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Abstract. Semismooth Newton methods constitute a major research area for solving mixed complementarity
problems (MCPs). Early research on semismooth Newton methods is mainly on infeasible methods. However,
some MCPs are not well defined outside the feasible region or the equivalent unconstrained reformulations
of other MCPs contain local minimizers outside the feasible region. As both these problems could make the
corresponding infeasible methods fail, more recent attention is on feasible methods.

In this paper we propose a new feasible semismooth method for MCPs, in which the search direction
asymptotically converges to the Newton direction. The new method overcomes the possible non-convergence
of the projected semismooth Newton method, which is widely used in various numerical implementations, by
minimizing a one-dimensional quadratic convex problem prior to doing (curved) line searches.

As with other semismooth Newton methods, the proposed method only solves one linear system of equa-
tions at each iteration.The sparsity of the Jacobian of the reformulated system can be exploited, often reducing
the size of the system that must be solved. The reason for this is that the projection onto the feasible set increas-
es the likelihood of components of iterates being active. The global and superlinear/quadratic convergence of
the proposed method is proved under mild conditions. Numerical results are reported on all problems from
the MCPLIB collection [8].

Key words. mixed complementarity problems – semismooth equations – projected Newton method – con-
vergence

1. Introduction

In this paper we are concerned with finding a solution to the simply constrained system
of nonlinear nonsmooth equations

H(x) = 0, x ∈ X := {x ∈ R
n| l ≤ x ≤ u}, (1.1)

where the bounds li ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}, li < ui , i = 1, . . . , n, and the
functionH : R

n → R
n is assumed to have the following properties (with the definition

of the semismoothness to follow):
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(H1) the function H is semismooth, and
(H2) the function θ(x) = 1

2H
T (x)H(x) is continuously differentiable on R

n.
An important application of (1.1) is to the mixed complementarity problem (MCP),
which is to find a vector x ∈ X such that

F(x)T (y − x) ≥ 0, ∀ y ∈ X. (1.2)

Here, the function F : R
n → R

n is continuously differentiable. If X = R
n+, the MCP

reduces to the nonlinear complementarity problem (NCP), which is to find x ∈ R
n such

that
x ≥ 0, F (x) ≥ 0, xT F (x) = 0. (1.3)

See [16] and [11] for surveys on NCPs and MCPs. We will see in our numerical part
Section 5 that through an NCP function, the MCP and NCP can be equivalently refor-
mulated as (1.1) withH having the required properties. The proposed numerical method
for (1.1) is then applied to solve the problems in the MCPLIB collection [8].

Problem (1.1) can be equivalently stated as a simply constrained minimization prob-
lem:

min θ(x)

s.t. x ∈ X. (1.4)

It is also noted that the complementarity property of NCP functions allows us to state
that x ∈ R

n is a solution of (1.2) if and only if it satisfies H(x) = 0 (here constraints
are not necessarily in place, in contrast to (1.1)). The reason that the box constraint set
X is attached to (1.1) and (1.4), instead of dropping it, is based on several observations.
Firstly, for some mixed complementarity problems in the MCPLIB collection [8], the
function F or its Jacobian may not be well defined outside X, although for ease of
discussion we assume that F is continuously differentiable on R

n. Secondly, even if
F is well defined on R

n, some desirable properties of F like monotonicity which hold
on X may not hold outside X. Thirdly, by forcing the iteration sequence to stay in X,
one can avoid being trapped in a local minimizer of θ outside X. It is noted that adding
bounds may increase the likelihood that the iteration sequence would be trapped in a
constrained local minimizer. However, for NCPs and MCPs, conditions for assuring
a stationary point of (1.4) to be a solution are not more restrictive than those for the
unconstrained counterpart [13, 10].

Now we present a brief analysis which leads to what we call a feasible semismooth
asymptotically Newton method for (1.1). At any x ∈ R

n such that H(x) �= 0, let V
be an element of the generalized Jacobian ∂H(x) in the sense of Clarke [6]. Since θ is
continuously differentiable, a solution dN (if it exists) of the equation

H(x)+ V d = 0 (1.5)

is a descent direction of θ at x (note that ∇θ(x) = V T H(x) [7, 29]) and will be referred
to as a (semismooth) Newton direction of θ at x. If the point at which the direction dN is
computed is obvious from the context, we will simply call dN a (semismooth) Newton
direction. This key feature enabled De Luca et al. to design a globally and locally su-
perlinearly convergent (infeasible) semismooth Newton method [7]. The success of the
semismooth Newton method [7] is heavily dependent on allowing the iteration sequence
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to stay outside X. The descent property of the Newton direction dN further implies that
if x ∈ intX, the interior part of X, and λ > 0 sufficiently small, one has

θ(�X[x + λdN ]) < θ(x). (1.6)

This has led several authors (e.g. [2, 3, 10, 17, 26]) to use (1.6) or a similar form as
a rule to choose the next iterate. Methods based on (1.6) are referred to as projected
(semismooth) Newton methods. However, (1.6) may not hold when x ∈ X\intX, no
matter how small λ is. In other words, the projected Newton direction d̄N (λ) defined by

d̄N (λ) = �X[x + λdN ] − x (1.7)

may not be a descent direction for any small λ > 0. This, together with a couple of other
features, is illustrated in Figure 1.

Example 1.1 Consider a two dimensional NCP where X = {x ∈ R
2| x ≥ 0} and

F1(x) = −x1 + x2 − 1 and F2(x) = 0. Let the point considered be x = (0, 0.5).
The function H obtained with α = 1 (cf. Section 5) is continuously differentiable
around x and hence V = H ′(x). A particular instance of Newton directions at x is
dN = (−2,−0.5). The problem has the following properties at x: (a) Newton direction
dN exists, (b) dN is a descent direction for the unconstrained optimization problem (i.e.,
∠2 > 900 in Figure 1), and (c) the projected Newton direction is nonzero, but not a
descent direction (i.e., ∠1 < 900 in Figure 1).

Example 1.1 demonstrates that there is no theoretical guarantee of success for methods
based on (1.6) despite the fact that it has been widely used in various projected Newton
methods.

For any x ∈ X, define the gradient direction dG by

dG = −γ∇θ(x)

for some γ > 0. Also for any x ∈ X and λ ∈ [0, 1] define the projected gradient
direction d̄G(λ) by

d̄G(λ) = �X[x + λdG] − x. (1.8)

It is also well-known [1] that if x ∈ X is not a stationary point of (1.4) then for any
λ > 0 sufficiently small,

θ(�X[x + λdG]) < θ(x) (1.9)

no matter whether x ∈ intX or not (e.g., ∠3 > 900 in Figure 1.) An immediate idea is
to use (1.9) if (1.6) does not work (noticing again that the projected Newton direction
is useless in Example 1.1 for all λ > 0.) However, it often happens that the projected
Newton direction is not a descent direction for all λ ∈ [λ̄, 1] but is a descent direction
for all λ < λ̄ for some λ̄ > 0 (cf. Figure 2, ∠ = 900). This illustrates a case that
locally the projected Newton direction provides a descent direction and an Armijo-type
search on the projected Newton direction may succeed. These arguments are illustrated
in Figure 2.
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Fig. 1. Directions for Example 1.1 at x = (0, 0.5) with α = 1. All other projected Newton directions have the
same orientation as of d̄N (1)

Example 1.2 Consider a two-dimensional MCP withX = [0,∞)×[0, 1] andF given as
in Example 1.1. Its unique solution is (0, 1). Let the point considered be x = (0, 0.5). The
function H defined with α = 1 (cf. Section 5) is continuously differentiable around x,
and hence V = H ′(x). A particular instance of Newton directions at x is dN = (2, 1.5).
Figure 2 illustrates the behavior of the projected Newton direction.

These examples leave us an intriguing question: how can one combine (1.9) with
(1.6) into the design of algorithms so that both theoretical elegance and numerical ex-
cellence can be achieved simultaneously? In the circumstance of Example 1.2, d̄N (λ) is
a descent direction for 0 < λ < 0.5, while in Example 1.1 d̄N (λ) is not no matter how
small λ is. Therefore, it is essential for good numerical performance to have a mechanism
to judge if the projected Newton direction is suitable for a line search prior to trying it.
To have such a mechanism or not is a major difference between our method and other
feasible semismooth Newton methods [2, 10, 17, 18, 26].

In this paper, we shall address such a mechanism by introducing a projected (semi-
smooth) asymptotically Newton method. For any x ∈ X and λ ∈ [0, 1], let

d̄(λ) = t∗(λ)d̄G(λ)+ [1 − t∗(λ)]d̄N (λ), (1.10)

where for any fixed λ ∈ [0, 1], t∗(λ) ∈ [0, 1] is an optimal solution to the one-dimen-
sional convex quadratic programming problem

min
t∈[0,1]

1

2
‖H(x)+ V [t d̄G(λ)+ (1 − t)d̄N (λ)]‖2. (1.11)
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Fig. 2. Directions for Example 1.2. The dashed line is the trajectory of the projected Newton direction. d̄N (0.5)
forms an angle of 900 with ∇θ(x), which indicates that the direction d̄N (λ) with λ ∈ (0, 0.5) is a descent
direction, while d̄N (λ) with λ ∈ [0.5, 1] is not

We shall show that if x ∈ X is not a stationary point of (1.4) and dN exists,

θ(x + d̄(λ)) < θ(x)

for all λ > 0 sufficiently small. More importantly, we will prove, under a nonsingularity
assumption at a solution x∗ of H(x) = 0, that

lim
x→x∗ sup

0<λ≤1

‖d̄(λ)− λdN‖
λ‖dN‖ = 0,

which means, locally, that d̄(λ) asymptotically converges to the Newton direction λdN
both in direction and magnitude for any λ ∈ (0, 1]. For this reason, we call d̄(λ), λ ∈
[0, 1] a projected (semismooth) asymptotically Newton direction.

The organization of this paper is as follows. In the next section we review several
results on semismoothness which will be used later on. In Section 3 we study properties
of the search directions, which constitute the backbone of our algorithm. In Section 4 we
state the algorithm and analyze its convergence. In Section 5 we first detail the reformu-
lation of the MCP as (1.1) via an NCP function and then present numerical results on all
problems in the MCPLIB collection [8]. Some concluding remarks are given in Section 6.

2. Properties on semismoothness

In this section we review some results on semismoothness which will be used later
on. Semismoothness was originally introduced by Mifflin [19] for functionals. Convex
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functions, smooth functions, and piecewise smooth functions are examples of semi-
smooth functions. The composition of semismooth functions is still a semismooth func-
tion (see [19]). In [24], Qi and Sun extended the definition of semismooth functions to
H : R

n → R
n. A locally Lipschitz continuous vector valued function H : R

n → R
n

has a generalized Jacobian ∂H(x) in the sense of Clarke [6].H is said to be semismooth
at x ∈ R

n, if
lim

V∈∂H(x+th′)
h′→h, t↓0

{V h′}

exists for any h ∈ R
n. It has been proved in [24] that H is semismooth at x if and only

if all its component functions are. Also H ′(x;h), the directional derivative of H at x in
the direction h, exists for any h ∈ R

n and is equal to the above limit ifH is semismooth
at x.

Lemma 2.1 [24, 22] Suppose that H : R
n → R

n is a locally Lipschitz function and
semismooth at x. Then, for any h → 0 and V ∈ ∂H(x + h),

H(x + h)−H(x)− V h = o(‖h‖).
H is said to be strongly semismooth at x if H is semismooth at x and for any

V ∈ ∂H(x + h), h → 0,

H(x + h)−H(x)− V h = O(‖h‖2).

A functionH is said to be a (strongly) semismooth function if it is (strongly) semismooth
everywhere on R

n.
In [22], Qi defined the generalized Jacobian

∂BH(x) := {V ∈ R
n×n| V = lim

xk→x
H ′(xk),H is differentiable at xk for all k}.

This concept will be used in the design of our algorithm. A locally Lipschitz function
H is said to be BD-regular at x ∈ R

n if all V ∈ ∂BH(x) are nonsingular [22].

Lemma 2.2 [22, Lemma 2.6] Suppose that H : R
n → R

n is locally Lipschitz contin-
uous and H is BD-regular at x ∈ R

n. Then there exist a neighborhood N (x) of x and
a constant K such that for any y ∈ N (x) and V ∈ ∂BH(y), V is nonsingular and
‖V −1‖ ≤ K .

Lemma 2.3 [21, Proposition 3] Suppose that H : R
n → R

n is locally Lipschitz con-
tinuous and H is BD-regular at a solution x∗ of H(x) = 0. If H is semismooth at x∗,
then there exist a neighborhood N (x∗) of x∗ and a constant κ > 0 such that for any
x ∈ N (x∗),

‖H(x)‖ ≥ κ‖x − x∗‖.
The following two lemmas on properties of the projection operator�X(·) are useful

in our analysis. Here the constraint set X can be any nonempty closed convex set.

Lemma 2.4 [31] The projection operator �X(·) satisfies

(i) for any x ∈ X, [�X(z)− z]T [�X(z)− x] ≤ 0 for all z ∈ R
n;

(ii) ‖�X(y)−�X(z)‖ ≤ ‖y − z‖ for all y, z ∈ R
n.
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Lemma 2.5 [14, 4] Given x ∈ R
n and d ∈ R

n, the function ξ defined by

ξ(λ) = ‖�X(x + λd)− x‖/λ, λ > 0

is antitone (nonincreasing).

Lemma 2.5 actually implies that if x ∈ X is a stationary point of (1.4), then

d̄G(λ) = �X[x + λdG] − x = 0 ∀ λ ≥ 0.

3. Properties of search directions

In this section, we shall study some useful properties of d̄(λ), λ ∈ [0, 1]. We stress that
the function H is always assumed to satisfy properties (H1) and (H2), which are stated
at the beginning of Section 1.

Let x ∈ X and V ∈ ∂BH(x) so that dN exists. For λ ∈ [0, 1], define qλ : R → R+
by

qλ(t) = 1

2
‖H(x)+ V [t d̄G(λ)+ (1 − t)d̄N (λ)]‖2, t ∈ R.

Then,

qλ(t) = 1

2
‖H(x)+ V d̄N(λ)‖2 + t[H(x)+ V d̄N(λ)]

T V [d̄G(λ)− d̄N (λ)]

+1

2
t2‖V [d̄G(λ)− d̄N (λ)]‖2.

For λ ∈ [0, 1], let

t (λ) =




0 if V [d̄G(λ)− d̄N (λ)] = 0,

− [H(x)+ V d̄N(λ)]T V [d̄G(λ)− d̄N (λ)]

‖V [d̄G(λ)− d̄N (λ)]‖2
otherwise.

(3.1)

Then t (λ), λ ∈ [0, 1] is a stationary point of qλ(·), i.e., ∇qλ(t (λ)) = 0. For λ ∈ [0, 1],
define

t∗(λ) = max{0,min{1, t (λ)}}. (3.2)

Lemma 3.1 Suppose that x ∈ X and V ∈ ∂BH(x) so that dN exists. Then for any
λ ∈ [0, 1], t∗(λ) is an optimal solution to (1.11), where t∗(λ) is defined by (3.2).

Proof. By the definition of (1.11) and qλ(·) and the convexity of qλ, t∗(λ) is an optimal
solution to

min
t∈[0,1]

qλ(t).

✷

The next proposition shows that d̄(λ) is a descent direction for all λ > 0 sufficiently
small.
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Theorem 3.1 Suppose that x ∈ X is not a stationary point of (1.4), V ∈ ∂BH(x) so
that dN exists and σ ∈ (0, 1). Then there exists a constant λ′ ∈ (0, 1] such that for any
λ ∈ (0, λ′], d̄(λ) is a descent direction of θ at x and

θ(x + d̄(λ)) ≤ θ(x)+ σ∇θ(x)T d̄G(λ). (3.3)

Proof. Since θ is continuously differentiable from assumption (H2), for λ → 0, we have

θ(x + d̄G(λ)) = θ(x)+ ∇θ(x)T d̄G(λ)+ o(λ)

and
θ(x + d̄(λ)) = θ(x)+ ∇θ(x)T d̄(λ)+ o(λ), (3.4)

because from Lemma 2.4, ‖d̄G(λ)‖ ≤ λ‖dG‖, ‖d̄N (λ)‖ ≤ λ‖dN‖ and for some t∗(λ) ∈
[0, 1],

d̄(λ) = t∗(λ)d̄G(λ)+ [1 − t∗(λ)]d̄N (λ).

On the other hand,

qλ(1) = 1

2
‖H(x)+ V d̄G(λ)‖2 = θ(x)+ ∇θ(x)T d̄G(λ)+O(λ2) (3.5)

and

qλ(t
∗(λ)) = 1

2
‖H(x)+ V d̄(λ)‖2 = θ(x)+ ∇θ(x)T d̄(λ)+O(λ2). (3.6)

By using (3.5), (3.6) and Lemma 3.1, for any λ ∈ [0, 1] we have

∇θ(x)T d̄(λ) ≤ ∇θ(x)T d̄G(λ)+O(λ2). (3.7)

By Lemmas 2.4 and 2.5, for any λ ∈ (0, 1],

∇θ(x)T d̄G(λ) ≤ −‖d̄G(λ)‖2/(λγ ) ≤ −λ‖d̄G(1)‖2/γ. (3.8)

Hence, from (3.7) and (3.8), for all λ > 0 sufficiently small we have ∇θ(x)T d̄(λ) < 0.
By (3.4) and (3.7) it holds that

θ(x + d̄(λ)) ≤ θ(x)+ ∇θ(x)T d̄G(λ)+ o(λ),

which, together with (3.8), implies that there exists a constant λ′ ∈ (0, 1] such that for
any λ ∈ (0, λ′], (3.3) holds. ✷

We now show that if for some λ ∈ (0, 1], x + λdN ∈ X and

(1 − λ)[2λθ(x)+ ∇θ(x)T d̄G(λ)] ≥ 0,

then d̄(λ) always takes the Newton direction, i.e., d̄(λ) = λdN . In particular, if x+dN ∈
X, then it holds that d̄(1) = dN .

Proposition 3.1 Suppose that x ∈ X is not a stationary point of (1.4) and V ∈ ∂BH(x)
so that dN exists. If for some λ ∈ (0, 1], x + λdN ∈ X, then

d̄(λ) =
{
dN if λ = 1,
λdN if λ ∈ (0, 1) & 0 < γ ≤ 2θ(x)/‖∇θ(x)‖2.
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Proof. From the assumption x + λdN ∈ X, we have d̄N (λ) = λdN . This, together with
(3.1), implies that

t (λ) =




0 if V [d̄G(λ)− λdN ] = 0,

− (1 − λ)[2λθ(x)+ ∇θ(x)T d̄G(λ)]
‖V [d̄G(λ)− λdN ]‖2

otherwise.
(3.9)

First, let us consider the case that λ = 1. Then from (3.2), we know that t∗(1) = 0,
which implies that d̄(1) = dN .

Next, we discuss the situation for λ ∈ (0, 1). For 0 < γ ≤ 2θ(x)/‖∇θ(x)‖2, we
have

2λθ(x)+ ∇θ(x)T d̄G(λ) ≥ 2λθ(x)− λγ ‖∇θ(x)‖2 ≥ 0,

which, together with (3.9), implies that t∗(λ) = 0. This proves that d̄(λ) = λdN . ✷

So far, we have considered some global properties of the search direction d̄(·) for a
nonstationary point x ∈ X. For the sake of superlinear (quadratic) convergence of our
algorithm, we will next consider properties of the directions d̄N (·) and d̄(·) around a
solution point.

First, let us consider the direction d̄N (·). It has been shown in Section 1 that in general
d̄N (λ) is not a descent direction of θ for any λ ∈ (0, 1]. However, the next result shows
that if x is sufficiently close to a BD-regular solution of H(x) = 0, d̄N (λ) is indeed a
descent direction of θ for all λ ∈ (0, 1].

Proposition 3.2 Suppose that H is BD-regular at a solution x∗ of H(x) = 0. Then for
any ρ ∈ (0, 2), there exists a neighborhood N of x∗ such that for any λ ∈ (0, 1] and
x ∈ N ∩X, d̄N (λ) is a descent direction of θ at x with

∇θ(x)T d̄N (λ) ≤ −ρλθ(x) (3.10)

and
d̄N (λ) = −λ(x − x∗)+ λo(θ(x)

1
2 ). (3.11)

Furthermore, if H is strongly semismooth at x∗, then for any λ ∈ (0, 1],

d̄N (λ) = −λ(x − x∗)+ λO(θ(x)). (3.12)

Proof. First, since H is BD-regular at a solution x∗, by Lemmas 2.2 and 2.3 there exist
a neighborhood N of x∗ and two positive numbers K and κ such that for any x ∈ N
and V ∈ ∂BH(x),

‖V −1‖ ≤ K, and ‖H(x)‖ ≥ κ‖x − x∗‖. (3.13)

Next, for any x ∈ N ∩X, define

R(x) := H(x)−H(x∗)− V (x − x∗).

By noting that H(x∗) = 0, we have for all x ∈ N ∩X that

x + λdN = x − λV −1H(x) = x − λV −1[V (x − x∗)+ R(x)]

= (1 − λ)x + λx∗ − λV −1R(x),
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which implies that

d̄N (λ) = �X[x + λdN ] − x

= �X[(1 − λ)x + λx∗] − x

+�X[(1 − λ)x + λx∗ − λV −1R(x)] −�X[(1 − λ)x + λx∗].

Hence, since (1 − λ)x + λx∗ ∈ X, we have

d̄N (λ) = (1 − λ)x + λx∗ − x + λ+λ(x) = −λ(x − x∗)+ λ+λ(x), (3.14)

where

+λ(x) = {�X[(1 − λ)x + λx∗ − λV −1R(x)] −�X[(1 − λ)x + λx∗]}/λ.
Therefore,

∇θ(x)T d̄N (λ) = −λ∇θ(x)T (x − x∗)+ λ∇θ(x)T +λ(x)
= −λH(x)T V (x − x∗)+ λH(x)T V+λ(x)

= −2λθ(x)+ λH(x)T R(x)+ λH(x)T V+λ(x). (3.15)

By using (ii) of Lemma 2.4 we have

‖�X[(1 − λ)x + λx∗ − λV −1R(x)] −�X[(1 − λ)x + λx∗]‖ ≤ λ‖V −1R(x)‖,
which implies that

‖+λ(x)‖ ≤ ‖V −1R(x)‖ ≤ K‖R(x)‖. (3.16)

Hence, by (3.15), for all x ∈ N ∩X,

∇θ(x)T d̄N (λ) ≤ −2λθ(x)+
√

2λ(1 +K‖V ‖)θ(x) 1
2 ‖R(x)‖. (3.17)

Since H is semismooth at x∗, it follows from Lemma 2.1 that for any V ∈ ∂BH(x) and
x → x∗,

R(x) = o(‖x − x∗‖). (3.18)

Then, because ∂BH(·) is compact everywhere and upper semi-continuous [22], by
shrinking N if necessary, we have for any x ∈ N ∩X,

‖R(x)‖ ≤ (2 − ρ)
κ‖x − x∗‖

2(1 +K‖V ‖) ,

which, together with (3.13) and (3.17), implies that

∇θ(x)T d̄N (λ) ≤ −ρλθ(x).
This proves (3.10).

Putting together (3.13), (3.14), (3.18) and (3.16), we have actually proved (3.11).
Now, we prove (3.12). Since H is strongly semismooth at x∗,

R(x) = O(‖x − x∗‖2),

which, together with (3.13), (3.14) and (3.16), proves (3.12). ✷

The next lemma summarizes several results needed in proving the local properties
of d̄(·). Its proof can be obtained by using Lemmas 2.1–2.3 and the fact that ∂BH(·) is
compact on any compact set [22].
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Lemma 3.2 Suppose that H is BD-regular at a solution x∗ of H(x) = 0. Then, there
exists a neighborhood N of x∗ such that for any x ∈ N ∩X and V ∈ ∂BH(x),

H(x)− V (x − x∗) = o(θ(x)
1
2 ),

and
∇θ(x) = V T H(x) = O(θ(x)

1
2 ).

Moreover, if H is strongly semismooth at x∗ then

H(x)− V (x − x∗) = O(θ(x)).

Finally, we can characterize the properties of d̄(·) locally.

Theorem 3.2 Suppose that H is BD-regular at a solution x∗ of H(x) = 0. Let η be a
positive number in (0, 1). Then for any λ ∈ (0, 1],

0 < γ ≤ min{1, ηθ(x)/‖∇θ(x)‖2}
and x ∈ X with x → x∗, we have

∇θ(x)T d̄(λ) = −2λθ(x)+ λo(θ(x)) (3.19)

and

sup
λ∈(0,1]

‖d̄(λ)− λdN‖
λ‖dN‖ = o(1). (3.20)

Moreover, if H is strongly semismooth at x∗, then for any x ∈ X with x → x∗, we have

sup
λ∈(0,1]

‖d̄(λ)− λdN‖
λ‖dN‖ = O(θ(x)

1
2 ). (3.21)

Proof. By (3.11) in Proposition 3.2, for any λ ∈ [0, 1] and V ∈ ∂BH(x),

V d̄N(λ) = −λV (x − x∗)+ λo(θ(x)
1
2 ),

which, together with Lemma 3.2, implies that

V d̄N(λ) = −λH(x)+ λo(θ(x)
1
2 ).

Hence, from the fact that for any λ ∈ [0, 1],

‖d̄G(λ)‖ ≤ λγ ‖∇θ(x)‖ ≤ λγ ‖V ‖‖H(x)‖,
we have

[H(x)+ V d̄N(λ)]
T V d̄N(λ)

= [(1 − λ)H(x)+ λo(θ(x)
1
2 )]T [−λH(x)+ λo(θ(x)

1
2 )]

= −2λ(1 − λ)θ(x)+ λ(1 − λ)o(θ(x))+ λ2o(θ(x)), (3.22)
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−[H(x)+ V d̄N(λ)]
T V d̄G(λ)

= −[(1 − λ)V T H(x)+ λo(θ(x)
1
2 )]T {�X[x − λγ∇θ(x)] − x}

≤ ‖(1 − λ)∇θ(x)+ λo(θ(x)
1
2 )‖‖�X[x − λγ∇θ(x)] − x‖

≤ γ λ(1 − λ)‖∇θ(x)‖2 + λ2o(θ(x)) (3.23)

and

‖V [d̄N (λ)− d̄G(λ)]‖2

= ‖V d̄N(λ)‖2 − 2[V d̄N(λ)]
T V d̄G(λ)+ ‖V d̄G(λ)‖2

≥ ‖V d̄N(λ)‖2 − 2[V d̄N(λ)]
T V d̄G(λ)

= 2λ2θ(x)+ λ2o(θ(x))− 2[−λH(x)+ λo(θ(x)
1
2 )]T V d̄G(λ)

= 2λ2θ(x)+ 2λ∇θ(x)T d̄G(λ)+ λ2o(θ(x))

≥ 2λ2[θ(x)− γ ‖∇θ(x)‖2] + λ2o(θ(x)). (3.24)

Now suppose that 0 < γ ≤ min{1, ηθ(x)/‖∇θ(x)‖2}. Then, by using (3.22)–(3.24),
for any λ ∈ [0, 1] we have

Q(λ) := [H(x)+ V d̄N(λ)]
T V [d̄N (λ)− d̄G(λ)]

≤ −λ(1 − λ)(2 − η)θ(x)+ λ(1 − λ)o(θ(x))+ λ2o(θ(x)) (3.25)

and
‖V [d̄N (λ)− d̄G(λ)]‖2 ≥ 2λ2(1 − η)θ(x)+ λ2o(θ(x)). (3.26)

Hence, we can conclude from (3.25)-(3.26) and (3.1) that t (λ) ≤ 0 if Q(λ) ≤ 0 and

t (λ) ≤ | − λ(1 − λ)(2 − η)+ λ(1 − λ)o(1)+ λ2o(1)|
2λ2(1 − η)+ λ2o(1)

if Q(λ) > 0. Therefore, from (3.2), we obtain

t∗(λ) ≤ o(1).

Hence,

d̄(λ) = t∗(λ)d̄G(λ)+ [1 − t∗(λ)]d̄N (λ) = d̄N (λ)+ λo(θ(x)
1
2 ).

Then, from Proposition 3.2, it holds that

d̄(λ) = −λ(x − x∗)+ λo(θ(x)
1
2 ).

This proves both (3.19) and (3.20) by using Lemma 3.2 and dN = −V −1H(x).
Moreover, if H is strongly semismooth at x∗, then from Lemma 3.2, for x → x∗

and V ∈ ∂BH(x),
H(x)− V (x − x∗) = O(θ(x)).

Hence, by using this, Proposition 3.2, and the above argument, we get (3.21). We omit
the details here. ✷
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4. The algorithm and its convergence analysis

We first describe our algorithm and then discuss its convergence analysis. The algorithm
parameters ρ, σ control an Armijo line search, the parameter η the scaling of the steepest
descent direction, and p1, p2 when the Newton direction is acceptable.

Algorithm 4.1 (A Projected Semismooth Asymptotically Newton Method)

Step 0. Choose constants ρ, σ, η ∈ (0, 1), p1 > 0 and p2 > 2. Let x0 ∈ X and k := 0.
Step 1. Choose Vk ∈ ∂BH(xk) and compute ∇θ(xk) = V Tk H(x

k).
Step 2. If xk is a stationary point, stop. Otherwise let

dkG = −γk∇θ(xk),

where

γk = min{1, ηθ(xk)/‖∇θ(xk)‖2},
and go to Step 3.

Step 3. If the linear system

H(xk)+ Vkd = 0, (4.1)

has a solution dkN and

−∇θ(xk)T dkN ≥ p1‖dkN‖p2 , (4.2)

then use the direction dkN . Otherwise, set

dkN = dkG.

Step 4. Let mk be the smallest nonnegative integer m satisfying

θ(xk + d̄k(ρm)) ≤ θ(xk)+ σ∇θ(xk)T d̄kG(ρm), (4.3)

where for any λ ∈ [0, 1],

d̄k(λ) = t∗k (λ)d̄
k
G(λ)+ [1 − t∗k (λ)]d̄

k
N (λ),

d̄kG(λ) = �X[x + λdkG] − xk, d̄kN (λ) = �X[x + λdkN ] − xk,

and t∗k (λ) is an optimal solution to

min
t∈[0,1]

1

2
‖H(xk)+ Vk[t d̄

k
G(λ)+ (1 − t)d̄kN (λ)]‖2

and is computed by (3.2). Let λk = ρmk and xk+1 = xk + d̄k(λk).
Step 5. Replace k by k + 1 and go to Step 1.
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Several comments onAlgorithm 4.1 are in order. (a) The above algorithm is a feasible
one because for any λ ∈ [0, 1] and xk ∈ X,

xk + d̄k(λ) = t∗k (λ)�X[xk + λdkG] + [1 − t∗k (λ)]�X[xk + λdkN ] ∈ X.

Hence, the whole iteration sequence generated by Algorithm 4.1 stays in the feasible
region X. (b) In Step 3 of Algorithm 4.1, we need to solve the linear system (4.1) to
get dkN . If (4.1) is unsolvable or if the matrix Vk is highly ill-conditioned, then dkN just
takes the negative gradient direction, which then implies that d̄k(λ) = d̄kG(λ) for any
λ ∈ (0, 1]. There is little extra cost to compute d̄k(·) once dkN is computed. It is also noted
that in the application to the MCP, Vk not only keeps any sparse structure of F ′(xk),
but also has a special structure which could be exploited to reduce the cost of solving
(4.1). For example, for the NCP, for any 1 ≤ i ≤ n, xki = 0 and Fi(xk) > 0, we have
(Vk)ij = 0 for all j �= i. This phenomenon was observed more often than in infeasible
methods that allow xk to stay outside X. (c) By Theorem 3.1, if xk is not a stationary
point of (1.4), then Step 4 of Algorithm 4.1 is well defined. Hence, our algorithm either
stops at a stationary point or generates an infinite feasible sequence {xk} ∈ X.

In our convergence analysis, we assume that our algorithm does not stop at a sta-
tionary point at any finite step.

Theorem 4.1 Let {xk} ⊂ X be a sequence generated by Algorithm 4.1. Then any accu-
mulation point of {xk} is a stationary point of (1.4).

Proof. Let x̄ ∈ X be an accumulation point of {xk}. Suppose that x̄ is not a stationary
point of (1.4). By taking a subsequence if necessary, we assume that {xk} → x̄. From
the upper semicontinuity of the generalized Jacobian [6], there exists a constant κ2 > 0
such that ‖Vk‖ ≤ κ2 for all k ≥ 0. It is also easy to see from Step 3 of Algorithm 4.1
that

‖dkN‖ ≤ max

{
γk‖∇θ(xk)‖, (p−1

1 ‖∇θ(xk)‖) 1
p2−1

}
.

It then follows from the continuity of ∇θ(·) that there exists a number κ3 > 0 such that
max{‖dkG‖, ‖dkN‖} ≤ κ3 for all k ≥ 0. By Lemma 2.4, for any λ ∈ [0, 1] and k ≥ 0 we
have

‖d̄kG(λ)‖ ≤ λ‖dkG‖ ≤ λκ3, ‖d̄kN (λ)‖ ≤ λ‖dkN‖ ≤ λκ3,

and for some t∗k (λ) defined by (3.2),

‖d̄k(λ)‖ = ‖t∗k (λ)d̄kG(λ)+ (1 − t∗k (λ))d̄
k
N (λ)‖ ≤ λκ3.

Define

qkλ(t) := 1

2
‖H(xk)+ Vk[t d̄

k
G(λ)+ (1 − t)d̄kN (λ)]‖2, t ∈ [0, 1].

Then we have

qkλ(1) = 1

2
‖H(xk)+ Vkd̄

k
G(λ)‖2 = θ(xk)+ ∇θ(xk)T d̄kG(λ)+ 1

2
‖Vkd̄kG(λ)‖2



A projected Newton method 181

and

qkλ(t
∗(λ)) = 1

2
‖H(xk)+ Vkd̄

k(λ)‖2 = θ(xk)+ ∇θ(xk)T d̄k(λ)+ 1

2
‖Vkd̄k(λ)‖2.

Since qkλ(t
∗
k (λ)) ≤ qkλ(1) for any λ ∈ [0, 1], we get

∇θ(xk)T d̄k(λ) ≤ ∇θ(xk)T d̄kG(λ)+ 1

2
‖Vkd̄kG(λ)‖2

≤ ∇θ(xk)T d̄kG(λ)+ 1

2
(κ2κ3)

2λ2

= ∇θ(xk)T d̄kG(λ)+ κ1λ
2, (4.4)

where κ1 = 1
2 (κ2κ3)

2.
For λ ∈ [0, 1] and k ≥ 0 we have

θ(xk + d̄k(λ))− θ(xk)

= ∇θ(xk)T d̄k(λ)+
∫ 1

0
[∇θ(xk + t d̄k(λ))− ∇θ(xk)]T d̄k(λ)dt

≤ ∇θ(xk)T d̄k(λ)+
(∫ 1

0
‖∇θ(xk + t d̄k(λ))− ∇θ(xk)‖dt

)
‖d̄k(λ)‖

≤ ∇θ(xk)T d̄k(λ)+ λκ3

∫ 1

0
‖∇θ(xk + t d̄k(λ))− ∇θ(xk)‖dt. (4.5)

Since both {xk} and {xk + t d̄k(λ)} with t, λ ∈ [0, 1] are bounded and ∇θ(·) is uniform-
ly continuous on any compact set, for any given ε > 0 there exists a number λ̄ > 0
(depending on ε) such that, for all k ≥ 0 and λ ∈ [0, λ̄], it holds that

∫ 1

0
‖∇θ(xk + t d̄k(λ))− ∇θ(xk)‖dt ≤ ε.

Hence, it follows from (4.5) that

θ(xk+d̄k(λ)) ≤ θ(xk)+∇θ(xk)T d̄k(λ)+λεκ3 for all k ≥ 0 and λ ∈ [0, λ̄]. (4.6)

By Lemmas 2.4 and 2.5, for any xk and any λ ∈ (0, 1],

∇θ(xk)d̄kG(λ) ≤ −‖d̄kG(λ)‖2/(λγk) ≤ −λ‖d̄kG(1)‖2/γk. (4.7)

Since x̄ is not a stationary point of (1.4), there exists a number κ4 > 0 such that

‖d̄kG(1)‖ = ‖�X[xk − γk∇θ(xk)] − xk‖ ≥ κ4.

Let

ε = 1 − σ

2κ3
κ2

4 , λ̃ = 1 − σ

2κ1
κ2

4 and λ′ = min{λ̄, λ̃}.
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Then relations (4.4), (4.6), and (4.7) and the fact that γk ≤ 1 imply that for all k ≥ 0
and all λ ∈ (0, λ′] we have

θ(xk + d̄k(λ)) ≤ θ(xk)+ ∇θ(xk)T d̄kG(λ)+ κ1λ
2 + λεκ3

≤ θ(xk)+ σ∇θ(xk)T d̄kG(λ)− (1 − σ)λ‖d̄kG(1)‖2/γk + κ1λ
2 + λεκ3

≤ θ(xk)+ σ∇θ(xk)T d̄kG(λ). (4.8)

Hence, from (4.8), we know from the line search rule in Step 4 of Algorithm 4.1 that for
all k ≥ 0, λk ≥ ρλ′. From inequalities (4.3) and (4.7), we obtain that for k → ∞,

∇θ(xk)d̄kG(λk) → 0 and λk‖d̄kG(1)‖2/γk → 0.

This is a contradiction because lim infk→∞ λk ≥ ρλ′, γk is bounded, and ‖d̄kG(1)‖ ≥ κ4.
This contradiction shows that x̄ is a stationary point of (1.4) and completes the proof. ✷

Next, we shall prove that Algorithm 4.1 converges superlinearly (quadratically) un-
der the BD-regularity.

Theorem 4.2 Suppose that {xk} is a sequence generated by Algorithm 4.1 and x∗, an
accumulation point of {xk}, is a solution of H(x) = 0. If H is BD-regular at x∗, then
the whole sequence {xk} converges to x∗ Q-superlinearly. Furthermore, ifH is strongly
semismooth at x∗, then the convergence rate is Q-quadratic.

Proof. From Lemma 2.2, Theorem 3.2, and the choice of γk in Step 2 of Algorithm 4.1,
for all xk sufficiently close to x∗, (4.2) is satisfied, i.e., dkN = −V −1

k H(xk) and

‖xk + d̄k(1)− x∗‖ = ‖xk + dkN − x∗ + o(‖dkN‖)‖ ≤ ‖xk + dkN − x∗‖ + o(‖H(xk)‖)
≤ ‖V −1

k ‖‖H(xk)−H(x∗)− Vk(x
k − x∗)‖ + o(‖H(xk)‖),

(4.9)

which, together with Lemmas 2.1-2.3, implies that for all xk sufficiently close to x∗,

‖xk + d̄k(1)− x∗‖ = o(‖xk − x∗‖) = o(‖H(xk)‖). (4.10)

Hence, from (4.10), for all xk sufficiently close to x∗,

θ(xk + d̄k(1)) = 1

2
‖H(xk + d̄k(1))‖2 = 1

2
‖H(xk + d̄k(1))−H(x∗)‖2

= O(‖xk + d̄k(1)− x∗‖2) = o(θ(xk)). (4.11)

On the other hand, for all k ≥ 0,

−∇θ(xk)T d̄kG(1) ≤ ‖∇θ(xk)‖‖d̄kG(1)‖ ≤ γk‖∇θ(xk)‖2 ≤ ηθ(xk). (4.12)

Hence, we can conclude from relations (4.11) and (4.12) that for all xk sufficiently close
to x∗,

θ(xk + d̄k(1)) ≤ θ(xk)+ σ∇θ(xk)T d̄kG(1),
which further implies that,

xk+1 = xk + d̄k(1).

Then from (4.10) we have proved that {xk} converges to x∗ Q-superlinearly.
Finally, ifH is strongly semismooth at x∗, we can easily modify the above arguments

to get the Q-quadratic convergence of {xk} by invoking Theorem 3.2. ✷
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5. Numerical experiments

In this section, we first outline a semismooth equation reformulation of the MCP based
on a variant of a function discussed by Sun and Womersley [28]. We then report our
numerical results on all problems in the MCPLIB collection [8].

The function ψα : R
2 → R with α ∈ [0, 1] being prescribed in our reformulation is

defined by
ψα(a, b) := ([φα(a, b)]+)2 + ([−a]+)2,

where [a]+ := max{0, a} for any a ∈ R and φα : R
2 → R is the penalized Fischer-

Burmeister function introduced by Chen et al. [5] and has the form:

φα(a, b) := αφFB(a, b)+ (1 − α)a+b+.

Here, φFB : R
2 → R is an NCP function, which is known as the Fischer-Burmeister

function [12] and given by

φFB(a, b) := (a + b)−
√
a2 + b2.

Numerical tests indicate that the penalized Fischer-Burmeister function usually leads to
better numerical performance than the Fischer-Burmeister function [5, 27]. For more
discussions on advantages and/or disadvantages of NCP functions, see [23, 27, 28, 30]
and references therein.

Let N = {1, . . . , n} and

If := {i| li = −∞, ui = ∞, i ∈ N}, Il := {i| li > −∞, ui = ∞, i ∈ N},
Iu := {i| li = −∞, ui < ∞, i ∈ N}, Ilu := N\{Il ∪ Iu ∪ If }.

Sun and Womersley [28] suggested reformulating the MCP as H(x) = 0 with

Hi(x) :=




|Fi(x)| if i ∈ If
|φα(xi − li , Fi(x))| if i ∈ Il
|φα(ui − xi,−Fi(x))| if i ∈ Iu√
ψα(xi − li , Fi(x))+ ψα(ui − xi,−Fi(x)) if i ∈ Ilu

, i = 1, . . . , n.

(5.1)
A number of statements can be made about this reformulation. To name a few: (a) If F
is continuously differentiable around x ∈ R

n, then H is semismooth at x. Furthermore,
if F ′ is locally Lipschitz continuous around x, then H is strongly semismooth at x; (b)
If x∗ ∈ R

n is a strongly regular solution of the MCP, then H satisfies the BD-regularity
at x∗; and (c) Under mild conditions, any stationary point of (1.4) is already a solution
of the MCP. These results and their proofs can be obtained from [28]. Before we go to
the numerical part, we point out that the notion of the strong regularity introduced by
Robinson [25] coincides the notion of R-regularity [9].

We report numerical results for the algorithm proposed in Section 4 using the whole
set of test problems from the MCPLIB collection [8], which itself is being updated from
time to time. The algorithm was implemented in Matlab and run on a SUN Solaris work-
station. Instead of a monotone line search we used a nonmonotone version, which was



184 D. Sun et al.

based on an idea in [15] and can be stated as follows. Let 8 ≥ 1 be a constant integer
and calculate a steplength λk > 0 satisfying the nonmonotone Armijo-rule

θ(xk + d̄k(λk)) ≤ Wk + σ∇θ(xk)T d̄kG(λk), (5.2)

where Wk := max{θ(xj )| j = k + 1 − 8, . . . , k} denotes the maximal function value
of θ over the last 8 iterations. To choose an initial point, we follow a suggestion of
Ulbrich [29] that interior starting points enable the constrained algorithm to identify
the correct active constraints more efficiently than starting points close to the boundary.
Let x̂0 be the initial point returned by the initialization routine. Then the initial point
chosen is given by x0

i = �[li+0.1,ui−0.1](x̂
0), and if ui − li < 0.1 for some i, we just

let x0
i = max{li ,min{x̂0

i , ui}}, i = 1, . . . , n. The parameters used in the algorithm were
ρ = 0.5, α = 0.7, 8 = 4, η = 0.9, p1 = 10−10, p2 = 2.1 and σ = 10−4. The iteration
of the algorithm is stopped if either

θ(xk) ≤ 10−12 or ‖∇θ(xk)‖ ≤ 10−10.

Our numerical results are summarized in Table 1, in which the first column gives the
name of the problem, followed by n: the number of variables in the problem, nl: the
number of lower bounds,nlu: the number of both lower and upper bounds,nF: the num-
ber of free variables (without bounds), Nit: the number of iterations, Nf: the number of
evaluations of the function F , θ(xf ): the value of θ(·) at the final iterate, ‖∇θ(xf )‖: the
value of ‖∇θ(·)‖ at the final iterate, and t∗(λ)ave: the average of all t∗(λk). If t∗(λ)ave
is close to zero then the projected Newton direction is used most of the time, while if it
is close to one the projected gradient direction is used most of the time. Nit is equal to
the number of evaluations of the Jacobian F ′(x) and the number of subproblems (4.1)
or systems of linear equations solved.

The results presented in Table 1 show that the algorithm was able to solve most of
the problems in the MCPLIB collection in a small number of iterations and are compa-
rable to those results obtained with existing methods. For example, when restricted to
problems of size under n ≤ 150 and of at most one bound per variable, it failed to solve
6 problems, compared to 5 in [29] where a more costly quadratic program solver has
to be invoked from time to time in order to solve subproblems. We also note that our
algorithm appears to have more failures than the infeasible algorithm reported in [20] by
Munson, et al. Although a direct comparison is not possible, partially because different
initial points were used, we feel that with some fine tuning our feasible algorithm can
be made just as reliable as the infeasible counterpart. However, such work is beyond the
scope of the current paper. The problems we failed to solve are either ill-conditioned
(with a large condition number) or badly scaled. It is also noted that almost all problems
except Billups we failed to solve are recently added new problems to the MCPLIB,
which are known to be very hard to solve. Some problems, for example, ehl k40,
which appeared in previous versions, contain quite different data and are actually new
problems. To design more strategies including heuristic ones to efficiently solve these
new but hard problems is left for our future research.
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Table 1. Numerical results for all problems from MCPLIB

Problem n nl nlu nF Nit nf θ(xf ) ‖∇θ(xf )‖ t∗(λ)ave

badfree 5 4 0 1 5 5 2.68e-13 8.87e-07 0.00e+00
bert oc 5000 0 1000 4000 5 5 4.93e-24 7.03e-14 1.17e-03
bertsekas 15 15 0 0 13 21 9.85e-17 6.12e-07 2.37e-04
billups 1 1 0 0 – – – – –
bishop 1645 1645 0 0 – – – – –
bratu 5625 0 5625 0 14 14 3.31e-13 2.67e-06 3.41e-04
choi 13 0 13 0 5 5 1.31e-17 6.03e-10 1.45e-15
colvdual 20 20 0 0 11 12 1.03e-16 7.92e-08 3.21e-04
colvnlp 15 15 0 0 8 10 7.13e-14 1.02e-05 3.20e-16
cycle 1 1 0 0 6 6 2.18e-15 2.44e-07 1.90e-14
degen 2 2 0 0 5 5 7.72e-15 2.28e-07 7.40e-03
duopoly 63 63 0 0 – – – – –
ehl k40 41 40 0 1 – – – – –
ehl k60 61 60 0 1 13 14 1.73e-17 4.13e-05 1.43e-03
ehl k80 81 80 0 1 14 15 4.60e-15 1.60e-03 3.62e-03
ehl kost 101 100 0 1 13 13 4.72e-13 2.41e-02 5.24e-03
electric 158 48 98 12 51 98 5.74e-15 3.90e-01 0.00e+00
explcp 16 16 0 0 7 7 2.71e-21 5.15e-11 1.56e-02
forcebsm 184 118 0 66 – – – – –
forcedsa 186 116 0 70 – – – – –
freebert 15 10 0 5 12 13 1.66e-16 7.93e-07 5.38e-05
gafni 5 0 5 0 37 39 4.00e-18 2.59e-07 2.66e-16
games 16 12 0 4 9 11 5.82e-16 9.69e-07 4.34e-15
hanskoop 14 14 0 0 25 50 2.61e-17 1.73e-08 7.09e-02
hydroc06 29 11 0 18 8 8 7.32e-16 4.88e-05 9.27e-03
hydroc20 99 39 0 60 22 28 1.10e-17 5.78e-06 1.00e-02
jel 6 6 0 0 7 7 3.96e-14 5.01e-06 4.74e-14
josephy 4 4 0 0 5 5 3.36e-21 1.59e-10 8.81e-06
kojshin 4 4 0 0 5 5 1.25e-22 1.19e-10 3.21e-04
lincont 419 170 0 249 – – – – –
mathinum 3 3 0 0 6 6 8.78e-15 2.63e-07 2.93e-15
mathisum 4 4 0 0 10 10 3.92e-15 4.61e-07 3.25e-07
methan08 31 15 0 16 5 5 2.93e-16 1.83e-04 2.85e-13
nash 10 10 0 0 6 6 1.47e-17 2.87e-07 3.92e-16
ne-hard 3 0 0 3 – – – – –
obstacle 2500 0 2500 0 7 7 2.69e-13 2.36e-06 2.74e-03
opt cont 288 0 144 144 5 5 7.96e-23 2.64e-11 0.00e+00
opt cont127 4096 0 2048 2048 5 5 1.60e-18 5.05e-09 0.00e+00
opt cont31 1024 0 512 512 5 5 1.27e-20 5.02e-10 0.00e+00
opt cont255 8192 0 4096 4096 5 5 2.52e-18 7.12e-09 0.00e+00
opt cont511 16384 0 8192 8192 5 5 7.62e-14 8.71e-07 2.05e-11
pgvon106 106 106 0 0 27 57 1.09e-14 1.88e-02 0.00e+00
pies 42 32 10 0 45 81 7.85e-20 1.02e-09 2.90e-01
powell 16 16 0 0 7 7 2.94e-14 1.51e-06 1.11e-05
powell mcp 8 0 0 8 3 3 3.33e-13 7.38e-06 2.53e-16
qp 4 2 0 2 5 5 1.54e-22 2.28e-11 2.59e-19
scarfanum 13 13 0 0 11 11 8.24e-17 8.40e-08 1.74e-02
scarfasum 14 14 0 0 10 10 8.24e-17 8.82e-08 1.53e-02
scarfbsum 40 40 0 0 42 121 7.68e-17 1.48e-05 2.00e-01
shubik 45 45 0 0 – – – – –
simple-ex 17 13 0 4 – – – – –
simple-red 13 13 0 0 12 12 7.42e-22 1.78e-11 9.29e-13
sppe 27 27 0 0 5 5 1.54e-19 6.92e-10 0.00e+00
tinloi 146 146 0 0 16 22 2.85e-16 1.62e-04 3.55e-02
tobin 42 42 0 0 4 4 5.78e-22 5.09e-10 2.60e-10
trafelas 2904 2300 0 604 35 59 2.96e-18 2.45e-09 1.09e-01
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6. Conclusions

In this paper, by introducing a projected asymptotically Newton direction and by doing a
curved line search, we have proposed a new feasible projected Newton-type method for
solving mixed complementarity problems. This new method achieves both theoretical
and numerical excellence. We also feel that the idea introduced in this paper can be
used in other projected Newton-type methods (e.g., [2, 3, 10, 17, 26]) to enhance those
methods’ theoretical results or numerical performance or even both.

Acknowledgement. The authors would like to thank the associate editor and three anonymous referees for
their detailed comments which considerably improved the presentation of the paper.
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