki � argmin
yi∈Y i

−〈bi, yi〉 + σ

2
−Qiwk

i +D∗
i yi + ski + gki

⃦⃦⃦ ⃦⃦⃦2{ }
for i � 1, . . . ,N,

where gk :� A∗yk0 + zk − c + σ−1xk. Specifically, ȳki is the solution of the following linear system:

DiD
∗
i yi � σ−1bi −Di −Qiwk

i + ski + gki
( )

for i � 1, . . . ,N. (27)
Similarly, in Step 1(e), yk+1i is the solution of the following linear system:

DiD
∗
i yi � σ−1bi −Di −Qiwk+1

i + sk+1i + gki
( )

for i � 1, . . . ,N. (28)
We can observe that the only difference between System (27) and (28) is that wk

i and ski are replaced by wk+1
i and

sk+1i respectively. Several remarks on how to solve (27) and (28) efficiently must now be mentioned.

Remark 4. Note that the mi ×mi symmetric positive definite matricesDiD∗
i , ∀i � 1, . . . ,N are constant throughout

the algorithm. Therefore, one can precompute the Cholesky factorization of DiD∗
i , ∀i � 1, . . . ,N, if they can be

stored in the memory and computed at a reasonable cost. Then, at each sGS-ADMM iteration, ȳki and yk+1i , ∀i �
1, . . . ,N can be computed cheaply by solving triangular linear systems. However, when computing the coefficient
matrix or its Cholesky factorization is too expensive, one can use a preconditioned conjugate gradient (PCG)
method to solve the linear system iteratively.

We should emphasize again that sGS-ADMM has the flexibility of allowing for inexact computations, as
already mentioned in Chen et al. (2017). Although the computation in Steps 1(a) and 1(e) are assumed to be
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done exactly (up to machine precision), the computation can, in fact, be done inexactly, subject to a certain
prespecified accuracy requirements on the computed approximate solution. Thus, iterative methods such as
the PCG method can be used to solve the linear systems when their dimensions are large. We omit the details
here for the sake of brevity.

Remark 5. The computation in Step 1(e) can be omitted if the quantity ȳki computed in Step 1(a) is already a
sufficiently good approximate solution to the current subproblem. More precisely, if the approximation ȳki for y

k+1
i

satisfies the admissible accuracy condition required in the inexact sGS-ADMM designed by Chen et al. (2017), then
we can just set yk+1i � ȳki instead of solving the subproblem in Step 1(e).

4.2.2. Steps 1(b) and 1(d). In Step 1(b) of sGS-ADMM, we can also solve the minimization problem involving
w0,w1, . . . ,wN independently by solving in parallel ∀i � 0, 1, . . . ,N,

w̄k
i � argmin

wi

1
2
〈wi,Qiwi〉 + σ

2
− Qiwi +D∗

i ȳ
k
i + ski + gki

⃦⃦⃦ ⃦⃦⃦2 | wi ∈ Range Qi( )
{ }

,

� wi ∈ Range Qi( ) | Qi I + σQi( )wi � σQi D
∗
i ȳ

k
i + ski + gki

( ){ }
, (29)

where we define D0 � 0 for notational convenience.
In fact, w̄k

i is only required theoretically. In practical implementations, only Qiw̄k
i and 〈w̄k

i ,Qiw̄k
i 〉 are needed.

In the next proposition, we show that we can compute Qiw̄k
i � Qiw̃k

i and 〈w̄k
i ,Qiw̄k

i 〉 � 〈w̃k
i ,Qiw̃k

i 〉, where w̃k
i is

the solution of the simpler linear system below:

I + σQi( )w̃i � σ D∗
i ȳ

k
i + ski + gki

( ) ∀ i � 0, 1, . . . ,N. (30)

Proposition 1. For i � 0, 1, . . . ,N, Qiw̄k
i � Qiw̃k

i and 〈w̄k
i ,Qiw̄k

i 〉 � 〈w̃k
i ,Qiw̃k

i 〉, where w̄k
i is the solution of (29) and w̃k

i is
the solution of (30).

Proof. It is sufficient for us to prove the result for a particular i ∈ {0, 1, . . . ,N}. By our assumption,Qi is symmetric
positive semidefinite. Consider the spectral decomposition Qi � UiSiUT

i , where Si ∈ Rr×r is a diagonal matrix
whose diagonal elements are the positive eigenvalues ofQi, and the columns of Ui ∈ Rni×r are their corresponding
orthonormal set of eigenvectors. We let Vi ∈ Rni×(ni−r) be the matrix whose columns form an orthonormal set of
eigenvectors of Qi corresponding to the zero eigenvalues— that is, [Ui, Vi] is an orthogonal matrix.

Because wi ∈ Range(Qi), we can parametrize it by wi � Uiξi for some vector ξi ∈ Rr. Then,

1
2
〈wi,Qiwi〉 + σ

2
−Qiwi +D∗

i ȳ
k
i + ski + gki

⃦⃦⃦ ⃦⃦⃦2 � 1
2
〈Uiξi,UiSiUT

i Uiξi〉 + σ

2
−UiSiUT

i Uiξi + ζki
⃦⃦⃦ ⃦⃦⃦2

� 1
2
〈ξi,Siξi〉 + σ

2
Ui,Vi

[ ]T −UiSiξi + ζki
( )⃦⃦⃦ ⃦⃦⃦2

� 1
2
〈ξi,Siξi〉 + σ

2
Siξi −UT

i ζ
k
i

⃦⃦⃦ ⃦⃦⃦2 + σ

2
VT

i ζ
k
i

⃦⃦⃦ ⃦⃦⃦2
,

where we let ζki :� D∗
i ȳ

k
i + ski + gki for convenience. Hence, the minimization problem in (29) is equivalent to

the following:

min
ξi

1
2
〈ξi,Siξi〉 + σ

2
Siξi −UT

i ζ
k
i

⃦⃦⃦ ⃦⃦⃦2 | ξi ∈ Rr
{ }

, (31)
whose minimizer is the solution of the following linear system:

I + σSi( )ξi � σUT
i ζ

k
i .

Now, from solving (30), we obtain that

I + σSi( )UT
i w̃

k
i � σUT

i ζ
k
i , VT

i w̃
k
i � σVT

i ζ
k
i .

This shows that UT
i w̃

k
i is the unique solution to the Problem (31). Hence, w̄k

i � Ui(UT
i w̃

k
i ) is the unique solution

to (30), and we have UT
i w̄

k
i � UT

i w̃
k
i . From here, we get Qiw̄k

i � UiSi(UT
i w̄

k
i ) � UiSi(UT

i w̃
k
i ) � Qiw̃k

i . In addition,
〈w̄k

i ,Qiw̄k
i 〉 � 〈UT

i w̄
k
i , SiU

T
i w̄

k
i 〉 � 〈UT

i w̃
k
i ,SiU

T
i w̃

k
i 〉 � 〈w̃k

i ,Qiw̃k
i 〉. □
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By the same reasoning, we can reduce the computation in Step 1(d) to finding the solution of the following
linear system:

I + σQi( )w̃i � σ D∗
i ȳ

k
i + sk+1i + gki

( ) ∀i � 0, 1, . . . ,N. (33)
We can again observe that the only difference between System (30) and (33) is that ski has been replaced by sk+1i .
Hence, Remarks 4 and 5 in Subsection 4.2.1 are applicable here. Additionally, if Q ≡ 0, then Steps 1(b) and 1(d)
are vacuous, and Step 1 only consists of Steps 1(a), 1(c), and 1(e).

4.2.3. Step 1(c). In Step 1(c) of sGS-ADMM, the subproblem can be solved in parallel—that is, ∀i � 0, 1, . . . ,N,

sk+1i � argmin
si∈X i

θ∗i −si( ) + σ

2
−Qiw̄k

i +D∗
i ȳ

k
i + si + gki

⃦⃦⃦ ⃦⃦⃦2{ }
� −Proxθ∗i /σ −Qiw̄k

i +D∗
i ȳ

k
i + gki

( ) � 1
σ
Proxσθi σ −Qiw̄k

i +D∗
i ȳ

k
i + gki

( )( ) − −Qiw̄k
i +D∗

i ȳ
k
i + gki

( )
,

where the last equality is given by the Moreau identity.
In most cases, the computation for the proximal mapping of σθi should be easy, such as for the case when θi

is the �1-norm function. In a more complicated case, one can still compute the proximal mapping efficiently.
For example, in the nonlinear model that we will consider in Section 5.4, θi is a twice continuously dif-
ferentiable function. Thus, we can compute

Proxσθi β
( ) � argmin

t∈X i

φ t( ) :� σθi t( ) + 1
2

t − β
⃦⃦ ⃦⃦2{ }

,

via the Newton’s method for solving the equation ∇φ(t) � 0. At each sGS-ADMM iteration, we can warm-start
the Newton’s method by using the quantity that has already been computed in the previous iteration. Al-
though sk+1i may not be computed exactly, the convergence of sGS-ADMM is not affected as long as sk+1i
satisfies the admissible accuracy condition required in the inexact sGS-ADMM method developed in
Chen et al. (2017).

Moreover, when θ ≡ 0, this step is vacuous. Then, Steps 1(b) and 1(d) are identical. Hence, the computation
needs only to be done for Step 1(d). In the other words, Step 1 only consists of Steps 1(a), 1(d), and 1(e).

4.2.4. Steps 2(a) and 2(c). In Step 2(a), we solve the following minimization problem:

ȳk0 � argmin
y0∈Y0

− 〈b0, y0〉 + σ

2
A∗

0y0 + zk0 + hk0
⃦⃦⃦ ⃦⃦⃦2 +∑N

i�1

σ

2
A∗

i y0 + zki + hki
⃦⃦⃦ ⃦⃦⃦2{ }

,

where hk :� −Qwk+1 +D∗yk+1 + sk+1 − c + σ−1xk. Specifically, ȳk0 is the solution to the following linear system
of equations: ∑N

i�0
AiA

∗
i

( )
y0 � σ−1b0 −

∑N
i�0

Ai zki + hki
( )

. (34)

Similarly, in Step 2(c), yk+10 is the solution of the following linear system:

∑N
i�0

AiA
∗
i

( )
y0 � σ−1b0 −

∑N
i�0

Ai zk+1i + hki
( )

. (35)

Observe that the only difference between (34) and (35) is in the terms zki and zk+1i for i � 0, 1, . . . ,N. Fur-
thermore, the matrix

∑N
i�0 AiA

∗
i is constant throughout the algorithm. Hence, Remarks 4 and 5 in Subsec-

tion 4.2.1 are applicable here. In the case when PCG method is employed to solve the linear system iteratively,
one can also implement the computation of the matrix-vector product in parallel by computing AiA

∗
i y0 in

parallel for i � 0, 1, . . . ,N, given any y0.
For the multicommodity flow problem, which we will consider later in the numerical experiments, we note

that the linear systems in (34) and (35) have a very simple coefficient matrix given by
∑N

i�0 AiA
∗
i � (N + 1)Im,
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and the coefficient matrix DiD∗
i in (27) and (28) is equal to the Laplacian matrix of the network graph for all

i � 1, . . . ,N. Thus, (34) and (35), as well as (27) and (28), can be solved efficiently by a direct solver.

4.2.5. Step 2(b). In Step 2(b), we can solve the subproblem in parallel for i � 0, 1, . . . ,N,

zk+1i � argmin
zi∈X i

δ∗Ki
−zi( ) + σ

2
A∗

i ȳ
k
0 + zi + hki

⃦⃦⃦ ⃦⃦⃦2{ }
� −Proxσ−1δ∗

Ki

A∗
i ȳ

k
0 + hki

( )
� 1
σ
ΠKi σ A∗

i ȳ
k
0 + hki

( )( ) − A∗
i ȳ

k
0 + hki

( )
.

Note that this step can be computed at a very low cost when Ki is a simple polyhedral set, such as a
nonnegative orthant. In particular, when Ki is the entire Euclidean space for i � 0, 1, . . . ,N, then this step can
be omitted, and Step 2 only consists of Step 2(c).

4.3. Computational Cost
Now, we discuss the main computational cost of sGS-ADMM. We observe that the most time-consuming
computations are in solving large linear system of Equations (27), (28), (30), (33), (34), and (35) in Steps 1(a),
1(e), 1(b), 1(d), 2(a), and 2(c), respectively.

In general, suppose that for every iteration we need to solve a d × d linear system of equations:

Mx � r. (36)
Assuming that M is stored, then we can compute its (sparse) Cholesky factorization at the cost of O(d3)
operations, which only needs to be done once at the very beginning of the algorithm. After that, whenever we
need to solve the equation, we just need to compute the right-hand-side vector r and solve two d × d triangular
systems of linear equations at the cost of O(d2) operations.

We can roughly summarize the costs incurred in solving Mx � r as follows:
(C1) Cost for computing the coefficient matrix M (only once);
(C2) Cost for computing the Cholesky factorization of M (only once);
(C3) Cost for computing right-hand-side vector r;
(C4) Cost for solving two triangular systems of linear equations.
The computational cost C1,C2,C3,C4 above for each of the linear systems of equations in Steps 1(a), 1(b),

1(d), 1(e), 2(a), and 2(c) are tabulated in Table 2.

5. Numerical Experiments
In this section, we evaluate the performance of the algorithm we have designed for solving the problem (P)
via (D). We conduct numerical experiments on three major types of primal block-angular models, including
linear, quadratic, and nonlinear problems. Apart from randomly generated data sets, we also demonstrate that
our algorithms can be quite efficient in solving realistic problems encountered in the literature.

Our implementation of sGS-ADMM is in MATLAB. We should emphasize that, although the computation
for solving the subproblems can be parallelized, we do not implement it here. This is because the calculations
involve only solving linear systems or computing simple proximal mappings. These operations can already be
done very efficiently in MATLAB. If we create a parallel pool and use a parallel-for loop to perform these
computation in parallel, the overhead cost is much greater than the benefit of doing those computations in
parallel. Nevertheless, when the computation of the subproblems is extremely expensive, then a proper
parallel implementation of our algorithm should be beneficial for solving primal block-angular problems
efficiently. We illustrate this phenomenon in Table 3. One can observe that the runtime can differ by a factor of
more than 10. Thus, we choose to implement our algorithm here serially.

Table 2. Computational Cost for Solving the Linear Systems of Equations in sGS-ADMM

Step C1 (once) C2 (once) C3 (each iteration) C4 (each iteration)

1a and 1e(i � 1, . . . ,N) O(m2
i ni) O(m3

i ) O(n2i +mini) O(m2
i )

1b and 1d(i � 1, . . . ,N) O(n2i ) O(n3i ) O(mini) O(n2i )
2a and 2c O(m2

0n0) O(m3
0) O(m0n0) O(m2

0)
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5.1. Stopping Condition
Based on the optimality conditions in (7), we measure the accuracy of a computed solution by the following
relative residual:

η � max ηP, ηD, ηQ, ηK, ηS
{ }

,

where

ηP � Bx − b‖ ‖
1 + b‖ ‖ , ηD � −Qw +B∗y + s + z − c

⃦⃦ ⃦⃦
1 + c‖ ‖ , ηQ � Qw −Qx‖ ‖

1 + Q‖ ‖ ,

ηK � x −ΠK x − z( )⃦⃦ ⃦⃦
1 + x‖ ‖ + z‖ ‖ , ηS � x − Proxθ x − s( )⃦⃦ ⃦⃦

1 + x‖ ‖ + s‖ ‖ .

We terminate our algorithm when η ≤ 10−5.

5.2. Block-Angular Problems with Linear Objective Functions
In this subsection, we perform numerical experiments on minimization problems having linear objective
functions and primal block-angular constraints. Multicommodity flow (MCF) problems are one of the main
representatives in this class of problems. It is a model to solve the routing problem of multiple commodities
throughout a network from a set of supply nodes to a set of demand nodes. These problems usually exhibit
primal block-angular structure due to the network nature in the constraints. In Ouorou et al. (2000), the
authors investigated several algorithms for solving convex MCFs. Besides solving MCFs as a linear pro-
gramming with special structure, there are some other methods that tend to focus on exploiting the network
structure of the problem—for example, the flow-deviation method (Fratta et al. 1973, LeBlanc 1973) and the
projection method (Bertsekas and Gallager 1987).

Consider a connected network graph (N ,E) with m nodes and n � |E| arcs for which N commodities must be
transported through the network. We assume that each commodity has a single source-sink pair (sk, tk), and
we are given the flow rk that must be transported from sk to tk, for k � 1, . . . ,N. Let M ∈ Rm×n be node-arc
incidence matrix of the graph. Then, the MCF problem can be expressed in the form given in (P) with the
following data:

K0 � x0 ∈ Rn | 0 ≤ x0 ≤ u{ }, Ki � Rn
+, A0 � In, Ai � −In, i � 1, . . . ,N,

Qi � 0, θi ·( ) � 0, ∀i � 0, 1, . . . ,N,

D1 � D2 � · · · � DN � M is the node-arc incidence matrix.

For this problem, xi denotes the flow of the i-th commodity (i � 1, . . . ,N) through the network, x0 is the total
flow, and u is a given upper bound vector on the total flow.

5.2.1. Description of Data Sets. Following Castro and Cuesta (2011), the data sets we used are as follows.
a. Tripart and gridgen: These are five-commodity instances obtained with the Tripart and Gridgen gen-

erators. They are available at http://www-eio.upc.es/~jcastro/mmcnf_data.html.
b. pds: The PDS problems come from a model of transporting patients away from a place of military

conflict. They are available at http://www.di.unipi.it/optimize/Data/MMCF.html#Pds.
c. M{m}-{k}: These are the problems generated by the Mnetgen generator, which is a well-known generator

of random multicommodity flow instances. Here, m is the number of nodes in the network, and k is the
number of commodities. They are available at http://www.di.unipi.it/optimize/Data/MMCF.html#MNetGen.

5.2.2. Numerical Results. In Table 4, we compare our sGS-ADMM algorithm against the solvers Gurobi and
BlockIP. We should emphasize that, although Gurobi is not specially designed for solving primal block-
angular problems, it is an extremely powerful commercial software package for solving sparse general linear

Table 3. Runtime of sGS-ADMM When Implemented Serially (One Worker) vs. Parallel (Eight Workers) in MATLAB

Data m0 m̄ n0 n̄ N Time (1 worker) Time (8 workers)

pds15 1,812 2,125 7,756 7,756 11 16.41 169.60
pds90 8,777 12,186 46,161 46,161 11 271.90 4,022.86
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and convex quadratic-programming problems. Hence, we use Gurobi as one of our benchmarks, because a
specially designed algorithm should at least be competitive to an efficient general-purpose solver. On the other
hand, BlockIP (Castro 2016) is an efficient interior-point algorithm specially designed for solving primal block-
angular problems, especially those arising from MCF problems. As reported in Castro (2016), it has been very
successful in solving many large-scale instances of primal block-angular LP and QP problems.

In the following numerical experiments, we employ Gurobi directly on the compact Formulation (4). To be
more specific, we input B as a general sparse matrix. The feasibility and objective gap tolerance is set to
be 10−5. All the other parameters are set to their default values. Similarly, for BlockIP, all three tolerances
(primal and dual feasibility and relative objective gap) are set to be 10−5 for consistency. Its maximum number
of iterations is set to be 500.

From Table 4, we observe that Gurobi is the fastest to solve 13 out of 16 instances. Gurobi is extremely fast in
solving the pdsxx and Mxxx-xx problems, but has difficulty in solving gridgen1 efficiently. On the other hand,
sGS-ADMM and BlockIP are highly efficient in solving the latter instance, for which sGS-ADMM is in fact the
fastest solver—it is 24.6 times faster than Gurobi and 3.4 times faster than BlockIP. The numerical results here
show that, although Gurobi is not specially designed to exploit the block-angular structure of the tested LP
instances, it can exploit any data sparsity extremely well, and, together with the highly optimized imple-
mentations of its solvers, it can even outperform the specialized solvers sGS-ADMM and BlockIP by a big
margin on some of the instances—for example, pds90 and M512-512.

We also noticed that BlockIP is quite sensitive to the practical setting of the upper bound on the unbounded
variables. For example, setting “9 × 106” and “9 × 108” as the upper bounds for the unbounded variables can
lead to a significant difference in the number of iterations. Also, BlockIP often terminates prematurely without
reaching the required accuracy level. For example, BlockIP only attains the accuracy level of about 10−2 for
pds60 and M512-512. On the other hand, sGS-ADMM is able to reach the required accuracy level of 10−5 in the
relative KKT residual for all the instances. We note that Gurobi automatically decides to use a simplex method
to solve the tested LP problems, and, hence, the reported iteration counts are generally large. It often reaches
an accuracy level that is much higher than required because of the finite termination property of the simplex
method. For BlockIP, the reported numbers of interior-point iterations are generally less than two hundreds,
but the computational cost per iteration is high. For sGS-ADMM, the number of iterations it takes to solve a
problem is usually an order of magnitude higher than that of the BlockIP solver, but the cost it takes to solve
the subproblems at each iteration is much lower. Overall, sGS-ADMM outperforms the specialized interior-
point solver BlockIP because it can strike a good balance between the number of iterations needed to attain the
desired accuracy and the computational cost taken per iteration.

Table 4. Comparison of Computational Results Between sGS-ADMM, Gurobi, and BlockIP for Linear Primal
Block-Angular Problems

Data m0 m̄ n0 � n̄ N

sGS-ADMM Gurobi BlockIP

Iter Time Acc Iter Time Acc Iter Time Acc

tripart1 2,096 192 2,096 16 1,981 1.9 9.1-6 10,130 0.5 2.5e-17 48 0.6 2.0-4
tripart2 8,432 768 8,432 16 6,771 32.8 9.3-6 6,691 4.4 3.1e-16 67 5.3 2.2-4
tripart3 16,380 1,200 16,380 20 5,561 52.9 1.0-5 13,563 11.6 4.9e-16 81 26.2 1.5-4
tripart4 24,815 1,050 24,815 35 8,581 182.7 1.0-5 23,786 49.2 4.3e-16 115 77.4 3.9-5
gridgen1 3,072 1,025 3,072 320 7,541 260.8 8.5-6 486,386 6,429.0 2.8e-16 203 890.2 4.9-7
pds15 1,812 2,125 7,756 11 2,893 16.4 1.0-5 9,300 0.9 8.5e-17 81 6.4 1.8-5
pds30 3,491 4,223 16,148 11 4,471 73.2 9.7-6 15,093 4.4 9.1e-17 110 28.8 4.4-2
pds60 6,778 8,423 33,388 11 7,719 276.5 9.8-6 43,623 13.9 4.1e-17 145 263.9 1.4-2
pds90 8,777 12,186 46,161 11 5,315 271.9 1.0-5 98,695 23.2 8.9e-18 162 521.9 8.8-3
M64-64 405 64 511 64 1,991 2.2 1.0-5 7,805 0.5 9.8e-17 51 0.4 2.5-4
M128-64 936 128 1,171 64 2,601 5.1 1.0-5 870 1.8 1.1e-16 52 1.6 1.6-3
M128-128 979 128 1,204 128 3,801 23.4 9.3-6 2,328 3.5 1.1e-16 127 6.0 7.0-3
M256-256 1,802 256 2,204 256 6,821 138.3 7.7-6 103,896 13.2 1.4e-16 97 49.4 6.5-4
M512-64 3,853 512 4,768 64 2,631 29.5 1.0-5 48,120 6.0 1.2e-16 72 26.6 1.0-3
M512-128 3,882 512 4,786 128 3,581 87.3 9.5-6 86,754 12.8 1.3e-16 97 81.0 1.5-3
M512-512 707 512 1,797 512 7,021 267.6 8.2-6 199,535 11.5 1.0e-16 146 171.2 1.7-2

Notes. Here, “Iter” is the number of outer iterations performed, “Time” is the total runtime in seconds, and “Acc” is the accuracy of
the computed solution that is defined in Section 5. Under the column “Acc,” we record the accuracy “x.ye-0z” using the format “x.y-z” to save
some space.
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5.3. Block-Angular Problems with Convex Quadratic Objective Functions
In this subsection, we perform numerical experiments on optimization problems having convex quadratic
objective functions and primal block-angular constraints.

Multicommodity flow problem is, again, an important class for this type of problem. Following Castro
(2016), we add the quadratic objective term, Qi � 0.1I, ∀i � 0, . . . ,N. The corresponding data sets are named
with the prefix ”qp-”, including tripart, gridgen, and pds.

Another class of quadratic primal block-angular problems arises in the field of statistical disclosure control.
Castro (2005) studied the controlled tabular adjustment (CTA) to find a perturbed, but safe, table that is closest
to a given three-dimensional table for which the content must be protected. In particular, we have

Qi � I, θi ·( ) � 0, i � 0, . . . ,N,

A0 � I, Ai � −I, ∀i � 1, . . . ,N,

D1 � D2 � · · · � DN is a node-arc incidence matrix,

and Ki (i � 0, 1, . . . ,N) is the same as in Section 5.2.

5.3.1. Description of Data Sets. The data sets we used are as follows.
a. rand: These instances are randomly generated sparse problems. Here, we generated two types of problems.

b. Type 1 problem (with suffix -t1) has diagonal quadratic objective cost. We construct Qi as a sparse
diagonal matrix where the diagonal entries are randomly generated—that is, Qi = spdiags(rand(ni,1),0,ni,ni) in
MATLAB syntax.

c. Type 2 problem (with suffix -t2) has nondiagonal quadratic objective cost. In this case, Qi is still very
sparse, but remain positive semidefinite. Practically, we can construct Qi by first generating a random ni × ni
matrix Q̄i and then set Qi :� Q̄iQ̄i

T—that is, tmp=sprandn(ni,ni,0.1); Qi = tmp*tmp’ in MATLAB syntax.
d. For both types of problems, we generate Ai and Di similarly for i � 0, . . . ,N using the MATLAB

command sprandn with density 0.5 and 0.3, respectively. Note that by convention, we have D0 � 0.
e. L2CTA3D: This is a very large instance (with a total of 10 million variables and 210,000 constraints)

provided at http://www-eio.upc.es/~jcastro/huge_sdc_3D.html.
f. SDC: These are some of the CTA instances we generated using the generator provided by J. Castro at

http://www-eio.upc.es/~jcastro/CTA_3Dtables.html.

5.3.2. Numerical Results. As in Section 5.2, we compare our sGS-ADMM algorithm against Gurobi and BlockIP
in Table 5.

Table 5 shows that Gurobi is frequently the slowest to solve the test instances, except for the qp-pdsxx
instances, whereas our sGS-ADMM performs almost as efficiently as BlockIP in solving these quadratic primal
block-angular problems. Here, we note that Gurobi used a barrier method to solve these problems and hence
the reported numbers of iterations are generally within a hundred. For these randomly generated problems,
we observe that the presolve routine in Gurobi can take a substantial amount of time to analyze the problems
but does not manage to reduce the number of variables or constraints. Hence we turn off the presolve feature
in Gurobi when collecting the numerical results in Table 5 because this can greatly reduce its runtime for
solving the problems.

It is worth noting that our sGS-ADMM method works very well on the large-scale, randomly generated
problems compared with BlockIP. A plausible explanation for BlockIP’s inferior performance is that, for these
instances, the matrices Ai and Qi, i � 0, . . . ,N are no longer simple identity matrices, for which it can take
special advantage in its implementation. Also, BlockIP runs out of memory for two of the largest instances,
qp-rand4-t1 and qp-rand6-t1. Moreover, it often cannot solve the problems to the desired accuracy of 10−5 in
the relative KKT residual.

It is also observed that BlockIP could not solve for the qp-randx-t2 problems because it is not designed for
problems with nondiagonal quadratic objective cost. For these problems, our sGS-ADMM can substantially
outperform Gurobi, sometimes by a factor of more than nine. For the qp-SDCx-x problems, both BlockIP and
sGS-ADMM are extremely efficient, and they are often more then 10 times faster than Gurobi. For example,
our sGS-ADMM is more than 67 times faster than Gurobi in solving the problem qp-SDC17-t1. It is not
surprising that the Gurobi is less competitive than sGS-ADMM in solving the convex quadratic problems
tested in Table 5 because each iteration of the barrier method it uses is expensive, especially when the number
of linear constraints

∑N
i�0 mi in the problem is very large. On the other hand, our sGS-ADMM is designed

to fully exploit the block-angular structure in the tested QP problems to keep its computational cost per
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iteration at a much lower level. We should note that, despite the inferior performance of Gurobi compared
with sGS-ADMM, it is still impressive for a general-purpose solver, as it is able to solve the very-large-scale
QP problems tested here. For example, the problem qp-SDC17-t1 has 12.5 million variables and 300,000
constraints. Overall, our sGS-ADMM is the most efficient and robust in solving very-large-scale convex
quadratic primal block-angular instances tested in our experiments.

5.4. Block-Angular Problems with Nonlinear Convex Objective Functions
In this subsection, we perform numerical experiments on problems having nonlinear convex objective functions
and primal block-angular constraints. In particular, on nonlinear multicommodity flow problems that usually arise
in transportation and telecommunication, where two commonly used nonlinear convex objective functions are:

h t( ) �

∑m
i�1

fKr ti; capi

( )
, known as Kleinrock function;

∑m
i�1

fBPR ti; capi, ri
( )

, known as BPR (Bureau of Public Roads) function,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
such that

fKr α; c( ) �
α

c−α if 0 ≤ α < c,
+∞ otherwise,

{
fBPR α; c, r( ) � rα 1 + B α

c

( )β[ ]
if α ≥ 0 ,

+∞ otherwise.

{
The Kleinrock function is used to model delay in a telecommunication problem, whereas the BPR function is
used to model congestion in a transportation problem. Here, capi is the capacity of arc i, ri is the free flow time
of arc i, and β,B are two positive parameters. In general, β is chosen to be four.

Table 5. Comparison of Computational Results Between sGS-ADMM, Gurobi, and BlockIP for Quadratic Primal
Block-Angular Problems

Data m0; m̄ n0; n̄ N

sGS-ADMM Gurobi BlockIP

Iter Time Acc Iter Time Acc Iter Time Acc

qp-rand1-t1 50; 50 80; 80 10 421 0.19 8.8-6 15 0.15 9.6-5 29 0.06 1.6-4
qp-rand2-t1 1,000; 1,000 1,500; 1,500 10 748 39.6 1.0-5 16 52.5 5.2-6 39 305.1 6.8-4
qp-rand3-t1 100; 100 200; 200 100 331 2.7 7.4-6 21 1.8 1.4-5 54 5.3 1.3-2
qp-rand4-t1 1,000; 1,000 1,500; 1,500 100 361 218.7 9.6-6 19 410.2 6.0-7 / / /
qp-rand5-t1 100; 100 200; 200 150 341 4.2 8.5-6 22 2.7 2.6-5 58 26.5 1.6-1
qp-rand6-t1 1,000; 1,000 1,500; 1,500 150 448 363.5 9.9-6 19 608.8 2.3-6 / / /
qp-rand7-t2 10; 10 20; 20 10 1,501 0.57 2.5-6 14 0.12 5.5-5 ∗ ∗ ∗
qp-rand8-t2 50; 50 80; 80 10 141 0.14 3.9-6 16 0.18 2.4-5 ∗ ∗ ∗
qp-rand9-t2 1,000; 1,000 1,500; 1,500 10 131 36.6 1.0-6 12 329.9 1.7-6 ∗ ∗ ∗
qp-rand10-t2 100; 100 200; 200 100 81 2.4 5.7-6 16 7.3 1.8-5 ∗ ∗ ∗
qp-rand11-t2 1,000; 1,000 1,500; 1,500 100 220 394.0 4.6-7 13 1,352.2 1.4-6 ∗ ∗ ∗
qp-rand12-t2 100; 100 200; 200 150 74 3.5 8.8-6 17 11.5 1.8-5 ∗ ∗ ∗
qp-rand13-t2 1,000; 1,000 1,500; 1,500 150 252 618.6 4.9-7 13 2,090.2 1.6-6 ∗ ∗ ∗
qp-tripart1 2,096; 192 2,096; 2,096 16 653 0.84 9.9-6 16 0.48 3.6-7 24 0.1 2.4-5
qp-tripart2 8,432; 768 8,432; 8,432 16 971 5.8 9.4-6 21 2.2 2.2-7 38 0.7 1.4-5
qp-tripart3 16,380; 1,200 16,380; 16,380 20 1,034 13.1 9.9-6 27 6.6 1.7-7 55 3.7 1.9-5
qp-tripart4 24,815; 1,050 24,815; 24,815 35 5,871 220.0 8.6-6 27 25.9 1.5-7 67 9.6 1.3-4
qp-gridgen1 3,072; 1,025 3,072; 3,072 320 4,081 183.7 6.9-6 58 200.7 1.4-5 208 680.4 5.7-7
qp-pds15 1,812; 2,125 7,756; 7,756 11 1,110 7.4 9.9-6 53 2.2 1.9-5 90 5.8 5.5-2
qp-pds30 3,491; 4,223 16,148; 16,148 11 1,941 37.1 9.4-6 87 7.8 1.4-5 113 24.4 4.9-2
qp-pds60 6,778; 8,423 33,388; 33,388 11 4,685 188.3 9.8-6 78 20.4 1.2-8 134 113.8 2.4-2
qp-pds90 8,777; 12,186 46,161; 46,161 11 3,021 172.6 5.9-6 71 31.1 5.9-9 165 320.6 1.1-2
qp-L2CTA3D 110,000; 1,000 0; 100,000 100 21 16.7 1.7-6 8 577.6 2.8-7 7 14.1 6.4-4
qp-SDC13-t1 10,000; 200 0; 10,000 200 41 3.2 9.0-6 8 87.1 6.4-6 8 2.7 6.5-4
qp-SDC14-t1 20,000; 300 0; 20,000 200 34 6.5 9.2-6 8 298.1 5.6-6 8 5.4 5.5-4
qp-SDC15-t1 40,000; 400 0; 40,000 200 31 10.9 4.7-6 8 2,974.1 4.2-6 7 12.3 9.8-4
qp-SDC16-t1 25,000; 550 0; 25,000 500 41 25.3 4.7-6 8 627.3 5.3-6 8 14.2 7.6-4
qp-SDC17-t1 250,000; 1000 0; 250,000 50 20 15.0 9.9-7 8 1,015.2 2.4-6 7 31.1 8.6-4

Notes. The entry “/”means that the solver runs out of memory, and “*”means the solver is not compatible to solve the problem. Here, “Iter” is
the number of outer iterations performed, “Time” is the total runtime in seconds, and “Acc” is the accuracy of the computed solution that is
defined in Section 5. Under the column “Acc,” we record the accuracy “x.ye-0z” using the format “x.y-z” to save some space.
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In our problem setting, we have

θ0 x0( ) � h x0( ), θi xi( ) � 0, A0 � I, Ai � −I, ∀ i � 1, . . . ,N,

Qi � 0, ci � 0, ∀ i � 0, . . . ,N, ;

D1 � D2 � · · · � DN is a node-arc incidence matrix,
b0 � 0, bi � di, ∀ i � 1, . . . ,N for some demand di on each commodity i,

Ki � 0, cap1

[ ] × 0, cap2

[ ] × · · · × 0, capn̄

[ ]
, for Kleinrock function;

Rn̄+, for BPR function.

{

Following Babonneau and Vial (2009), the data sets we used are the planar and grid problems, which can be
downloaded from http://www.di.unipi.it/optimize/Data/MMCF.html#Plnr.

Remark 6. In Step 1(c) of the sGS-ADMM for solving the current class of problems, we need to compute the
proximal mapping of σθ0:

Proxσθ0 v( ) � argmin σθ0 t( ) + 1
2

t − v‖ ‖2 | t ∈ Rn0

{ }
, v ∈ Rn0 .

Because θ0(t) � ∑n0
i�1 fKr(ti; c) is separable in the case when we use the Kleinrock function (similarly for the BPR

function), the computation of Proxσθ0(v) then amounts to separately solving n0 strongly convex scalar
minimization problems. In our implementation, we solve these scalar problems by Newton’s method with
Armijo linesearch and warm-start (by using the iterate computed in the previous sGS-ADMM iteration as the
starting point). In our experiments, we observe that the computation of the above proximal mapping con-
tributes only to a small percentage of the total runtime.

5.4.1. Numerical Results. In this subsection, we compare our sGS-ADMM algorithm against BlockIP, IPOPT
(Wächter and Bielger 2006), and PDCO (https://web.stanford.edu/group/SOL/software/pdco/). PDCO is a
primal-dual interior-point method designed for linearly constrained problems with separable convex objective
functions, whereas IPOPT is one of the state-of-the-art solvers for solving general nonlinear programming
problems. It is an implementation of a primal-dual interior-point algorithm with a filter line-search method for
nonlinear programming. At each iteration, it solves a symmetric linear system that is analogous to the case
of an interior-point method for solving a convex quadratic-programming problem. The only difference is that
the constraint matrices may change from iteration to iteration if the original equality constraints are nonlinear,
and the Hessian of the nonlinear objective function may be indefinite if the problem is nonconvex. When
the solver is applied to a linearly constrained nonlinear convex problem with bound constraints, the main
ingredient at each iteration of IPOPT is, in fact, similar to that of the interior-point method PDCO designed
especially for such a class of problems. The reason we include IPOPT and PDCO as benchmarks is the same
as why we include Gurobi as a benchmark before. They could be used to judge how much gain a structure-
specialized algorithm can obtain compared with a general solver. We use the Kleinrock function as our
objective function here.

Table 6 shows that IPOPT is almost always the slowest to solve the test instances. On the other hand,
although PDCO is more robust, its performance still lags behind that of sGS-ADMM. For example, PDCO is
8.7 times slower than our algorithm on the problem grid10. It is not surprising for IPOPT and PDCO to
perform less efficiently because they are general solvers for nonlinear or convex programs. Lastly, we observe
that, even though BlockIP is specially designed for convex block-angular problems, it is not as efficient as
PDCO. Moreover, it runs into memory issues when solving almost half of the instances. This is due to the fact
that BlockIP uses a preconditioned conjugate gradient method and Cholesky factorization to solve the linear
system arising at each iteration of the interior-point method. In the middle of the run, when the PCG method
did not converge, the algorithm switches to use Cholesky factorization to solve the linear system, and that
often leads to out-of-memory errors. Even when the PCG method works well, BlockIP can still be 10 times
slower than our algorithm.

The sGS-ADMM algorithm is able to efficiently solve all the tested nonlinear convex block-angular problems
to the required accuracy of 10−5 in the relative KKT residual. In particular, it takes only 461 seconds to solve
the very-large-scale instance grid10, which has 4.8 million variables and 1.25 million linear constraints.
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6. Conclusion
We have designed a semi-proximal augmented Lagrangian-based decomposition method for directly solving
the primal form of a convex composite quadratic conic-programming problem with a primal block-angular
structure. One of the variants of the method is shown to be closely related to the well-known DQA method of
Mulvey and Ruszczyński. We have also proposed an inexact symmetric Gauss–Seidel ADMM for solving the
corresponding dual problem. A systematic comparison between the primal-based semi-proximal augmented
Lagrangian decomposition algorithms and the dual-based sGS-ADMM has shown that the latter is numer-
ically much more efficient. Numerical experiments on evaluating the performance of our sGS-ADMM against
state-of-the-art solvers have shown that our sGS-ADMM algorithm is especially efficient for large instances
with convex quadratic objective functions. As a future project, we plan to implement our algorithm for solving
semidefinite programming problems with a primal block-angular structure. Also, it would be natural to
explore the implementation of the sGS-ADMM on a better parallel computing and programming platform to
fully realize its potential.
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Appendix: Relation Between ALM-DQA-Mod and the DQA Method of Ruszczyński
Here, we elucidate the connection between ALM-DQA-mod in Section 3.2 and the DQA method proposed in
Ruszczyński (1989) and Mulvey and Ruszczyński (1992). Given x̂si ∈ Fi, we can parameterize a given xi as

xi � x̂si + ρdi � 1 − ρ
( )

x̂si + ρ x̂si + di
( )

, i � 0, 1, . . . ,N,

with ρ � (N + 1)−1 ∈ (0, 1]. Then, by convexity, fi(xi) ≤ (1 − ρ)fi(x̂si ) + ρfi(x̂si + di). Also, if x̂si + di ∈ Fi, then, by the convexity of
the set Fi and the fact that x̂si ∈ Fi, we know that xi ∈ Fi. From here, we have that for all x ∈ F0 × F1 × · · · × FN ,

Lσ x; yk0
( ) + σ

2
x − x̂s‖ ‖2

T̂
+ 1
2σ

yk0
⃦⃦⃦ ⃦⃦⃦2

� ∑N
i�0

fi xi( ) + σ

2
Ax − b0 − σ−1yk0

⃦⃦⃦ ⃦⃦⃦2 − 1
2σ

yk0
⃦⃦⃦ ⃦⃦⃦2 + σ

2
x − x̂s‖ ‖2

T̂
+ 1
2σ

yk0
⃦⃦⃦ ⃦⃦⃦2

≤ 1 − ρ
( )∑N

i�0
fi x̂si
( ) + ρ

∑N
i�0

fi x̂si + di
( ) + σ

2
A x̂s + ρd

( ) − b0 − σ−1yk0
⃦⃦⃦ ⃦⃦⃦2 + σρ2

2
d‖ ‖2

T̂

� ∑N
i�0

ρfi x̂si + di
( ) + ρ〈di, α̂s

i 〉 +
σρ2

2
〈di,Eidi〉

[ ]
+ 1 − ρ

( )∑N
i�0

fi x̂si
( ) + σ

2
Ax̂s − b0 − σ−1yk0

⃦⃦⃦ ⃦⃦⃦2
. (A.1)

Table 6. Comparison of Computational Results Between sGS-ADMM, BlockIP, IPOPT, and PDCO for Nonlinear Primal
Block-Angular Problem

Data m0 m̄ n0 n̄ N

sGS-ADMM BlockIP IPOPT PDCO

Iter Time Acc Iter Time Acc Iter Time Acc Iter Time Acc

grid1 80 24 80 80 50 591 0.23 4.8-6 28 0.06 1.1-3 81 2.08 4.8-5 35 0.37 2.6-6
grid3 360 99 360 360 50 381 0.34 9.2-6 41 0.75 3.4-3 84 10.19 4.7-5 37 1.67 2.7-6
grid5 840 224 840 840 100 581 1.43 9.1-6 — — — 85 60.15 4.9-5 42 14.59 2.6-6
grid8 2,400 624 2,400 2,400 500 4,171 145.44 9.9-6 215 1,937.77 2.8-5 / / / 60 774.13 9.3-6
grid10 2,400 624 2,400 2,400 2,000 3,432 460.97 9.9-6 221 16,628.50 3.8-5 / / / 73 40,27.51 9.4-6
planar30 150 29 150 150 92 431 0.25 1.0-5 93 0.73 1.3-3 91 4.49 6.7-5 27 0.57 5.1-6
planar80 440 79 440 440 543 1,875 12.95 1.0-5 — — — 402 673.86 7.3-5 36 30.12 8.3-6
planar100 532 99 532 532 1,085 2,614 42.55 1.0-5 — — — 114 585.51 3.1-4 41 91.64 7.3-6

Notes. The entry “—” means that the solver encounters memory issue, while the entry“/” means that the solver could not solve the problem
within the time limit of five hours. Here, “Iter” is the number of outer iterations performed, “Time” is the total runtime in seconds, and “Acc” is
the accuracy of the computed solution that is defined in Section 5. Under the column “Acc,”we record the accuracy “x.ye-0z” using the format
“x.y-z” to save some space.

275
Lam, Sun, and Toh: Semi-proximal ALM for Primal Block-Angular CCQCPs
INFORMS Journal on Optimization, 2021, vol. 3, no. 3, pp. 254–277, © 2021 INFORMS



Hence, instead of (22) in ALM-DQA-mod, we may consider to minimize the majorization of Lσ(x; yk0) + σ
2 x − x̂s‖ ‖2

T̂
in (A.1), and compute for i � 0, 1, . . . ,N,

ds+1i � argmin
di

ρ fi x̂si + di
( ) + σρ

2
〈di, Eidi〉 + 〈di, α̂s

i 〉 | x̂si + di ∈ Fi, di ∈ X i

{ }
. (A.2)

We obtain the DQA method of Ruszczyński (1989) if we compute ds+1 exactly in the above Subproblem (A.2), and set

x̂s+1i � x̂si + ρds+1i , i � 0, 1, . . . ,N,

instead of the solution in (22). Thus, we may view the DQA method in Ruszczyński (1989) as an augmented Lagrangian
method for which the subproblem in Step 1 of Algorithm ALM is solved by a majorized proximal gradient method with
the proximal term chosen to be σ

2 x − x̂s‖ ‖2
T̂

at each step.

Remark A.1. When the Ai’s are matrices, the majorization A∗A � diag(E0, . . . , EN) can be improved as follows, as has been
done in Chatzipanagiotis et al. (2015). Define the vector ej to be the jth column of the identity matrix. Let

Ij � i ∈ 0, 1, . . . ,N{ } | eTj Ai �� 0
{ }

, χ :� max |Ij| | j � 1, . . . ,m
{ } ≤ N + 1 � ρ−1.

Then,

Ax‖ ‖2 � ∑N
i�0

Aixi

⃦⃦⃦⃦
⃦

⃦⃦⃦⃦
⃦2 � ∑m

j�1

∑N
i�0

eTj Aixi

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒
2

� ∑m
j�1

∑
i∈Ij

eTj Aixi

⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒2

≤ ∑m
j�1

|Ij|
∑
i∈Ij

eTj Aixi
⃒⃒⃒ ⃒⃒⃒2( )

≤ χ
∑m
j�1

∑
i∈Ij

eTj Aixi
⃒⃒⃒ ⃒⃒⃒2

� χ
∑m
j�1

∑N
i�0

eTj Aixi
⃒⃒⃒ ⃒⃒⃒2 � χ

∑N
i�0

Aixi‖ ‖2.

That is, A∗A � diag(χ)A∗
0A0, · · · , χA∗

NAN). It is straightforward to incorporate the improvement into ALM-DQA-mod by
simply replacing Ei � ρ−1A∗

i Ai in (21) by χA∗
i Ai for each i � 0, 1, . . . ,N.
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