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Abstract. In this paper we take a new look at smoothing Newton methods for solving the nonlinear comple-
mentarity problem (NCP) and the box constrained variational inequalities (BVI). Instead of using an infinite
sequence of smoothing approximation functions, we use a single smoothing approximation function and
Robinson’s normal equation to reformulate NCP and BVI as an equivalent nonsmooth equationH(u, x) = 0,
whereH : <2n → <2n, u ∈ <n is a parameter variable andx ∈ <n is the original variable. The central idea
of our smoothing Newton methods is that we construct a sequence{zk = (uk, xk)} such that the mappingH(·)
is continuously differentiable at eachzk and may be non-differentiable at the limiting point of{zk}. We prove
that three most often used Gabriel-Moré smoothing functions can generate strongly semismooth functions,
which play a fundamental role in establishing superlinear and quadratic convergence of our new smoothing
Newton methods. We do not require any function value ofF or its derivative value outside the feasible region
while at each step we only solve a linear system of equations and if we choose a certain smoothing function
only a reduced form needs to be solved. Preliminary numerical results show that the proposed methods for
particularly chosen smoothing functions are very promising.

Key words. variational inequalities – nonsmooth equations – smoothing approximation – smoothing Newton
method – convergence

1. Introduction

Consider the variational inequalities (VI for abbreviation): Findy∗ ∈ X such that

(y− y∗)T F(y∗) ≥ 0 for all y ∈ X, (1)

whereX is a nonempty closed subset of<n andF : D→ <n is continuously differen-
tiable on some open setD, which containsX. In this paper, unless otherwise stated, we
assume that

X := {y ∈ <n| a ≤ y ≤ b}, (2)

wherea ∈ {< ∪ {−∞}}n, b ∈ {< ∪ {∞}}n and a < b. Then (1) becomes the box
constrained variational inequalities (BVI for abbreviation). This assumption is not re-
strictive because if in (1) the setX is not of the form (2) but is represented by several
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equalities and inequalities, then under standard constraint qualifications [25] we can
equivalently transform (1) into a new VI with the constraint set of form (2), possibly
with increased dimension (see, e.g., [54]). WhenX = <n+, VI reduces to the nonlinear
complementarity problem (NCP for abbreviation): Findy∗ ∈ <n+ such that

F(y∗) ∈ <n+ and F(y∗)T y∗ = 0. (3)

It is well known (see, e.g., [25]) that solving (1) is equivalent to finding a root of the
following equation:

W(y) := y−5X(y− F(y)) = 0, (4)

where for anyx ∈ <n, 5X(x) is the Euclidean projection ofx onto X and X is
a nonempty closed convex subset of<n, which is not necessarily of the form (2). It is
also well known that ifX is a closed convex subset of<n, then solving VI is equivalent
to solving the following Robinson’s normal equation

E(x) := F(5X(x))+ x−5X(x) = 0 (5)

in the sense that ifx∗ ∈ <n is a solution of (5) theny∗ := 5X(x∗) is a solution of (1),
and conversely ify∗ is a solution of (1) thenx∗ := y∗ − F(y∗) is a solution of (5) [49].
Both (4) and (5) are nonsmooth equations and have led to various generalized Newton’s
methods. See [25], [40], [22] and [18] for a review of these methods.

By using the Gabriel-Moré smoothing function for5X(·), we can construct approx-
imations forE(·):

G(u, x) := F(p(u, x))+ x− p(u, x), (u, x) ∈ <n ×<n, (6)

where for eachi ∈ N := {1,2, ...,n}, pi (u, x) = q(ui ,ai ,bi , xi ) and for any
(µ, c,d, w) ∈ <×< ∪ {−∞}× < ∪ {∞} × < with c≤ d, q(µ, c,d, w) is defined by

q(µ, c,d, w) =
{
φ(|µ|, c,d, w) if µ 6= 0
5[c,d]∩<(w) if µ = 0

(7)

andφ(µ, c,d, w), (µ,w) ∈ <++ × < is a Gabriel-Moré smoothing approximation
function [23], also, see Sect. 2 for the definition ofφ(·). For example, for NCP we can
take the Chen-Harker-Kanzow-Smale smoothing NCP function [4,31,51]

φ(µ,0,∞, w) =
√
w2+ 4µ2+w

2
, (µ,w) ∈ <++ ×<,

which is a special Gabriel-Moré smoothing function. In this paper, unless otherwise
stated, we always assume thatc ∈ < ∪ {−∞}, d ∈ < ∪ {∞} andc≤ d. By Lemma 2.2
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of [23], for any(µ,w) ∈ <++ × <,

φ(µ, c,d, w) ∈ [c,d] ∩ <,
and so, for any(u, x) ∈ <n ×<n,

p(u, x) ∈ X. (8)

Then the mappingG(·) is defined on<2n while F(·) is only required to have definition
on X, the feasible region. It is noted that we can also usep(·) to construct a class of
approximation functions forW(·) defined in (4):

V(u, y) := y− p(u, y− F(y)), (u, y) ∈ <n ×<n. (9)

However, in order to makeV(·) to have definition on the whole space<2n one has to
assume thatF(·) is well defined on the whole space<n. This requirement forF is not sat-
isfied for many NCPs and BVI transformed from economic equilibrium problems [18].
Moreover, even ifF has definition on the whole space<n, some important properties
of F, like monotonicity, which holds onX, may not hold outsideX. These observations
lead us to focus on the approximation functions defined by (6) rather than (9). However,
the techniques used here can be applied to (9) too.

For the sake of convenience, letφcd : <++ × < → < be defined by

φcd(µ,w) := φ(µ, c,d, w), (µ,w) ∈ <++ ×< (10)

and for any givenµ ∈ <++, letφµcd : < → < be defined by

φµcd(w) := φ(µ, c,d, w), w ∈ <. (11)

Then, for any givenµ ∈ <++, φµcd(·) is continuously differentiable at anyw ∈ < [23].
Moreover, for several most often used Gabriel-Moré smoothing functions it can be
verified thatφcd(·) is also continuously differentiable at any(µ,w) ∈ <++ ×<. In this
paper, we are interested in smoothing functions with this property, which we make it as
an assumption.

Assumption 1. The functionφcd(·) is continuously differentiable at any(µ,w) ∈
<++ ×<.

Let z := (u, x) ∈ <n ×<n and defineH : <2n→ <2n by

H(z) :=
(

u
G(z)

)
. (12)

Then it is easy to see thatH is continuously differentiable at anyz ∈ <n++ × <n if
Assumption 1 is satisfied.

Recently, smoothing Newton methods have attracted a lot of attention in the lit-
erature partially due to their superior numerical performance [2], e.g., see [3–12,26,
33,47,46,58] and references therein. Among them the first globally and superlinearly
(quadratically) convergent smoothing Newton method was proposed by Chen, Qi and
Sun in [11], where the authors exploited a Jacobian consistency property and applied this
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property to an infinite sequence of smoothing approximation functions to get high-order
convergent methods. They dealt with general box constrained variational inequalities.
However, even for NCP they had to assume thatF had definition on the whole space<n.
The result of [11] has been further investigated by Chen and Ye [12] still with the
same requirement. On the contrary, here we avoid this requirement by making use of
the mappingH(·) and most importantly, we use only one smoothing approximation
function instead of using an infinite sequence of those functions. In this way we make
our smoothing Newton methods much simpler. It is deserved to point out that the Ja-
cobian consistency property may not hold for the smoothing function (6) ifF is not
globally Lipschitz continuous, and there is no high-order convergent methods based
on (6). To treat the smoothing parameteru as a free variable may restrict the updating
rules for choosingu. However, by doing so we can provide a globally and superlinearly
convergent method for solvingH(z) = 0. The idea of using (6) for solving the NCP
was suggested by Chen, Harker and Pınar in [7]. Here we first study the smooth and
semismoothness propertiies of(6) aboutu andx jointly and then use these properties to
get globally and superlinearly convergent results based on (12). Chen, Harker and Pınar
also pointed out that by choosing smooth functions with finite-support, the resulting
Newton equation has a reduced dimension. This property carries to the generalized
form (6).

There are few globally and superlinearly convergentmethods in the literature dealing
with NCP and BVI with requiringF defined onX only while at each step only solving
a linear system of equations. In [24], by combining a modified extragradient method [52]
and a generalized Newton method, Han and Sun gave such an algorithm for solving
pseudomonotone variational inequalities withX being a nonempty closed convex subset
represented by several twice continuously differentiable inequalities. Very recently,
Kanzow and Qi [34] designed a QP-free constrained Newton-type method for BVI,
with assumptionbi = ∞, i ∈ N, by combining an updatedε-active projected gradient
direction and a modified Gauss-Newton direction. The result of Kanzow and Qi is based
on the Fischer-Burmeister function [19], which recently has received a lot of attention
in the fields of NCP and BVI, e.g., see [14–16,20,22,28,29,35,55] and references
therein. However, it is believed that the Newton-type direction is much better than either
the extragradient direction or the projected gradient direction. In this paper, instead of
resorting to some hybrid techniques, at each step we use one minor modified Newton
direction. This modification is crucial to the design of our algorithms.

The organization of this paper is as follows. In the next section we study some
preliminary properties of smoothing functions. In Sect. 3 we prove thatφcd(·) is strongly
semismooth with several particularly chosenφ(·). In Sect. 4 we state the algorithm and
prove several propositions related to the algorithm. In Sect. 5 we establish the global
convergence of the algorithm. In Sect. 6 we study under what conditions the level
sets of the merit functionψ(·) = ‖H(·)‖2 are bounded. We analyze the superlinear
and quadratic convergence properties of the algorithm in Sect. 7 and give preliminary
numerical results in Sect. 8. Final conclusions are given in Sect. 9.

A word about our notation is in order. For a continuously differentiable function
8 : <m→ <m, we denote the Jacobian of8atx ∈ <m by8′(x), whereas the transposed
Jacobian as∇8(x). ‖ · ‖ denotes the Euclidean norm. IfW is anm×m matrix with
entriesWjk, j, k = 1, . . . ,m, andJ andK are index sets such thatJ ,K ⊆ {1, . . . ,m},
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we denote byWJK the |J | × |K| sub-matrix ofW consisting of entriesWjk, j ∈ J ,
k ∈ K. If WJJ is nonsingular, we denote byW/WJJ the Shur-complement ofWJJ
in W, i.e., W/WJJ := WKK −WKJW−1

JJWJK, whereK = {1, . . . ,m}\J . If w is
anm vector, we denote bywJ the sub-vector with componentsj ∈ J .

2. Some preliminaries

In this section we give some properties related to smoothing functions. In [10], Chen and
Mangasarian introduced a class of smoothing approximation functions for max{0, w},
w ∈ <. Gabriel and Moré [23] extended Chen-Mangasarian’s smoothing approach to
5[c,d]∩<(w), w ∈ <. Let ρ : < → <+ be a density function, i.e.,ρ(s) ≥ 0 and∫∞
−∞ ρ(s)ds= 1, with a bounded absolute mean, that is

κ :=
∫ ∞
−∞
|s|ρ(s)ds<∞. (13)

Recall that for any three numbersc ∈ < ∪ {−∞}, d ∈ < ∪ {∞} with c≤ d ande∈ <,
the median function mid(·) is defined by

mid(c,d,e) = 5[c,d]∩<(e) =
c if e< c

e if c≤ e≤ d
d if d< e

.

Then the Gabriel-Moré smoothing functionφ(µ, c,d, w) for5[c,d]∩<(w) [23] is defined
by

φ(µ, c,d, w) =
∫ ∞
−∞

mid(c,d, w− µs)ρ(s)ds, (µ,w) ∈ <++ ×<. (14)

If c = −∞ and/ord = ∞, the value ofφ takes the limit ofφ asc → −∞ and/or
d→∞, correspondingly. For example, ifc is finite andd =∞, then

φ(µ, c,∞, w) = lim
d′→∞

φ(u, c,d′, w), (u, w) ∈ <++ × <.

Let
supp(ρ) = {s ∈ < : ρ(s) > 0}.

Lemma 1. [23, Lemma 2.3] For any givenµ > 0, the mappingφµcd(·) is continuously
differentiable with

φ′µcd(w) =
∫ (w−c)/µ

(w−d)/µ
ρ(s)ds,

whereφµcd(·) is defined by (11). In particular,φ′µcd(w) ∈ [0,1]. Furthermore, if
supp(ρ) = < and at least one ofc andd is finite, thenφ′µcd(w) ∈ (0,1).

Let qcd : <2→< be defined by

qcd(µ,w) = q(µ, c,d, w), (µ,w) ∈ <2, (15)

whereq(µ, c,d, w) is defined by (7). Then we have the following lemma.
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Lemma 2. The mappingqcd(·) defined by (15) is Lipschitz continuous on<2 with
Lipschitz constantL := 2 max{1, κ}.
Proof. Suppose that(µ1, w1) and(µ2, w2) are two arbitrary points of<2. Then, since
the mapping mid(c,d, ·) is non-expansive, we have

|qcd(µ1, w1)− qcd(µ2, w2)|

=
∣∣∣∣∫ ∞−∞mid(c,d, w1 − |µ1|s)ρ(s)ds−

∫ ∞
−∞

mid(c,d, w2− |µ2|s)ρ(s)ds

∣∣∣∣
≤
∫ ∞
−∞
|mid(c,d, w1− |µ1|s)−mid(c,d, w2− |µ2|s)|ρ(s)ds

≤
∫ ∞
−∞
|(w1− |µ1|s)− (w2− |µ2|s)|ρ(s)ds

≤
∫ ∞
−∞
|w1−w2|ρ(s)ds+

∫ ∞
−∞
|µ1− µ2||s|ρ(s)ds

= |w1−w2| + κ|µ1− µ2|

≤ 2 max{1, κ}‖(µ1, w1)− (u2, w2)‖,
which completes the proof of this lemma.

ut
The following examples are three most often used Gabriel-Moré smoothing functions

in the literature.

Example 1. Neural Networks Smoothing Function
The density function is

ρ(s) = e−s

(1+ e−s)2
.

We haveκ = log 2, supp(ρ) = < and the smoothing function

φ(µ, c,d, w) = d+ µ ln
{

1+ e(c−w)/µ
}
− µ ln

{
1+ e(d−w)/µ

}
, (16)

(µ,w) ∈ <++ × <.
Then it is easy to see thatφcd(·) is continuously differentiable at any(µ,w) ∈ <++×<,
i.e., Assumption 1 is satisfied for this smoothing function. Ifc= 0 andd = ∞, then the
smoothing function in (16) reduces to the neural networks smoothing plus function [9]:

φ(µ,0,∞, w) = w+ µ ln(1+ e−w/µ), (µ,w) ∈ <++ ×<. (17)

The latter has been shown to have superior smoothing properties in global optimization
work of Moré and Wu [39].
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Example 2. Chen-Harker-Kanzow-Smale Smoothing Function
The density function is

ρ(s) = 2

(s2 + 4)3/2
.

We haveκ = 1, supp(ρ) = < and the smoothing function

φ(µ, c,d, w) = c+√(c−w)2 + 4µ2

2
+ d−√(d−w)2+ 4µ2

2
,

(µ,w) ∈ <++ ×<. (18)

Apparently,φcd(·) is continuously differentiable at any(µ,w) ∈ <++ × <, i.e., As-
sumption 1 is satisfied for this smoothing function. Ifc = 0 andd = ∞, then the
smoothing function in (18) reduces to the Chen-Harker-Kanzow-Smale smoothing NCP
function:

φ(µ,0,∞, w) =
√
w2+ 4µ2+w

2
, (µ,w) ∈ <++ × <. (19)

Example 3. Uniform Smoothing Function
The density function is

ρ(s) =
{

1 if − 1
2 ≤ s≤ 1

2

0 otherwise
.

We haveκ = 1
8, supp(ρ) = [−1

2,
1
2] and for any(µ,w) ∈ <++ × <, the smoothing

function

φ(µ, c,d, w)

=



w

µ
(d− c)+ 1

2
(d+ c)2+ 1

2µ
(c2− d2) if |w− c| < µ/2, |w− d| < µ/2

1

2
[w− µ/4+ d− (w− d)2/µ] if |w− d| < µ/2, w− c> µ/2

1

2
[w+ µ/4+ c+ (w− c)2/µ] if |w− c| < µ/2, w− d< −µ/2

mid(c,d, w) otherwise

.

(20)

By direct computation, we can see thatφcd(·) is continuously differentiable at any
(µ,w) ∈ <++ × <, i.e., Assumption 1 is satisfied for this smoothing function. If
0< µ ≤ d− c, then the smoothing functionφ(·) has the following simple form:

φ(µ, c,d, w) =


1

2
[w− µ/4+ d− (w− d)2/µ] if |w− d| < µ/2

1

2
[w+ µ/4+ c+ (w− c)2/µ] if |w− c| < µ/2

mid(c,d, w) otherwise

. (21)
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If c= 0 andd = ∞, the function in (20) is the Zang smoothing plus function [59]:

φ(µ,0,∞, w) =


0 if w ≤ −µ/2
1

2µ
(w+ µ/2)2 if |w| < µ/2

w if w ≥ µ/2
, (µ,w) ∈ <++ × <. (22)

Similar functions to (22) can be found in [42] and [46].

Theorem 1. Suppose that Assumption 1 holds for a chosen smoothing function
φ(µ, c,d, w), (µ,w) ∈ <++ × <. Then

(i) The mappingH(·) is continuously differentiable at anyz = (u, x) ∈ <n++ × <n

and

H ′(z) =
(

I 0

(F′(p(z))− I)D(u) F′(p(z))C(x)+ I −C(x)

)
, (23)

where D(u) = diag{di (u), i ∈ N}, C(x) = diag{ci (x), i ∈ N} and di (u) =
∂pi (u, x)/∂ui , ci (x) = ∂pi (u, x)/∂xi andci (x) ∈ [0,1], i ∈ N.

(ii) Suppose that for somez ∈ <n++ × <n, F′(p(z)) is a P0-matrix, i.e., its every
principal minor is nonnegative. ThenH ′(z) is nonsingular ifsupp(ρ) = < and for
eachi ∈ N, at least one ofai andbi is finite.

(iii) If for somez ∈ <n++ × <n, F′(p(z)) is a P-matrix, i.e., its every principal minor
is positive, thenH ′(z) is nonsingular.

Proof. (i) Since Assumption 1 is satisfied forφ(·), from the definition, we know that
H(·) is continuously differentiable at anyz= (u, x) ∈ <n++×<n. By direct computation
we have (23). From Lemma 1 and the definition ofpi (·), ci (x) ∈ [0,1], i ∈ N.
(ii) Under the assumptions, from Lemma 1,ci (x) ∈ (0,1), i ∈ N. Then, it is easy to
see thatF′(p(z))C(x) + I − C(x) is nonsingular under the assumption thatF′(p(z))
is a P0-matrix, see, e.g., [4, Theorem 3.3]. It then follows from (23) thatH ′(z) is also
nonsingular.
(iii) The assumption thatF′(p(z)) is a P-matrix and the fact thatci (x) ∈ [0,1], i ∈ N
ensure thatF′(p(z))C(x)+ I − C(x) is nonsingular, e.g., see [7, Lemma 2]. So,H ′(z)
is nonsingular.

ut
Since the smoothing functions defined by (16), (18) and (20) all satisfy Assumption 1,

from Theorem 1 we have the following result.

Theorem 2. Suppose that the smoothing functionφ(µ, c,d, w), (µ,w) ∈ <++ × < is
defined by either (16) or (18) or (20). Then

(i) The mappingH is continuously differentiable at anyz = (u, x) ∈ <n++ × <n and
if F′(p(z)) is a P-matrix, thenH ′(z) is nonsingular.

(ii) Suppose thatφ(µ, c,d, w), (µ,w) ∈ <++ × < is defined by either (16) or (18) (in
each casesupp(ρ) = <) and for eachi ∈ N, at least one ofai andbi is finite. Then
H ′(z) is nonsingular ifF′(p(z)) is a P0-matrix atz= (u, x) ∈ <n++ × <n.
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3. Semismoothness properties

In order to design high-order convergent Newton methods we need the concept of
semismoothness. Semismoothness was originally introduced by Mifflin [37] for func-
tionals. Convex functions, smooth functions, and piecewise linear functions are ex-
amples of semismooth functions. The composition of semismooth functions is still
a semismooth function [37]. In [48], Qi and Sun extended the definition of semismooth
functions to8 : <m1 → <m2. A locally Lipschitz continuous vector valued function
8 : <m1 → <m2 has a generalized Jacobian∂8(x) as in Clarke [13].8 is said to be
semismoothat x ∈ <m1, if

lim
V∈∂8(x+th′)
h′→h, t↓0

{Vh′}

exists for anyh ∈ <m1. It has been proved in [48] that8 is semismooth atx if and only
if all its component functions are. Also,8′(x; h), the directional derivative of8 at x in
the directionh, exists for anyh ∈ <m1 if 8 is semismooth atx.

Lemma 3. [48] Suppose that8 : <m1 → <m2 is a locally Lipschitzian function and
semismooth atx. Then

(i) for any V ∈ ∂8(x+ h), h→ 0,

Vh−8′(x; h) = o(‖h‖);
(ii) for any h→ 0,

8(x+ h)−8(x)−8′(x; h) = o(‖h‖).
The following lemma is extracted from Theorem 2.3 of [48].

Lemma 4. Suppose that8 : <m1 → <m2 is a locally Lipschitzian function. Then the
following two statements are equivalent:

(i) 8(·) is semismooth atx.
(ii) For any V ∈ ∂8(x+ h), h→ 0,

Vh−8′(x; h) = o(‖h‖).
A stronger notion than semismoothness is strong semismoothness.8(·) is said to be

strongly semismoothat x if 8 is semismooth atx and for anyV ∈ ∂8(x+ h), h→ 0,

Vh−8′(x; h) = O(‖h‖2).
(Note that in [48] and [45] different names for strong semismoothness are used.) A func-
tion 8 is said to be a (strongly) semismooth function if it is (strongly) semismooth
everywhere.

Recall that from Lemma 2 the functionqcd(·) defined by (15) is globally Lipschitz
continuous on<2. Then, from Lemma 4 and the definition of strong semismoothness,
we can prove thatqcd(·) is strongly semismooth atx ∈ <2 by verifying that for any
V ∈ ∂qcd(x+ h), h→ 0,

Vh− q′cd(x; h) = O(‖h‖2). (24)

The following three propositions are about the strong semismoothness ofqcdresulted
from Examples 1–3, respectively. Their proofs can be found in Appendix A.
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Proposition 1. Suppose that the smoothing functionφ(·) is the neural networks smooth-
ing function defined by (16). Then the corresponding functionqcd : <2→< defined by
(15) is a strongly semismooth function.

Proposition 2. Suppose that the smoothing functionφ(·) is the Chen-Harker-Kanzow-
Smale smoothing function defined by (18). Then the corresponding functionqcd : <2→<
defined by (15) is a strongly semismooth function.

Proposition 3. Suppose that the smoothing functionφ(·) is the uniform smoothing
function defined by (20). Then the corresponding functionqcd : <2 → < defined by
(15) is a strongly semismooth function.

Theorem 3. Suppose that the smoothing functionφ(µ, c,d, w), (µ,w) ∈ <++ × < is
defined by either (16) or (18) or (20). Then

(i) H is semismooth at anyz ∈ <2n, and
(ii) if for some pointz ∈ <2n, F′ is Lipschitz continuous aroundp(z) ∈ <n, thenH is

strongly semismooth atz.

Proof. (i) Sincep is strongly semismooth atz if and only if its component functionspi ,
i ∈ N are, and the composition of strongly semismooth functions is a strongly semis-
mooth function [21, Theorem 19], from Propositions 1–3, it follows thatp is a strongly
semismooth function. Hence, by making use of the proposition that the composition
of two semismooth functions is semismooth [37] that for eachi = 1,2, ...,n, Gi is
a semismooth function. Hence,G, and soH , is a semismooth function.
(ii) It is noted thatF′ is Lipschitz continuous aroundp(z) ∈ <n implies thatF is strongly
semismooth atp(z). Hence, by [21, Theorem 19],F(p(·)) is strongly semismooth atz
becausep is strongly semismooth atz too. ThenG, and soH , is strongly semismooth
at z.

ut

4. Smoothing Newton methods

Throughout the rest of this paper, unless otherwise stated, we assume that the smoothing
functionφ(·) satisfies Assumption 1.

Chooseū ∈ <n++ andγ ∈ (0,1) such thatγ‖ū‖ < 1. Let z̄ := (ū,0) ∈ <n × <n.
Define the merit functionψ : <2n→<+ by

ψ(z) := ‖H(z)‖2

and defineβ : <2n→ <+ by

β(z) := γ min{1, ψ(z)}.
Let

� := {z= (u, x) ∈ <n ×<n| u ≥ β(z)ū}.
Then, because for anyz ∈ <2n, β(z) ≤ γ < 1, it follows that for anyx ∈ <n,

(ū, x) ∈ �.
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Proposition 4. The following relations hold:

H(z) = 0⇐⇒ β(z) = 0⇐⇒ H(z) = β(z)z̄.
Proof. It follows from the definitions ofH(·) andβ(·) that

H(z) = 0⇐⇒ β(z) = 0 and β(z) = 0H⇒ H(z) = β(z)z̄.
Then we only need to prove

H(z) = β(z)z̄H⇒ β(z) = 0.

However, this is an easy task because fromH(z) = β(z)z̄ we have

u = β(z)ū and G(z) = 0.

Hence, from the definitions ofψ(·) andβ(·), and the fact thatγ‖ū‖ < 1, we get

ψ(z) = ‖u‖2 + ‖G(z)‖2 = ‖u‖2 = β(z)2‖ū‖2 ≤ γ 2‖ū‖2 < 1.

Therefore,

β(z) = γψ(z) = γβ(z)2‖ū‖2. (25)

If β(z) 6= 0, it follows from (25) and the factβ(z) ≤ γ that

1= γβ(z)‖ū‖2 ≤ γ 2‖ū‖2,
which contradicts the fact thatγ‖ū‖ < 1. This contradiction completes our proof.

ut
Algorithm 1.
Step 0. Choose constantsδ ∈ (0,1) andσ ∈ (0,1/2). Let u0 := ū, x0 ∈ <n be an

arbitrary point andk := 0.
Step 1. IfH(zk) = 0 then stop. Otherwise, letβk := β(zk).
Step 2. Compute1zk := (1uk,1xk) ∈ <n ×<n by

H(zk)+ H ′(zk)1zk = βkz̄. (26)

Step 3. Letlk be the smallest nonnegative integerl satisfying

ψ(zk + δl1zk) ≤ [1− 2σ(1− γ‖ū‖)δl ]ψ(zk). (27)

Definezk+1 := zk + δlk1zk.
Step 4. Replacek by k+ 1 and go to Step 1.

Remark 1.(i) Since we have assumed that Assumption 1 is satisfied for the smoothing
functionφ used in the algorithm,H(·) is continuously differentiable at anyzk ∈
<n++ ×<n.

(ii) From Theorem 1, forzk ∈ <n++ × <n if F′(p(zk)) is a P-matrix, thenH ′(zk) is
nonsingular, and if supp(ρ) = < and for eachi ∈ N, at least one ofai andbi is
finite, then the condition thatF′(p(zk)) is a P0-matrix is sufficient to guarantee
that H ′(zk) is nonsingular.
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(iii) We can solve equation (26) in the following way: Let1uk = −uk + βkū. Solve[
F′(p(zk))C(xk)+ I −C(xk)

]
1xk = −G(zk)− [(F′(p(zk))− I)D(uk)

]
1uk

(28)

to get1xk. Then1zk = (1uk,1xk). Equation (28) is ann-dimensional linear
system. If we choose the uniform smoothing functionφ(·) defined by (20), then
solving (26) can be further simplified because in this case some or all of the
diagonal entries of the diagonal matrixC(xk) are zeros. For example, for NCP, if
wk ≤ −uk/2, then from Lemma 1,ci (xk) = 0, i ∈ N, and so,C(xk) = 0. Hence,
in this case

1xk = −G(zk)− [(F′(p(zk))− I)D(uk)
]
1uk.

Solving a form reduced linear equation is very favourable. However, this is not
without a price because by choosing the smoothing functionφ(·) defined by (20)
we need stronger conditions to ensure the nonsingularity ofH ′(zk) than by choosing
the smoothing functionφ(·) defined by either (16) or (18).

(iv) From the design of our algorithm we can see that the paremeteru may not change
until ψ(z) < 1. To make the parameteru change at each step we can let the
steplengthδlk < 1 in Step 3 for allk such thatψ(zk) > 1 though this is not
recommended in practiacl computation.

Lemma 5. Suppose that Assumption 1 holds. For anyz̃ := (ũ, x̃) ∈ <n++ × <n and
H ′(z̃) is nonsingular, then there exist a closed neighbourhoodN (z̃) of z̃ and a positive
numberᾱ ∈ (0,1] such that for anyz = (u, x) ∈ N (z̃) and all α ∈ [0, ᾱ] we have
u ∈ <n++, H ′(z) is invertible and

ψ(z+ α1z) ≤ [1− 2σ(1− γ‖ū‖)α]ψ(z). (29)

Proof. Since H ′(z̃) is invertible andũ ∈ <n++, there exists a closed neighbourhood
N (z̃) of z̃ such that for anyz = (u, x) ∈ N (z̃) we haveu ∈ <n++ and thatH ′(z) is
invertible. For anyz ∈ N (z̃), let1z= (1u,1x) ∈ <n ×<n be the unique solution of
the following equation:

H(z)+ H ′(z)1z= β(z)z̄ (30)

and for anyα ∈ [0,1], define

gz(α) = G(z+ α1z)− G(z)− αG′(z)1z.

From (30), for anyz ∈ N (z̃),
1u = −u+ β(z)ū.

Then for allα ∈ [0,1] and allz ∈ N (z̃),
u+ α1u = (1− α)u+ αβ(z)ū ∈ <n++. (31)

It follows from the Mean Value Theorem that

gz(α) = α
∫ 1

0
[G′(z+ θα1z)− G′(z)]1zdθ.
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SinceG′(·) is uniformly continuous onN (z̃) and1z→ 1z̃ asz→ z̃, for all z ∈ N (z̃),

lim
α↓0
‖gz(α)‖/α = 0.

Then, from (31), (30) and the fact thatβ(z) ≤ γψ(z)1/2, for all α ∈ [0,1] and all
z ∈ N (z̃), we have

‖u+ α1u‖2
= ‖(1− α)u+ αβ(z)ū‖2
= (1− α)2‖u‖2 + 2(1− α)αβ(z)uTū+ α2β(z)2‖ū‖2
≤ (1− α)2‖u‖2 + 2(1− α)αβ(z)‖u‖‖ū‖ + α2β(z)2‖ū‖2
≤ (1− α)2‖u‖2 + 2αβ(z)‖u‖‖ū‖ + O(α2)

≤ (1− α)2‖u‖2 + 2αγψ(z)1/2‖H(z)‖‖ū‖ + O(α2)

= (1− α)2‖u‖2 + 2αγ‖ū‖ψ(z)+ O(α2) (32)

and

‖G(z+ α1z)‖2
= ‖G(z)+ αG′(z)1z+ gz(α)‖2
= ‖(1− α)G(z)+ gz(α)‖2
= (1− α)2‖G(z)‖2 + 2(1− α)G(z)T gz(α)+ ‖gz(α)‖2
= (1− α)2‖G(z)‖2 + o(α). (33)

It then follows from (32) and (33) that for allα ∈ [0,1] and allz ∈ N (z̃), we have

ψ(z+ α1z)

= ‖H(z+ α1z)‖2
= ‖u+ α1u‖2+ ‖G(z+ α1z)‖2
≤ (1− α)2‖u‖2 + 2αγ‖ū‖ψ(z)+ (1− α)2‖G(z)‖2 + o(α)+ O(α2)

= (1− α)2ψ(z)+ 2αγ‖ū‖ψ(z)+ o(α)

= (1− 2α)ψ(z)+ 2αγ‖ū‖ψ(z)+ o(α)

= [1− 2(1− γ‖ū‖)α]ψ(z)+ o(α). (34)

Then from inequality (34) we can find a positive numberᾱ ∈ (0,1] such that for all
α ∈ [0, ᾱ] and allz ∈ N (z̃), (29) holds.

ut

We can get the following result directly from Lemma 5.
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Proposition 5. Suppose that Assumption 1 holds. For anyk ≥ 0, if zk ∈ <n++ × <n

and H ′(zk) is nonsingular, then Algorithm 1 is well defined atkth iteration andzk+1 ∈
<n++ ×<n.

Proposition 6. Suppose that Assumption 1 holds. For each fixedk ≥ 0, if uk ∈ <n++,
zk ∈ � and H ′(zk) is nonsingular, then for anyα ∈ [0,1] such that

ψ(zk + α1zk) ≤ [1− 2σ(1− γ‖ū‖)α]ψ(zk), (35)

it holds thatzk + α1zk ∈ �.

Proof. We prove this proposition by considering the following two cases:

(i) If ψ(zk) > 1. Then,βk = γ . It therefore follows fromzk ∈ � and β(z) =
γ min{1, ψ(z)} ≤ γ for anyz ∈ <2n that for allα ∈ [0,1], we have

uk + α1uk − β(zk + α1zk)ū

≥ (1− α)uk + αβkū− γ ū

≥ (1− α)βkū+ αβkū− γ ū

= (1− α)γ ū+ αγ ū− γ ū

= 0. (36)

(ii) If ψ(zk) ≤ 1. Then, for anyα ∈ [0,1] satisfying (35), we have

ψ(zk + α1zk) ≤ [1− 2σ(1− γ‖ū‖)α]ψ(zk) ≤ 1. (37)

So, for anyα ∈ [0,1] satisfying (35),

β(zk + α1zk) = γψ(zk + α1zk).

Hence, again becausezk ∈ �, by using the first inequality in (37), for anyα ∈ [0,1]
satisfying (35) we have

uk + α1uk − β(zk + α1zk)ū

= (1− α)uk + αβkū− γψ(zk + α1zk)ū

≥ (1− α)βkū+ αβkū− γ [1− 2σ(1− γ‖ū‖)α]ψ(zk)ū

= βkū− γ [1− 2σ(1− γ‖ū‖)α]ψ(zk)ū

= γψ(zk)ū− γ [1− 2σ(1− γ‖ū‖)α]ψ(zk)ū

= [2γσ(1− γ‖ū‖)]αψ(zk)ū

≥ 0. (38)

Thus, by combining (36) and (38), we have proved that for allα ∈ [0,1] satisfying (35),

zk + α1zk ∈ �.
This completes our proof.

ut
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By combining Propositions 5 and 6, we have

Proposition 7. Suppose that Assumption 1 holds. For each fixedk ≥ 0, if uk ∈ <n++,
zk ∈ � and H ′(zk) is invertible, then

uk+1 ∈ <n++ and zk+1 ∈ �.

Proposition 8. Suppose that Assumption 1 holds and that for everyk ≥ 0 with uk ∈
<n++ and zk ∈ � we have thatH ′(zk) is invertible. Then an infinite sequence{zk} is
generated by Algorithm 1,uk ∈ <n++ and{zk} ∈ �.
Proof. First, becausez0 = (ū, x0) ∈ �, we have from Proposition 7 thatz1 is well
defined,u1 ∈ <n++ andz1 ∈ �. Then, by repeatedly resorting to Proposition 7 we can
prove that an infinite sequence{zk} is generated,uk ∈ <n++ andzk ∈ �.

ut

5. Global convergence

In order to discuss the global convergence of Algorithm 1 we need the following
assumption.

Assumption 2. (i) For everyk ≥ 0, if uk ∈ <n++ andzk ∈ �, thenH ′(zk) is nonsin-
gular; and

(ii) for any accumulation pointz∗ = (u∗, x∗) of {zk} if u∗ ∈ <n++ and z∗ ∈ �, then
H ′(z∗) is nonsingular.

Theorem 4. Suppose that Assumptions 1 and 2 are satisfied. Then an infinite sequence
{zk} is generated by Algorithm 1 and each accumulation pointz̃ of {zk} is a solution of
H(z) = 0.

Proof. It follows from Proposition 8 and Assumption 2 that an infinite sequence{zk} is
generated such that{zk} ∈ �. From the design of Algorithm 1,ψ(zk+1) < ψ(zk) for
all k ≥ 0. Hence the two sequences{ψ(zk)} and{β(zk)} are monotonically decreasing.
Sinceψ(zk), β(zk) ≥ 0 (k ≥ 0), there existψ̃, β̃ ≥ 0 such thatψ(zk) → ψ̃ and
β(zk) → β̃ ask→ ∞. If ψ̃ = 0 and{zk} has an accumulation pointz̃, then from the
continuity ofψ(·) andβ(·)we obtainψ(z̃) = 0 andβ(z̃) = 0. Then we obtain the desired
result. Suppose that̃ψ > 0 andz̃= (ũ, x̃) ∈ <n ×<n is an accumulation point of{zk}.
By taking a subsequence if necessary, we may assume that{zk} converges tõz. It is easy
to see thatψ̃ = ψ(z̃), β(z̃) = β̃ and z̃ ∈ �. Thus, fromβ(z̃) = γ min{1, ψ(z̃)} > 0
and z̃ ∈ �, we see that̃u ∈ <n++. Then, from (ii) of Assumption 2,H ′(z̃) exists and
is invertible. Hence, from Lemma 5 there exist a closed neighbourhoodN (z̃) of z̃ and
a positive number̄α ∈ (0,1] such that for anyz= (u, x) ∈ N (z̃) and allα ∈ [0, ᾱ] we
haveu ∈ <n++, H ′(z) is invertible and (29) holds. Therefore, for a nonnegative integerl
such thatδl ∈ (0, ᾱ], we have

ψ(zk + δl1zk) ≤ [1− 2σ(1− γ‖ū‖)δl ]ψ(z)
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for all sufficiently largek. Then, for every sufficiently largek, we see thatl k ≤ l and
henceδlk ≥ δl . Then

ψ(zk+1) ≤ [1− 2σ(1− γ‖ū‖)δlk]ψ(zk) ≤ [1− 2σ(1− γ‖ū‖)δl ]ψ(zk)

for all sufficiently largek. This contradicts the fact that the sequence{ψ(zk)} converges
to ψ̃ > 0. So, we complete our proof.

ut
Theorem 5. Suppose that the smoothing functionφ(·) is defined by either (16) or
(18) or (20). Then an infinite sequence{zk} is generated by Algorithm 1 and each
accumulation point̃z of {zk} is a solution ofH(z) = 0, under one of the following two
conditions,

(i) for eachz= (u, x) ∈ � with u ∈ <n++, F′(p(z)) is a P-matrix;
(ii) if φ(·) is defined by either (16) or (18), for eachi ∈ N, at least one ofai andbi is

finite, and for eachz= (u, x) ∈ � with u ∈ <n++, F′(p(z)) is a P0-matrix.

Proof. By using Theorems 2 and 4 directly, we get the results of this theorem.
ut

6. Bounded level sets

In Sect. 5 we proved, under the assumptions of Theorem 4, that any accumulation point
of {zk} generated by Algorithm 1, if it exists, is a solution ofH(z) = 0. An important
question remained unanswered is whether such an accumulation point exists or not. In
this section we answer this question by investigating under what conditions the level
sets ofψ(z) = ‖H(z)‖2 are bounded. For this, let

L(z0) = {z ∈ <2n| ψ(z) ≤ ψ(z0)
}
.

Theorem 6. If X is bounded, thenL(z0) is bounded.

Proof. SinceX is bounded, it follows from (8) that‖p(z)‖ is bounded for anyz ∈ <2n.
For the sake of contradiction, suppose that there exists a sequence{zk = (uk, xk) ∈
<n × <n} such thatzk ∈ L(z0) and ‖zk‖ → ∞. Apparently, sincezk ∈ L(z0),
‖uk‖ ≤ ‖H(zk)‖ ≤ ‖H(z0)‖. So,‖xk‖ →∞. Hence, by using the fact that‖p(uk, xk)‖
is bounded, we have∥∥G(uk, xk)

∥∥ = ∥∥F(p(uk, xk))+ xk − p(uk, xk)
∥∥→∞,

which contradicts thatzk ∈ L(z0) because‖H(zk)‖ ≥ ‖G(zk)‖.
ut

Theorem 7. Suppose thatF is a uniformP-function onX, i.e., there exists a positive
numberν > 0 such that

max
i∈N

(
y1

i − y2
i

)(
Fi (y

1)− Fi (y
2)
) ≥ ν∥∥y1− y2

∥∥2 ∀ y1, y2 ∈ X. (39)

ThenL(z0) is bounded.
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Proof. For the sake of contradiction, suppose that there exists a sequence{zk =
(uk, xk) ∈ <n × <n} such thatzk ∈ L(z0) and‖zk‖ → ∞. Since, apparently,‖uk‖ is
bounded,‖xk‖ → ∞. It is easy to prove that∣∣mid(ai ,bi , x

k
i )
∣∣→∞H⇒ ∣∣xk

i

∣∣→∞ and
∣∣xk

i −mid(ai ,bi , x
k
i )
∣∣→ 0, i ∈ N.

(40)

From Lemma 2 and the definition ofp(·), there exists a constantL ′ > 0 such that∣∣pi (u
k, xk)−mid(ai ,bi , x

k
i )
∣∣ ≤ L ′

∣∣uk
i

∣∣, i ∈ N. (41)

Define the index setJ by J := {i | {pi (uk, xk)} is unbounded, i ∈ N}. Then it follows
that J 6= ∅ because otherwise‖G(zk)‖ = ‖F(p(zk)) + xk − p(zk)‖ → ∞. Let z̄k =
(ūk, x̄k) ∈ <n ×<n be defined by

ūk
i =

{
uk

i if i /∈ J

0 if i ∈ J

and

x̄k
i =

{
xk

i if i /∈ J

0 if i ∈ J
, i ∈ N.

Then

pi (z̄
k) =

{
pi (zk) if i /∈ J

mid(ai ,bi ,0) if i ∈ J
, i ∈ N.

Hence{‖p(z̄k)‖} is bounded. Therefore, from (39), we have

ν
∑
i∈J

(pi (z
k)− pi (z̄

k))2 = ν‖p(zk)− p(z̄k)‖2

≤ max
i∈N

(pi (z
k)− pi (z̄

k))(Fi (p(z
k))− Fi (p(z̄

k)))

≤ max
i∈N
|pi (z

k)− pi (z̄
k)||Fi (p(z

k))− Fi (p(z̄
k))|

= max
i∈J
|pi (z

k)− pi (z̄
k)||Fi (p(z

k))− Fi (p(z̄
k))|

≤
√∑

i∈J

(pi (zk)− pi (z̄k))2 max
i∈J
|Fi (p(z

k))− Fi (p(z̄
k))|.

Then maxi∈J |Fi (p(zk)) − Fi (p(z̄k))| → ∞ as k → ∞. Since {‖F(p(z̄k))‖} is
bounded, for eachk there exists at least onei k ∈ J such that∣∣Fik(p(z

k))
∣∣→∞.

SinceJ has only a finite number of elements, by taking a subsequence if necessary, we
may assume that there exists ani ∈ J such that∣∣Fi (p(z

k))
∣∣→∞.



18 Liqun Qi et al.

Then, in view of (41), the definition ofJ and the boundedness of{‖uk‖}, we have proved
that there exists at least onei ∈ J such that∣∣Fi (p(z

k))
∣∣, ∣∣pi (z

k)
∣∣, ∣∣mid(ai ,bi , x

k
i )
∣∣→∞.

Hence, by (40), (41) and that{‖uk‖} is bounded, for suchi ∈ J, |xk
i − pi (zk)| is bounded.

It then follows that for suchi ∈ J, {|Gi (zk)|} is unbounded. This is a contradiction
because‖H(zk)‖ ≥ ‖G(zk)‖. This contradiction showsL(z0) is bounded.

ut
There are several papers in the literature dealing with the bounded level sets issue

for different merit functions by assuming thatF is a uniformP-function on<n, i.e.,
(39) holds for ally1, y2 ∈ <n, see, e.g., [16,28,14,11,32,55]. Here we only require
(39) to hold onX.

7. Superlinear and quadratic convergence

Theorem 8. Suppose that Assumptions 1 and 2 are satisfied andz∗ is an accumulation
point of the infinite sequence{zk} generated by Algorithm 1. Suppose thatH is semi-
smooth atz∗ and that allV ∈ ∂H(z∗) are nonsingular. Then the whole sequence{zk}
converges toz∗, ∥∥zk+1 − z∗

∥∥ = o(‖zk − z∗‖) (42)

and

uk+1
i = o

(
uk

i

)
, i ∈ N. (43)

Furthermore, ifH is strongly semismooth atz∗, then∥∥zk+1 − z∗
∥∥ = O

(‖zk − z∗‖2) (44)

and

uk+1
i = O

(
uk

i

)2
, i ∈ N. (45)

Proof. First, from Theorem 4 thatz∗ is a solution ofH(z) = 0. Then, from [48,
Proposition 3.1], for allzk sufficiently close toz∗,∥∥H ′(zk)−1

∥∥ = O(1).

Hence, under the assumption thatH is semismooth (strongly semismooth, respectively)
at z∗, from Lemma 3, forzk sufficiently close toz∗, we have∥∥zk +1zk − z∗

∥∥
= ∥∥zk + H ′(zk)−1

[− H(zk)+ βkz̄
]− z∗

∥∥
= O

(‖H(zk)− H(z∗)− H ′(zk)(zk − z∗)‖ + βk‖ū‖
)

= o(‖zk − z∗‖)+ O(ψ(zk))
( = O

(‖zk − z∗‖2)+ O(ψ(zk))
)
. (46)
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Then, becauseH is semismooth atz∗, H is locally Lipschitz continuous nearz∗, for all
zk close toz∗,

ψ(zk) = ∥∥H(zk)
∥∥2 = O

(‖zk − z∗‖2). (47)

Therefore, from (46) and (47), ifH is semismooth (strongly semismooth, respectively)
at z∗, for all zk sufficiently close toz∗,

‖zk +1zk − z∗‖ = o
(‖zk − z∗‖) ( = O

(‖zk − z∗‖2)). (48)

By following the proof of Theorem 3.1 of [45], for allzk sufficiently close toz∗, we
have

‖zk − z∗‖ = O
(‖H(zk)− H(z∗)‖). (49)

Hence, if H is semismooth (strongly semismooth, respectively) atz∗, for all zk suffi-
ciently close toz∗, we have

ψ(zk +1zk)

= ‖H(zk+1zk)‖2
= O

(‖zk +1zk − z∗‖2)
= o(‖zk − z∗‖2) ( = O

(‖zk − z∗‖4))
= o

(‖H(zk)− H(z∗)‖2) ( = O
(‖H(zk)− H(z∗)‖4))

= o(ψ(zk))
( = O

(
ψ(zk)2

))
. (50)

Therefore, for allzk sufficiently close toz∗ we have

zk+1 = zk +1zk,

which, together with (48), proves (42), and ifH is strongly semismooth atz∗, proves
(44).

Next, from the definition ofβk and the fact thatzk → z∗ as k → ∞, for all k
sufficiently large,

βk = γψ(zk) = γ‖H(zk)‖2.
Also, because for allk sufficiently large,zk+1 = zk+1zk, we have for allk sufficiently
large that

uk+1 = uk +1uk = βkū.

Hence, for allk sufficiently large,

uk+1 = γ‖H(zk)‖2ū,

which, together with (42), (47) and (49), gives

lim
k→∞

uk+1
i

uk
i

= lim
k→∞

‖H(zk)‖2
‖H(zk−1)‖2 = lim

k→∞
‖H(zk)− H(z∗)‖2
‖H(zk−1)− H(z∗)‖2 = 0, i ∈ N.

This proves (43). IfH is strongly semismooth atz∗, then from the above argument we
can easily get (45). So, we complete our proof.

ut
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Next, we study under what conditions all the matricesV ∈ ∂H(z∗) are nonsingular
at a solution pointz∗ = (u∗, x∗) ∈ <n×<n of H(z) = 0. Apparently,u∗ = 0 andx∗ is
a solution ofE(x) = 0, whereE is defined in (5). For convenience of handling notation
we denote

I := {i | ai < x∗i < bi & Fi (5X(x
∗)) = 0, i ∈ N

}
,

J := {i | x∗i = ai & Fi (5X(x
∗)) = 0, i ∈ N

}∪{i | x∗i = bi & Fi (5X(x
∗)) = 0, i ∈ N

}
and

K := {i | x∗i < ai & Fi (5X(x
∗)) > 0, i ∈ N

}∪{i | x∗i > bi & Fi (5X(x
∗)) < 0, i ∈ N

}
.

Then
I ∪ J ∪K = N.

By rearrangement we assume that∇F(5X(x∗)) can be rewritten as

∇F(5X(x
∗)) =

 ∇F(5X(x∗))II ∇F(5X(x∗))IJ ∇F(5X(x∗))IK
∇F(5X(x∗))JI ∇F(5X(x∗))JJ ∇F(5X(x∗))JK
∇F(5X(x∗))KI ∇F(5X(x∗))KJ ∇F(5X(x∗))KK

 .
BVI is said to beR-regular atx∗ if ∇F(5X(x∗))II is nonsingular and its Shur-

complement in the matrix(
∇F(5X(x∗))II ∇F(5X(x∗))IJ
∇F(5X(x∗))JI ∇F(5X(x∗))JJ

)
is a P-matrix, see [50].

Proposition 9. Suppose thatz∗ = (u∗, x∗) ∈ <n×<n is a solution ofH(z) = 0. If BVI
is R-regular atx∗, then allV ∈ ∂H(z∗) are nonsingular.

Proof. It is easy to see that for anyV ∈ ∂H(z∗) there exists aW = (Wu,Wx) ∈ ∂G(z∗)
with Wu,Wx ∈ <n×n such that

V =
(

I 0
Wu Wx

)
.

Hence, provingV is nonsingular is equivalent to provingWx is nonsingular. Recall that
G(u, x) = F(p(u, x)) + x − p(u, x). Then, for anyW = (Wu,Wx) ∈ ∂G(z∗) with
Wu,Wx ∈ <n×n there exists aU = (Uu,Ux) ∈ ∂p(z∗) such that

Wx = F′(p(z∗))Ux + I −Ux.

By the definition ofp, we have

∂p1(z
∗)× ∂p2(z

∗)× · · · × ∂pn(z
∗) = ∂p(z∗).

Then for eachi ∈ N, thei th row ofU, Ui ∈ ∂pi (z∗). Apparently, from the definition of
p and Lemma 1,

Ux = diag{(ux)i , i ∈ N},
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where 
(ux)i = 1 if i ∈ I
(ux)i ∈ [0,1] if i ∈ J
(ux)i = 0 if i ∈ K

.

Hence, for eachWx and eachi ∈ J there existsλi ∈ [0,1] such that

(
WT

x

)
i =


∇F(p(z∗))i if i ∈ I
λi∇F(p(z∗))i + (1− λi )ei if i ∈ J
ei if i ∈ K

,

whereei is thei th unit row vector of<n, i ∈ N. Then, by using standard analysis (see,
e.g., [16, Proposition 3.2]), we can prove thatWT

x , and soWx, is nonsingular under
the assumption ofR-regularity (note thatp(z∗) = 5X(x∗)). Then, anyV ∈ ∂H(z∗) is
nonsingular. So, we complete our proof.

ut

The following result follows from Theorem 8 and Proposition 9 directly.

Theorem 9. Suppose that Assumptions 1 and 2 are satisfied andz∗ = (u∗, x∗) ∈
<n×<n is an accumulation point of the infinite sequence{zk} generated by Algorithm 1.
Suppose thatH is semismooth atz∗ and that BVI isR-regular atx∗. Then (42) and (43)
in Theorem 8 hold. Furthermore, ifH is strongly semismooth atz∗, then (44) and (45)
in Theorem 8 hold.

By combining Theorems 3, 5 and 9 we can directly obtain the following result.

Theorem 10. Suppose that the smoothing functionφ(·) is defined by either (16) or
(18) or (20). Then an infinite sequence{zk} is generated by Algorithm 1 and each
accumulation pointz∗ = (u∗, x∗) ∈ <n × <n of {zk} is a solution ofH(z) = 0, under
one of the following two conditions,

(i) for eachz= (u, x) ∈ � with u ∈ <n++, F′(p(z)) is a P-matrix;
(ii) if φ(·) is defined by either (16) or (18), for eachi ∈ N, at least one ofai andbi is

finite, and for eachz= (u, x) ∈ � with u ∈ <n++, F′(p(z)) is a P0-matrix.

Further, if theR-regularity holds atx∗, then the whole sequence{zk} converges toz∗,
and (42) and (43) in Theorem 8 hold. Moreover, ifF′ is Lipschitz continuous near
5X(x∗), then (44) and (45) in Theorem 8 hold.

Corollary 1. Suppose that the smoothing functionφ(·) is defined by either (16) or (18)
or (20). If F is a uniformP-function onX, then

(i) a bounded infinite sequence{zk} is generated by Algorithm 1 and the whole se-
quence{zk} converges to the unique solutionz∗ = (u∗, x∗) ∈ <n×<n of H(z) = 0;
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(ii) (42) and (43) in Theorem 8 hold, and
(iii) if F′ is Lipschitz continuous near5X(x∗), then (44) and (45) in Theorem 8 hold.

Proof. It follows from (39) in Theorem 7 that for anyy ∈ X and allh ∈ <n,

max
i∈N

hi (F
′(y)h)i ≥ ν‖h‖2,

which, according to [38, Lemma 3.6], implies thatF′(y) is a P-matrix. Then, for any
z ∈ <2n, becausep(z) ∈ X, F′(p(z)) is a P-matrix. Therefore, from Theorem 10,
an infinite sequence{zk} is generated by Algorithm 1 and each accumulation pointz∗
of {zk} is a solution ofH(z) = 0. Also, sinceF is a uniformP-function onX, from
Theorem 7,L(z0), and so{zk}, is bounded. Hence, there exists at least one accumulation
pointz∗ = (u∗, x∗) ∈ <n ×<n of {zk} such thatH(z∗) = 0. SinceF′(5X(x∗)), and so
∇F(5X(x∗)), is aP-matrix,R-regularity holds atx∗. Hence, we obtain from Theorem 10
that the bounded sequence{zk} converges toz∗ and (ii) and (iii) hold. Finally, sinceF is
a uniformP-function, BVI has a unique solutiony∗ ∈ X (see, e.g., [25, Theorem 3.9]).
Hence, the equationE(x) = 0 has a unique solutionx∗ = y∗ − F(y∗), and so,H(z) = 0
has a unique solutionz∗ = (0, x∗). So, we complete our proof.

ut

8. Preliminary numerical results

In this section we present some numerical experiments for the nonmonotone line search
version of Algorithm 1:Step 3is replaced by

Step 3′ Let lk be the smallest nonnegative integerl satisfying

zk + δl1zk ∈ � (51)

and

ψ(zk + δl1zk) ≤W − 2σ(1− γ‖ū‖)δlψ(zk), (52)

whereW is any value satisfying

ψ(zk) ≤W ≤ max
j=0,1,...,Mk

ψ(zk− j )

andMk are nonnegative integers bounded above for allk such that the occur-
rence of nonnegative indices does not happen. Definezk+1 := zk + δlk1zk.

Remark 2.(i) We choose a nonmonotone line search here is because in most cases it
increases the stability of algorithms.

(ii) The requirement (51) is for guaranteeing the global convergence of the algorithm.
This requirement automatically holds for our algorithm with a monotone line search,
see Proposition 7. The consistency between (51) and (52) can be seen clearly from
Propositions 5 and 6.
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In the implementation we chooseW as follows:

(1) SetW = ψ(z0) at the beginning of the algorithm.
(2) Keep the value ofW fixed as long as

ψ(zk) ≤ min
j=0,1,...,5

ψ(zk− j ). (53)

(3) If (53) is not satisfied atkth iteration, setW = ψ(zk).

For a detailed description of the above nonmonotone line search technique and its
motivation, see [14].

The above algorithm was implemented in Matlab and run on a DEC Alpha Server
8200. Throughout the computational experiments, the parameters used in the algorithm
wereδ = 0.5,σ = 0.5×10−4, ū = (0.1,0.1, ...,0.1), andγ = 0.2×min{1,1/‖ū‖}. We
usedψ(z) ≤ 10−12 as the stopping rule. The numerical results are summarized in Ta-
bles 1–3 for different smoothing functions and different tested problems. In Tables 1–3,
Dim denotes the number of the variables in the problem,Start. points denote the start-
ing points,Iter denotes the number of iterations, which is also equal to the number of
Jacobian evaluations for the functionF, NF denotes the number of function evaluations
for the functionF, andFF denotes the value ofψ at the final iterate. In the following,
we give a brief description of the tested problems, where0 is the vector of all zeros and
e is the vector of all ones. The source reported for the problem is not necessarily the
original one.

Problem 1. This is the Kojima-Shindo problem, see [41].F(y) is not a P0-function.
This problem has two solutions:y1 = (√6/2,0,0,0.5) andy2 = (1,0,3,0).
Starting points: (a) 0, (b)−e, (c) e− F(e).

Problem 2. This is a linear complementarity problem. See the first example of Jiang
and Qi [28].
Starting points: (a) 0, (b) e.

Problem 3.This is a linear complementarity problem. See the second example of Jiang
and Qi [28].
Starting points: (a) 0, (b) e.

Problem 4.This is the fourth example of Watson [56]. This problem represents theKKT
conditions for a convex programming problem involving exponentials. The resultingF
is monotone on the positive orthant but not evenP0 on Rn.
Starting points: (a) 0, (b) e.

Problem 5.This is a modification of the Mathiesen example of a Walrasian equilibrium
model as suggested in [30].F is not defined everywhere and does not belong to any
known class of functions.
Starting points: (a) 0− F(0), (b) e− F(e), (c) e

Problem 6.This is the Nash-Cournot production problem [41].F is not twice continu-
ously differentiable.F is a P-function on the strictly positive orthant.
Starting points: (a) 0, (b) e, (c) 10e.
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Problem 7. This is a Mathiesen equilibrium problem [36,41], in whichF is not de-
fined everywhere. Two set of constants were used:(α,b2,b3) = (0.75,1,0.5) and
(α,b2,b3) = (0.9,5,3). We use Problem 7a and Problem 7b to represent this problem
with these two set of constants, respectively.
Starting points: (a) e, (b) e/2,

Problem 8. This is the Kojima-Josephy problem, see [14].F(x) is not aP0-function.
The problem has a unique solution which is notR-regular.
Starting points: (a)−e, (b) e− F(e), (c) 0.

Problem 9.This is a problem arising from a spatial equilibrium model, see [41].F is a
P-function and the unique solution isR-regular.
Starting points: (a) 0, (b) e.

Problem 10.This is a traffic equilibrium problem with elastic demand, see [41].
Starting points: (a) All the components are 0 exceptx1, x2, x3, x10, x11, x20, x21, x22,
x29, x30, x40, x45 which are 1,x39, x42, x43, x46 which are 7,x41, x47, x48, x50 which
are 6, andx44 andx49 which are 10, (b)0.

Problem 11.See Problem 9 of [57]. This is a linear complementarity problem for which
Lemke’s algorithm is known to run in exponential time.
Starting points: (a) 0.

Problem 12.This is the third problem of Watson [56], which is a linear complementarity
problem withF(x) = Mx + q. M is not even semimonotone and none of the standard
algebraic techniques can solve it. Letq be the vector with−1 in the 8th coordinate and
zeros elsewhere. The continuation method of [56] fails on this problem.
Starting points: (a) 0.

Problem 13. See [1]. This is a linear variational inequality problem with lower and
upper bounds. Herea = (0, ...,0),b= (1, ...,1).
Starting points: (a) e, (b)−2e.

Problem 14.This problem is transformed from Problem 11 by adding lower and upper
bounds to the constraint set. The resulting problem is a linear variational inequality
problem with box constraints. Here we choosea = (−10, ...,−10),b= (0, ...,0).
Starting points: (a) 0, (b) e.

Problem 15.This problem is transformed from Problem 1 by adding lower and upper
bounds to the constraint set. The resulting problem is a nonlinear variational inequality
problem with box constraints. Here we choosea = (−10, ...,−10),b= (10, ...,10).
Starting points: (a) 0, (b) e, (c) 0− F(0).

Problem 16.This is a nonlinear variational inequality problem with box constraints [52].
The mappingF is a polynomial operator. Herea = (0, ...,0),b= (1, ...,1).
Starting points: (a) 0, (b) e.

Problem 17. This problem is transformed from a linear complementarity problem in
[17] by adding lower and upper bounds to the constraint set. The resulting problem
is a linear variational inequality problem with box constraints. Here we choosea =
(−10, ...,−10), b= (−5, ...,−5).
Starting points: (a) e.
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Table 1.Numerical results for the algorithm with the neural networks smoothing function (16)

Problem Dim. Start. point Iter NF FF

Problem 1 4 a 5 8 4.7×10−20

4 b 5 10 1.3×10−19

4 c 4 6 2.7×10−20

Problem 2 10,000 a 5 6 1.1×10−21

10,000 b 5 6 1.1×10−21

Problem 3 10,000 a 5 6 1.1×10−21

10,000 b 5 6 1.1×10−21

Problem 4 5 a 19 20 1.4×10−23

5 b 15 16 1.9×10−14

Problem 5 4 a 4 5 1.8×10−13

4 b 5 6 3.4×10−14

4 c 7 8 2.7×10−20

Problem 6 10 a 9 10 1.4×10−14

10 b 7 8 1.3×10−20

10 c 7 8 1.6×10−21

Problem 7a 4 a 7 9 9.2×10−20

4 b 7 9 1.8×10−15

Problem 7b 4 a fail
4 b 7 8 1.9×10−16

Problem 8 4 a 6 9 1.1×10−25

4 b 5 7 9.0×10−13

4 c > 50

Problem 9 42 a 11 22 6.7×10−18

42 b 10 14 9.0×10−19

Problem 10 50 a 12 26 8.3×10−18

50 b 16 42 1.4×10−14

Problem 11 1000 a 10 11 1.7×10−20

Problem 12 10 a 6 10 4.2×10−24

Problem 13 10,000 a 6 7 1.4×10−21

10,000 b 5 6 1.1×10−21

Problem 14 1000 a 6 7 1.1×10−21

1000 b 5 6 1.1×10−21

Problem 15 4 a fail
4 b 4 5 1.8×10−13

4 c 6 7 3.9×10−13

Problem 16 10,000 a 6 8 1.1×10−21

10,000 b 7 8 2.2×10−23

Problem 17 400 a 5 6 1.1×10−21

The numerical results reported in Tables 1–3 show that the algorithms proposed in
this paper for the three chosen smoothing functions work quite well for both nonlinear
complementarity problems and box constrained variational inequalities. It is observed
during our numerical experiment that the algorithms based on the neural networks
smoothing function (16) and the Chen-Harker-Kanzow-Smale smoothing function (18),
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Table 2.Numerical results for the algorithm with the Chen-Harker-Kanzow-Smale smoothing function (18)

Problem Dim. Start. point Iter NF FF

Problem 1 4 a 6 9 5.6×10−18

4 b 6 11 3.3×10−23

4 c 5 7 3.9×10−23

Problem 2 10,000 a 5 6 1.1×10−21

10,000 b 5 6 1.1×10−21

Problem 3 10,000 a 5 6 1.1×10−21

10,000 b 5 6 1.1×10−21

Problem 4 5 a 19 20 7.6×10−26

5 b 16 17 2.8×10−24

Problem 5 4 a 5 7 8.8×10−15

4 b 6 7 1.8×10−22

4 c 8 9 2.7×10−20

Problem 6 10 a 10 11 5.0×10−15

10 b 8 9 1.4×10−22

10 c 7 8 1.6×10−13

Problem 7a 4 a 8 11 3.4×10−23

4 b 7 10 4.2×10−13

Problem 7b 4 a 5 7 2.7×10−21

4 b 4 6 1.1×10−15

Problem 8 4 a 6 9 4.2×10−16

4 b 6 8 3.2×10−19

4 c > 50

Problem 9 42 a 15 28 8.2×10−26

42 b 14 24 8.3×10−20

Problem 10 50 a 14 28 1.2×10−19

50 b 17 41 5.5×10−15

Problem 11 1000 a 13 15 3.6×10−18

Problem 12 10 a 6 10 9.9×10−20

Problem 13 10,000 a 11 12 5.5×10−17

10,000 b 13 14 9.7×10−26

Problem 14 1000 a 11 13 7.1×10−19

1000 b 9 11 6.6×10−20

Problem 15 4 a 6 33 8.4×10−13

4 b 4 5 5.0×10−13

4 c 6 7 1.4×10−16

Problem 16 10,000 a 6 8 4.7×10−21

10,000 b 7 9 4.8×10−17

Problem 17 400 a 5 6 1.1×10−21

in particular the latter one, have stronger numerical stability. However, when using the
uniform smoothing function (20) we only solve a form reduced linear equation per
iteration. A possible way is to use the neural networks smoothing function (16) or the
Chen-Harker-Kanzow-Smale smoothing function (18) at the first several iterations and
then to use the uniform smoothing function (20). We leave this as a future research topic.
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Table 3.Numerical results for the algorithm with the uniform smoothing function (20)

Problem Dim. Start. point Iter NF FF

Problem 1 4 a > 50
4 b 6 10 9.8×10−20

4 c 4 6 2.7×10−20

Problem 2 10,000 a 5 6 1.1×10−21

10,000 b 5 6 1.1×10−21

Problem 3 10,000 a 5 6 1.1×10−21

10,000 b 4 5 1.1×10−21

Problem 4 5 a 19 20 2.5×10−13

5 b 15 16 9.9×10−17

Problem 5 4 a 4 5 1.3×10−17

4 b 4 5 3.7×10−16

4 c 9 58 2.7×10−20

Problem 6 10 a 12 13 1.9×10−25

10 b 7 8 1.3×10−20

10 c 7 8 1.6×10−21

Problem 7a 4 a 7 10 4.0×10−24

4 b 6 9 4.0×10−14

Problem 7b 4 a 5 7 5.0×10−16

4 b 4 6 3.8×10−24

Problem 8 4 a 5 8 4.0×10−13

4 b 5 7 9.0×10−13

4 c > 50

Problem 9 42 a 10 18 9.9×10−14

42 b 10 14 5.7×10−19

Problem 10 50 a 11 25 5.8×10−16

50 b 16 41 6.5×10−13

Problem 11 1000 a 11 12 1.1×10−21

Problem 12 10 a 6 15 4.7×10−19

Problem 13 10,000 a 8 10 9.7×10−26

10,000 b 10 12 9.7×10−26

Problem 14 1000 a 11 12 1.1×10−21

1000 b 4 5 1.1×10−21

Problem 15 4 a fail
4 b 4 5 5.0×10−13

4 c 6 7 8.9×10−17

Problem 16 10,000 a 5 7 1.1×10−21

10,000 b 7 9 2.5×10−15

Problem 17 400 a 4 5 1.1×10−21

9. Conclusions

In this paper we constructed a new class of smoothing Newton methods for solving
nonlinear complementarity problems and box constrained variational inequalities by
making use of the facts that the most often used smoothing functions are continuously
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differentiable jointly withµ andw at any(µ,w) ∈ <++ × < and they lead to strongly
semismooth functions on<2. The techniques provided in this paper can be applied
to smoothing Newton methods based on the mappingW(·) defined in (4). Numerical
results showed that our algorithms worked very satisfactorily for the tested problems.
We expect that these algorithms can be used to solve practical large-scale problems
efficiently.

In [27] Jiang proposed a smoothing method for solving nonlinear complementarity
problems withP0-functions. Jiang’s approach shares some similarities with ours in the
sense that the smoothing parameter is treated as a variable. For anya,b, ε ∈ <, define

φFB(a,b, ε) =
√

a2+ b2+ ε2− (a+ b). (54)

This function is a smoothed form of Fischer-Burmeister function and was first defined
by Kanzow [31]. Jiang [27] proves thatψFB(·, ·, ·) := φFB(·, ·, ·)2 is continuously
differentiable on<3. DefineG : <n+1→<n by

Gi (ε, x) := φFB(xi , Fi (x), ε), i = 1,2, ...,n. (55)

Jiang [27] provided a different form ofH , which was defined by

H(ε, x) :=
(

eε − 1
G(ε, x)

)
. (56)

An interesting property of such definedH is that for anyε > 0 and anyλ ∈ (0,1],
ε+ λ1ε > 0

and
ε+ λ1ε < ε,

whered := (1ε,1x) ∈ <× <n is a solution of

H(ε, x)+ H ′(ε, x)d = 0.

Based on this observation, Jiang [27] designed a smoothing Newton method for solving
the NCP with the assumption thatF is a P0-function. By using the continuous differen-
tiability of ‖H‖2 and the assumption that the search directions are bounded, which can
be satisfied by assuming thatF is a uniform P-function, Jiang proved global and local
superlinearly (quadratically) convergent results of his method. It is noted that Jiang’s
idea may be used to any smoothing functionH where a smoothing parameter is involved
if the following two conditions are satisfied:

(i) The square‖H‖2 is continuously differentiable;
(ii) The search directions are bounded.

Meanwhile, our approach needs neither condition (i) nor condition (ii). The key point
is that we can control the smoothing parameter in such a way that it converges nei-
ther too fast nor too slow by using a particularly designed Newton equation and a line
search model. To see the benefit of our approach clearly, let’s consider the NCP with
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a P0-function. For this problem we proved that any accumulation point of our iter-
ation sequence is a solution while Jiang proved the same result under the additional
condition (ii). Moreover, we requireF to be aP0-function on<n+ only instead of on<n.

After the announcement of this paper, our method has soon been used to solve
various regularized smoothing equations to get stronger global convergent results [53,
43,60] and to solve extended vertical linear complementarity problems [44].

In this paper we treated the smoothing parameteru the same as the original variable
x except thatu is always kept positive. It is an interesting question to know that if the
updating rule foru used in this paper can be relaxed or more interestingly if it is possible
not to treat the parameteru as a free variable while superlinearly convergent results can
still be obtained for the problems considered here or in [53,43,60]. We leave these as
further reaserch topics.

Acknowledgements.The authors would like to thank Houduo Qi and the two referees for their helpful
comments.

Appendix A

Proof of Proposition 1.From (16) and the definition ofqcd(·), we can see thatqcd(·) is
at least twice continuously differentiable at anyx ∈ <2 with x1 6= 0. So, we only need
to prove that (24) holds at anyx = (0, x2) with x2 ∈ <. After simple computations, for
any(µ,w) ∈ <2 with µ > 0, we have

∇qcd(µ,w) =
 t(µ,w)

1

1+ e(c−w)/µ
− 1

1+ e(d−w)/µ

 , (A. 1)

where

t(µ,w) = ln
[
1+ e(c−w)/µ

]+ c−w
µ

1

1+ e(c−w)/µ

− ln
[
1+ e(d−w)/µ

]− d−w
µ

1

1+ e(d−w)/µ
+ d− c

µ

and for any(µ,w) ∈ <2 with µ < 0, we have

∇qcd(µ,w) =
(−1 0

0 1

)
∇qcd(−µ,w). (A. 2)

Supposex = (0, x2) ∈ <2 andh = (h1,h2) ∈ <2. If h1 6= 0, it then follows from the
fact thatqcd is continuously differentiable atx+ h,

∂qcd(x+ h) = {∇qcd(x+ h)T
}
.

We consider several cases:
(i) x2 < c. Suppose thath is small enough such that for allt ∈ [0,1], x2 + th2 < c.
Then from the definition,

q′cd(x; h) = lim
t↓0

qcd(x+ th)− qcd(x)

t
= 0.
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Then, for anyV ∈ ∂qcd(x+ h), h→ 0 andh1 6= 0,

Vh− q′cd(x; h) = ∇qcd(x+ h)Th− 0

= |h1| ln
{
1+ e[c−(x2+h2)]/|h1|}− |h1| ln

{
1+ e[d−(x2+h2)]/|h1|}

+ c− x2

1+ e[c−(x2+h2)]/|h1| −
d− x2

1+ e[d−(x2+h2)]/|h1| + (d− c)

= O(h2
1)

= O(‖h‖2)

and for anyV ∈ ∂qcd(x+ h), h = (0,h2)→ 0,

Vh− q′cd(x; h) = V1 ∗ 0+ 0 ∗ h2− 0= 0

because in the latter caseq′cd(x; h) = 0 and for anyV ∈ ∂qcd(0, x2+h2) andx2+h2 < c,
V2 = 0.
(ii) c < x2 < d. Suppose thath is small enough such that for allt ∈ [0,1], c <
x2+ th2 < d. Then, from the definition,

q′cd(x; h) = lim
t↓0

qcd(x+ th)− qcd(x)

t
= h2.

Then for anyV ∈ ∂qcd(x+ h), h→ 0 andh1 6= 0,

Vh− q′cd(x; h) = ∇qcd(x+ h)Th− h2

= O(h2
1)

= O(‖h‖2)

and for anyV ∈ ∂qcd(x+ h), h = (0,h2)→ 0,

Vh− q′cd(x; h) = V1 ∗ 0+ 1 ∗ h2− h2 = 0

because in the latter case for anyV ∈ ∂qcd(0, x2+ h2) andc< x2+ h2 < d, V2 = 1.
(iii) x2 = c. Suppose thath ∈ <2 is sufficiently small such thatx2+ h2 < b. Then from
the definition, ifh1 6= 0,

q′cd(x; h) = lim
t↓0

qcd(x+ th)− qcd(x)

t
= |h1| ln

(
1+ e−h2/|h1|)+ h2

and ifh1 = 0

q′cd(x; h) = max{0,h2}.
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Then, for anyV ∈ ∂qcd(x+ h), h→ 0 andh1 6= 0,

Vh− q′cd(x; h) = V1 ∗ h1+ V2 ∗ h2−
[|h1| ln

(
1+ e−h2/|h1|)+ h2

]
= |h1| ln

(
1+ e−h2/|h1|)− h2

|h1|
1

1+ e−h2/|h1| |h1|

−|h1| ln
[
1+ e(d−c−h2)/|h1|]+ h2

|h1|
1

1+ e(d−c−h2)/|h1| |h1|

+d− c

|h1| +
h2

1+ e−h2/|h1| |h1| − h2

1+ e(d−c−h2)/|h1|

−[|h1| ln
(
1+ e−h2/|h1|)+ h2

]
= −|h1| ln

[
1+ e(d−c−h2)/|h1|]+ d− c− h2

= O(h2
1)

= O(‖h‖2)
and for anyV ∈ ∂qcd(x+ h), h = (0,h2)→ 0,

Vh− q′cd(x; h) = V1 ∗ 0+ V2 ∗ h2−max{0,h2} = 0

because in the latter caseq′cd(x; h) = max{0,h2} and for anyV ∈ ∂qcd(0, x2+ h2) and
x2+ h2 < d if h2 > 0, V2 = 1 and ifh2 < 0, V2 = 0.
(iv) d < x2. Suppose thath is small enough such that for allt ∈ [0,1], d < x2 + th2.
Then, from the definition,

q′cd(x; h) = lim
t↓0

qcd(x+ th)− qcd(x)

t
= 0.

Then, for anyV ∈ ∂qcd(x+ h), h→ 0 andh1 6= 0,

Vh− q′cd(x; h) = ∇qcd(x+ h)Th− 0

= O(h2
1)

= O(‖h‖2)
and for anyV ∈ ∂qcd(x+ h), h = (0,h2)→ 0,

Vh− q′cd(x; h) = V1 ∗ 0+ 0 ∗ h2− 0= 0.

because in the latter case for anyV ∈ ∂qcd(0, x2+ h2) andx2+ h2 > d, V2 = 0.
(v) x2 = d. The proof of this case is similar to that of case (iii). We omit the detail here.
Then we have proved thatqcd(·) is a strongly semismooth function.

ut
Proof of Proposition 2.By the definition, for any(µ,w) ∈ <2,

qcd(µ,w) = c+√(c−w)2 + 4µ2

2
+ d−√(d−w)2+ 4µ2

2
.
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It is easy to prove that
√
ν2+ µ2 is a strongly semismooth function. Since the composi-

tion of strongly semismooth functions is still a strongly semismooth function [21, Theo-

rem 19], the two functionsc+
√
(c−w)2+4µ2

2 andd−
√
(d−w)2+4µ2

2 are strongly semismooth
ones, and so,qcd(·) is a strongly semismooth function. This completes our proof.

ut
Proof of Proposition 3.For the sake of simplicity we only prove the casec = 0 and
d = ∞. The proof of other cases is very similar.

From (22) (note that we assumec= 0 andd = ∞) and the definition ofqcd(·), we
can see thatqcd(·) is continuously differentiable at any(µ,w) ∈ <2 with µ 6= 0 and if
µ > 0,

q′cd(µ,w) =


(0 0) if w ≤ −µ/2(

1

8
− w2

2µ2

w

µ
+ 1

2

)
if |w| < µ/2

(0 1) if w ≥ µ/2
and ifµ < 0,

q′cd(µ,w) = q′cd(−µ,w)
(−1 0

0 1

)
.

It is easy to verify thatq′cd(·) is locally Lipschitz continuous around any(µ,w) ∈ <2

with µ 6= 0 and it is known that a function which is continuously differentiable at
a certain point is strongly semismooth at this point if its derivative is locally Lipschitz
continuous around this point. Henceq′cd(·) is strongly semismooth at any(µ,w) ∈ <2

with µ 6= 0.
Next, we prove that (24) holds at anyx = (0, x2) ∈ <2. We consider the following

several cases to prove this.
(i) x2 < 0. Then for anyV ∈ ∂qcd(x+ h), h→ 0 andh1 6= 0,

Vh− q′cd(x; h) = 0 ∗ h1 + 0 ∗ h2− 0= 0

and for anyV ∈ ∂qcd(x+ h), h = (0,h2)→ 0,

Vh− q′cd(x; h) = V1 ∗ 0+ 0 ∗ h2− 0= 0.

(ii) x2 > 0. Then for anyV ∈ ∂qcd(x+ h), h→ 0 andh1 6= 0,

Vh− q′cd(x; h) = 0 ∗ h1 + 1 ∗ h2− h2 = 0

and for anyV ∈ ∂qcd(x+ h), h = (0,h2)→ 0,

Vh− q′cd(x; h) = V1 ∗ 0+ 1 ∗ h2 − h2 = 0.

(iii) x2 = 0. Then for anyV ∈ ∂qcd(x+ h), h→ 0, h1 6= 0 andh2 ≤ −|h1|/2,

Vh− q′cd(x; h) = 0 ∗ h1+ 0 ∗ h2− 0= 0;
for anyV ∈ ∂qcd(x+ h), h→ 0, h1 6= 0 andh2 ≥ |h1|/2,

Vh− q′cd(x; h) = 0 ∗ h1 + 1 ∗ h2− h2 = 0;
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for anyV ∈ ∂qcd(x+ h), h→ 0, h1 6= 0 and|h2| < |h1|/2,

Vh− q′cd(x; h) =
(

1

8
− h2

2

2h2
1

)
|h1| +

(
h2

|h1| +
1

2

)
h2− (h2 + |h1|/2)2

2|h1| = 0

and for anyV ∈ ∂qcd(x+ h), h = (0,h2)→ 0,

Vh− q′cd(x; h) = V1 ∗ 0+ V2 ∗ h2 −max{0,h2} = max{0,h2} −max{0,h2} = 0

because in the latter caseq′cd(x; h) = max{0,h2} and for anyV ∈ ∂qcd(0, x2 + h2) if
h2 > 0, V2 = 1 and ifh2 < 0, V2 = 0.

Then we have proved thatqcd(·) is a strongly semismooth function.
ut
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