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Abstract. In this paper we take a new look at smoothing Newton methods for solving the nonlinear comple-
mentarity problem (NCP) and the box constrained variational inequalities (BVI). Instead of using an infinite
sequence of smoothing approximation functions, we use a single smoothing approximation function and
Robinson’s normal equation to reformulate NCP and BVI as an equivalent nonsmooth edi@tjon = 0,

whereH : 912" — 92" u € %" is a parameter variable ande 9" is the original variable. The central idea

of our smoothing Newton methods is that we construct a sequehee (uk, xk)} such that the mapping(-)

is continuously differentiable at eacland may be non-differentiable at the limiting point{z‘f}. We prove

that three most often used Gabriel-Moré smoothing functions can generate strongly semismooth functions,
which play a fundamental role in establishing superlinear and quadratic convergence of our new smoothing
Newton methods. We do not require any function valu€ af its derivative value outside the feasible region
while at each step we only solve a linear system of equations and if we choose a certain smoothing function
only a reduced form needs to be solved. Preliminary numerical results show that the proposed methods for
particularly chosen smoothing functions are very promising.

Key words. variational inequalities — nonsmooth equations — smoothing approximation — smoothing Newton
method — convergence

1. Introduction

Consider the variational inequalities (VI for abbreviation): Firffde X such that
(y=y9 Fy") =0 forallyeX, (1)

whereX is a nonempty closed subset®® andF : D — %" is continuously differen-
tiable on some open s&, which containsX. In this paper, unless otherwise stated, we
assume that

X:={yeR"a<y<b}, 2)

wherea € {M U {—oo}}", b € M U {c0}}" anda < b. Then (1) becomes the box
constrained variational inequalities (BVI for abbreviation). This assumption is not re-
strictive because if in (1) the s&t is not of the form (2) but is represented by several
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equalities and inequalities, then under standard constraint qualifications [25] we can
equivalently transform (1) into a new VI with the constraint set of form (2), possibly
with increased dimension (see, e.g., [54]). Wher- %'}, VI reduces to the nonlinear
complementarity problem (NCP for abbreviation): Fiyfde %} such that

F(y) e %} and F(y")Ty*=0. (3)

Itis well known (see, e.qg., [25]) that solving (1) is equivalent to finding a root of the
following equation:

W(y) :=y — IIx(y — F(y)) =0, (4)

where for anyx € R", Mx(x) is the Euclidean projection of onto X and X is

a nonempty closed convex subsetdf, which is not necessarily of the form (2). It is
also well known that ifX is a closed convex subset®f, then solving VI is equivalent
to solving the following Robinson’s normal equation

E(X) = F(ITx(X)) + x — ITx(X) =0 ®)

in the sense that i* € R" is a solution of (5) thely* := Ix(x*) is a solution of (1),
and conversely if/* is a solution of (1) thex* := y* — F(y*) is a solution of (5) [49].
Both (4) and (5) are nonsmooth equations and have led to various generalized Newton’s
methods. See [25], [40], [22] and [18] for a review of these methods.

By using the Gabriel-Moré smoothing function fid (-), we can construct approx-
imations forE(.):

G, x) := F(p(u, X)) + X — p(u,x), (U,x) € R" x R", (6)

where for eachi € N = {1,2,...,n}, pi(u,x) = qu;, a,b;, %) and for any
(1, c,d, w) €N x RU{—o0} x RU {oo} x R with c <d, q(u, c,d, w) is defined by

¢(lul,c,d,w)if w#0
,c.dw) = . 7
Ak ®) { Micdinm(w)  if p=0 @
and (i, ¢, d, w), (u, w) € Ryy x N is a Gabriel-Moré smoothing approximation
function [23], also, see Sect. 2 for the definitionggf). For example, for NCP we can
take the Chen-Harker-Kanzow-Smale smoothing NCP function [4,31,51]

Vw2 +4p2 4+ w

¢(u, 0, 00, w) = > . o(w) e Ry x N,

which is a special Gabriel-Moré smoothing function. In this paper, unless otherwise
stated, we always assume tigat iR U {—o0}, d € R U {oo} andc < d. By Lemma 2.2
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of [23], for any (i, w) € R4y x N,
¢(u, c,d, w) € [c,d] NN,
and so, for anyu, x) € R" x R",
p(u, X) € X. (8)

Then the mappin@(-) is defined ori2" while F(-) is only required to have definition
on X, the feasible region. It is noted that we can also p&¢ to construct a class of
approximation functions foW(-) defined in (4):

V(u,y):=y—pU,y—Fy), Uy eR"xi" 9)

However, in order to mak¥/(-) to have definition on the whole spa&” one has to
assume tha(-) is well defined on the whole spa®é@. This requirement foF is not sat-
isfied for many NCPs and BVI transformed from economic equilibrium problems [18].
Moreover, even ifF has definition on the whole spag#', some important properties
of F, like monotonicity, which holds oX, may not hold outsid&X. These observations
lead us to focus on the approximation functions defined by (6) rather than (9). However,
the techniques used here can be applied to (9) too.

For the sake of convenience, gl : R+ x R — N be defined by

bed(p, w) == @(u, ¢, d, w),  (u, w) € Ry x N (10)
and for any givernu € Ry, letg,cd : R — N be defined by
Pucd(w) := ¢(u, ¢, d, w), we N (11)

Then, for any givem € R4, ¢,.cd(-) is continuously differentiable at any € 9 [23].
Moreover, for several most often used Gabriel-Moré smoothing functions it can be
verified thatpcq(-) is also continuously differentiable at afy, w) € R4+ x R. In this
paper, we are interested in smoothing functions with this property, which we make it as
an assumption.

Assumption 1. The functiongcq(-) is continuously differentiable at angu, w) €
g\\_l,__i'_ X (ﬁ

Letz:= (u, x) € K" x R" and defineH : R2" — R2" by

Hz) = ( G‘:Z)> . (12)

Then it is easy to see that is continuously differentiable at arge 9%, x %" if
Assumption 1 is satisfied.

Recently, smoothing Newton methods have attracted a lot of attention in the lit-
erature partially due to their superior numerical performance [2], e.g., see [3-12,26,
33,47,46,58] and references therein. Among them the first globally and superlinearly
(quadratically) convergent smoothing Newton method was proposed by Chen, Qi and
Sunin[11], where the authors exploited a Jacobian consistency property and applied this
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property to an infinite sequence of smoothing approximation functions to get high-order
convergent methods. They dealt with general box constrained variational inequalities.
However, even for NCP they had to assume thhad definition on the whole spaé.

The result of [11] has been further investigated by Chen and Ye [12] still with the
same requirement. On the contrary, here we avoid this requirement by making use of
the mappingH(-) and most importantly, we use only one smoothing approximation
function instead of using an infinite sequence of those functions. In this way we make
our smoothing Newton methods much simpler. It is deserved to point out that the Ja-
cobian consistency property may not hold for the smoothing function (B)iff not
globally Lipschitz continuous, and there is no high-order convergent methods based
on (6). To treat the smoothing parametieas a free variable may restrict the updating
rules for choosingl. However, by doing so we can provide a globally and superlinearly
convergent method for solvingl(z) = 0. The idea of using (6) for solving the NCP
was suggested by Chen, Harker and Pinar in [7]. Here we first study the smooth and
semismoothness propertiies(@) aboutu andx jointly and then use these properties to

get globally and superlinearly convergentresults based on (12). Chen, Harker and Pinar
also pointed out that by choosing smooth functions with finite-support, the resulting
Newton equation has a reduced dimension. This property carries to the generalized
form (6).

There are few globally and superlinearly convergentmethods in the literature dealing
with NCP and BVI with requiring= defined onX only while at each step only solving
alinear system of equations. In [24], by combining a modified extragradientmethod [52]
and a generalized Newton method, Han and Sun gave such an algorithm for solving
pseudomonotone variational inequalities witlheing a nonempty closed convex subset
represented by several twice continuously differentiable inequalities. Very recently,
Kanzow and Qi [34] designed a QP-free constrained Newton-type method for BVI,
with assumptior; = co,i € N, by combining an updatedactive projected gradient
direction and a modified Gauss-Newton direction. The result of Kanzow and Qi is based
on the Fischer-Burmeister function [19], which recently has received a lot of attention
in the fields of NCP and BVI, e.g., see [14-16,20,22,28,29,35,55] and references
therein. However, it is believed that the Newton-type direction is much better than either
the extragradient direction or the projected gradient direction. In this paper, instead of
resorting to some hybrid techniques, at each step we use one minor modified Newton
direction. This modification is crucial to the design of our algorithms.

The organization of this paper is as follows. In the next section we study some
preliminary properties of smoothing functions. In Sect. 3 we provefifdt) is strongly
semismooth with several particularly chog#r). In Sect. 4 we state the algorithm and
prove several propositions related to the algorithm. In Sect. 5 we establish the global
convergence of the algorithm. In Sect. 6 we study under what conditions the level
sets of the merit function/(-) = ||H(-)||% are bounded. We analyze the superlinear
and quadratic convergence properties of the algorithm in Sect. 7 and give preliminary
numerical results in Sect. 8. Final conclusions are given in Sect. 9.

A word about our notation is in order. For a continuously differentiable function
@ : fNM — RM we denote the Jacobiandfatx € "™ by ®’(x), whereas the transposed
Jacobian a¥ ®(x). || - || denotes the Euclidean norm.\¥ is anm x m matrix with
entriesWix, j,k=1,... ,m,and7 andK are index sets such that, IC C {1, ..., m},
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we denote by 7ic the [ 7] x K| sub-matrix ofW consisting of entrie®Vj, j € J,
k € K. If W7 7 is nonsingular, we denote B/W 7 7 the Shur-complement o 7 7
inW,ie,W/Wz7 =Wk — WKJW§}7WJK, wherelC = {1,... m\J.Ifwis
anm vector, we denote by s the sub-vector with componenis= J.

2. Some preliminaries

In this section we give some properties related to smoothing functions. In[10], Chen and
Mangasarian introduced a class of smoothing approximation functions fdOmajx

w € N. Gabriel and Moré [23] extended Chen-Mangasarian’s smoothing approach to
e dirm(w), w € NR. Let p : N — N, be a density function, i.ep(s) > 0 and

f‘”oo p(s)ds= 1, with a bounded absolute mean, that is

K= /Oo [s|p(s)ds < oo. (13)

—00
Recall that for any three numberse R U {—oo}, d € R U {oo} with ¢ < d ande € N,
the median function mid) is defined by

cife<c
mid(c, d, &) = Mcanm(e) = J eifc< e<d .
difd<e

Then the Gabriel-Moré smoothing functigty, ¢, d, w) for ITjc djnm (w) [23] is defined
by

o
¢(u, c,d, w) = f mid(c, d, w — us)p(s)ds  (u, w) € Ry x N. (14)
—00
If ¢ = —oo and/ord = oo, the value ofp takes the limit ofp asc — —oo and/or

d — oo, correspondingly. For example,dfis finite andd = oo, then

o(u,c,o0,w) = lim ¢, c,d,w), (U, w)eRy xN.
d’'—o0

Let
supfp) ={se N : p(s) > 0}.

Lemma 1. [23, Lemma 2.3] For any given > 0, the mapping,cd(:) is continuously

differentiable with
(w=0)/n

Heaw) = [ pos
(w—d)/u

where ¢,.cd(-) is defined by (11). In particulargb;wd(w) € [0, 1]. Furthermore, if
supfp) = N and at least one of andd is finite, therrb;wd(w) € (0,1).

Letqeg : H2 — N be defined by

ed(t, w) = q(u, ¢, d, w), (i, w) € R, (15)

whereq(u, ¢, d, w) is defined by (7). Then we have the following lemma.
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Lemma 2. The mappingycq(-) defined by (15) is Lipschitz continuous &t with
Lipschitz constant. := 2 max1, «}.

Proof. Suppose thati.1, w1) and(u2, wo) are two arbitrary points dfi2. Then, since
the mapping micc, d, -) is non-expansive, we have

[Ocd(i1, w1) — Qed(me2, w2)|

o0

00
= ‘/ mid(c, d, w1 — |u1|S)p(S)dS—/ mid(c, d, w2 — |u2[9)p(s)ds
—o0

—00

o0
< / imid(c, d, wy — |a]) — mid(c, d. wa — [12/9)|p(9)ds

—00

< / (w1 — 111]9) — (w2 — [u2l9)p(9ds

—00

o0 o0
< / w1 — walp(©ds+ / 1 — pallslp(9ds

—0o0 —0Q
= |w1 — w2| + k|p1 — pn2|

< 2max{1, «}|l(p1, w1) — (Uz, wa)ll,

which completes the proof of this lemma.
i

The following examples are three most often used Gabriel-Moré smoothing functions
in the literature.

Example 1. Neural Networks Smoothing Function

The density function is
—S

(1+e 5?2
We havex = log 2, suppp) = % and the smoothing function

p(s) =

o, ¢, d,w)y=d+ pln {1+ e“‘“’”“] —uln {1+ e(d‘“’)/“] , (16)
(,LL, UJ) (S i)t++ x N.

Thenitis easy to see thagq(-) is continuously differentiable at ariyt, w) € R4 x N,
i.e., Assumption 1 is satisfied for this smoothing functior. # 0 andd = oo, then the
smoothing function in (16) reduces to the neural networks smoothing plus function [9]:

d(un,0,00,w) = w+ pIn(L+e "), (i, w) € Ryt x R. 17

The latter has been shown to have superior smoothing properties in global optimization
work of Moré and Wu [39].
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Example 2. Chen-Harker-Kanzow-Smale Smoothing Function
The density function is

p(s) = m

We havex = 1, supfip) = i and the smoothing function
C++/(C—w)2 +4u? n d—/(d—w)2+4u?

2 2 ’
(n,w) € Ryy xR (18)

¢(u,c,d, w) =

Apparently,¢cq(-) is continuously differentiable at any:, w) € %4 x N, i.e., As-
sumption 1 is satisfied for this smoothing functionclt= 0 andd = oo, then the
smoothing function in (18) reduces to the Chen-Harker-Kanzow-Smale smoothing NCP
function:

w2 + 4u? + w

Example 3. Uniform Smoothing Function

The density function is

1if —1<s<3
p(s) = e
0 otherwise

We havex = 3, supfip) = [—3. 3] and for any(u, w) € 944 x 9%, the smoothing
function

¢(M’ C’ d’ w)
w 1 2 1 2 N
—d-0+=-d+0)+—(@C—d°) if lw—c| < u/2, lw—d| < u/2
w 2 21
1
. E[w—u/4+d—(w—d)2/u] if lw—d| <u/2, w—c>pu/2
1 .
§[w+/L/4+C+(w—C)2//L] if lw—cl<u/2, w—d< —pu/2
mid(c, d, w) otherwise
(20)

By direct computation, we can see thaa{y(-) is continuously differentiable at any
(n, w) € Rypyp x N, i.e., Assumption 1 is satisfied for this smoothing function. If
0 < n < d — ¢, then the smoothing functiap(-) has the following simple form:

1
Slw—p/4+d— - d2/ul if jw—d| < /2

¢ ¢, d,w) = %m+um+c+m—@@miﬂw—q<up~ (21)

mid(c, d, w) otherwise
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If c = 0 andd = oo, the function in (20) is the Zang smoothing plus function [59]:
0 ifw<—p/2
$(1.0. 00, w) = i(’” W22 0wl < /2 . GLw) €My xR (22)
w if w>pu/2
Similar functions to (22) can be found in [42] and [46].

Theorem 1. Suppose that Assumption 1 holds for a chosen smoothing function
o, ¢, d, w), (u, w) € Ryy x R. Then

() The mappingH(-) is continuously differentiable at argy= (u, x) € R, x R"
and

| 0
H'(2) = , (23)
(F'(p(2) — HhD) F'(p(2)Cx) + 1 —C(x)

where D(u) = diag{d;j(u), i € N}, C(x) = diag{ci(x), i € N} andd;(u) =
api(u, X)/aui, ¢ (X) = api(u, X)/ax; andc;(x) € [0, 1],i € N.

(i) Suppose that for some € R, x R", F'(p(2)) is a Po-matrix, i.e., its every
principal minor is nonnegative. Thdd’(z) is nonsingular ifsuppp) = R and for
eachi € N, at least one of; andb; is finite.

(iii) If for somez € R, x K", F'(p(2)) is a P-matrix, i.e., its every principal minor
is positive, therH’(z) is nonsingular.

Proof. (i) Since Assumption 1 is satisfied fgi(-), from the definition, we know that
H(-) is continuously differentiable at amy= (u, x) € R’ xR". By direct computation
we have (23). From Lemma 1 and the definitiorppf:), ¢ (X) € [0, 1],i € N.
(ii) Under the assumptions, from Lemmacd(x) € (0,1),i € N. Then, it is easy to
see thatF'(p(2))C(x) + | — C(x) is nonsingular under the assumption tRatp(z))
is a Po-matrix, see, e.g., [4, Theorem 3.3]. It then follows from (23) tHatz) is also
nonsingular.
(iii) The assumption thaE’(p(z)) is a P-matrix and the fact that; (x) € [0, 1],i € N
ensure thaF’(p(2))C(x) + | — C(x) is nonsingular, e.g., see [7, Lemma 2]. $8(2)
is nonsingular.

|

Since the smoothing functions defined by (16), (18) and (20) all satisfy Assumption 1,
from Theorem 1 we have the following result.

Theorem 2. Suppose that the smoothing functipiu, ¢, d, w), (u, w) € R4y x RNis
defined by either (16) or (18) or (20). Then

() The mappingH is continuously differentiable at ary= (u, x) € %7, x K" and
if F'(p(2)) is a P-matrix, thenH’(z) is nonsingular.

(i) Suppose thap(u, c, d, w), (1, w) € R4 x N is defined by either (16) or (18) (in
each cassuppp) = fi) and for eachi € N, at least one o& andb; is finite. Then
H’(2) is nonsingular ifF’(p(2)) is a Po-matrix atz = (u, x) € RN, x R".
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3. Semismoothness properties

In order to design high-order convergent Newton methods we need the concept of
semismoothness. Semismoothness was originally introduced by Mifflin [37] for func-
tionals. Convex functions, smooth functions, and piecewise linear functions are ex-
amples of semismooth functions. The composition of semismooth functions is still
a semismooth function [37]. In [48], Qi and Sun extended the definition of semismooth
functions to® : K™ — R™M2, A locally Lipschitz continuous vector valued function
® : ™M — RM has a generalized Jacobiad(x) as in Clarke [13].® is said to be
semismootlatx € 1M, if
lim  {Vvh}

Vedd(x+th')

h'—h, t,0
exists for anyh € ™. It has been proved in [48] thdt is semismooth at if and only
if all its component functions are. Als@®’(x; h), the directional derivative ob atx in
the directiorh, exists for anyh € %™ if ® is semismooth at.

Lemma 3. [48] Suppose thatd : R™ — R™2 is a locally Lipschitzian function and
semismooth at. Then

(i) foranyV € d®(x+h), h— 0,
Vh — @'(x; h) = o(|h[D;
(i) foranyh — 0,
D (X +h) — d(x) — @'(x; h) = o([[h])).
The following lemma is extracted from Theorem 2.3 of [48].

Lemma 4. Suppose tha® : ™ — R™ is a locally Lipschitzian function. Then the
following two statements are equivalent:

(i) @(-) is semismooth at.
(i) ForanyV € 0 (x + h), h — 0,

Vh — ®'(x; h) = o(||h|).

A stronger notion than semismoothness is strong semismoothiness said to be
strongly semismoott x if ® is semismooth at and for anyV € a®(x + h), h — 0,

Vh— @/(x: h) = O(||h||?).

(Note that in [48] and [45] different names for strong semismoothness are used.) A func-
tion @ is said to be a (strongly) semismooth function if it is (strongly) semismooth
everywhere.

Recall that from Lemma 2 the functiapq(-) defined by (15) is globally Lipschitz
continuous oM. Then, from Lemma 4 and the definition of strong semismoothness,
we can prove thaticq(-) is strongly semismooth at € 92 by verifying that for any
V € dqcd(X + h), h — 0,

Vh — gLq(x; hy = O(||h[|?). (24)

The following three propositions are about the strong semismoothngggesulted
from Examples 1-3, respectively. Their proofs can be found in Appendix A.
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Proposition 1. Suppose that the smoothing functig is the neural networks smooth-
ing function defined by (16). Then the corresponding funaiign %2 — 9 defined by
(15) is a strongly semismooth function.

Proposition 2. Suppose that the smoothing functip@) is the Chen-Harker-Kanzow-
Smale smoothing function defined by (18). Then the corresponding fuggtiofZ — %
defined by (15) is a strongly semismooth function.

Proposition 3. Suppose that the smoothing functigt) is the uniform smoothing
function defined by (20). Then the corresponding functign: %2 — % defined by
(15) is a strongly semismooth function.

Theorem 3. Suppose that the smoothing functipiu, ¢, d, w), (u, w) € R4y x Ris
defined by either (16) or (18) or (20). Then

(i) H is semismooth at arge %2", and
(ii) if for some pointz € 92", F’ is Lipschitz continuous arounp(z) € %", thenH is
strongly semismooth at

Proof. (i) Sincepis strongly semismooth atif and only if its component functiong;,
i € N are, and the composition of strongly semismooth functions is a strongly semis-
mooth function [21, Theorem 19], from Propositions 1-3, it follows ih&t a strongly
semismooth function. Hence, by making use of the proposition that the composition
of two semismooth functions is semismooth [37] that for eaech 1, 2,...,n, Gj is
a semismooth function. Heno®, and soH, is a semismooth function.
(ii) Itis noted thatF" is Lipschitz continuous arouna(z) € R" implies thatF is strongly
semismooth ap(z). Hence, by [21, Theorem 19F(p(-)) is strongly semismooth at
becausep is strongly semismooth attoo. ThenG, and soH, is strongly semismooth
atz.

O

4. Smoothing Newton methods

Throughoutthe rest of this paper, unless otherwise stated, we assume that the smoothing
functiong(-) satisfies Assumption 1.

Choosell € 97, andy € (0, 1) such thaty||0]| < 1. Letz:= (0,0) € %" x R".

Define the merit functiony : 2" — 9%, by

¥(2) = |H@)?
and defings : 2" — %, by
B(2) ==y min{1, ¥(2)}.

Let
Qi={z=(u,x) € X" x K" u > B(2)al.

Then, because for arye %2, B(z) < y < 1, it follows that for anyx € R",

(@, x) € Q.
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Proposition 4. The following relations hold:
H(z) =0 B(z) = 0 < H() = B(2)Z
Proof. It follows from the definitions oH(-) andg(-) that
H2z =0<= (2 =0 and B2 =0=— H®2 = B2z
Then we only need to prove
H(2) = p(22 = B(2) = 0.
However, this is an easy task because fida) = 5(2)z we have
u=pu and G(2 =0.
Hence, from the definitions af(-) andS(-), and the fact thap||t| < 1, we get
¥(2) = ull> + 1G@* = |uli®> = B@?ul? < y?u)? < 1.
Therefore,
B2 = r¥(2) = BTl (25)
If B(z) # 0O, it follows from (25) and the fagd(z) < y that
1=yB@llal® < y21ul?,

which contradicts the fact that|G]| < 1. This contradiction completes our proof.
|

Algorithm 1.

Step 0. Choose constarits (0, 1) ando € (0,1/2). Letu® := @, x° € %" be an
arbitrary point andk := 0.

Step 1. IfH(Z%) = 0 then stop. Otherwise, Ik := B(ZY).

Step2. Computez< := (AUK, AX¥) € " x K" by

H(Z) + H(Z)AZ = Bz (26)
Step 3. Lelk be the smallest nonnegative integsatisfying
W(E +8'AZY) < [1-20(L— y |8 T (). (27)

DefinezZkt1 .= ZK 4+ slkAZK,
Step4. Replackbyk+ 1 and go to Step 1.

Remark 1.(i) Since we have assumed that Assumption 1 is satisfied for the smoothing
function$ used in the algorithmH(-) is continuously differentiable at argf €
R, x RN

(i) From Theorem 1, foe € R, x %" if F'(p(Z¥)) is a P-matrix, thenH’(Z") is
nonsingular, and if sufp) = R and for each € N, at least one of andb; is
finite, then the condition tha’(p(Z*)) is a Po-matrix is sufficient to guarantee
thatH’(Z) is nonsingular.
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(i) We can solve equation (26) in the following way: Lauk = —uk + Ba. Solve

[F'(p(Z)CH) + | — Cx)]axk = —~G(Z) — [(F'(p(Z) — hDuX)]au
(28)

to getAxK. ThenAZ¢ = (AuK, AXK). Equation (28) is am-dimensional linear
system. If we choose the uniform smoothing functifn) defined by (20), then
solving (26) can be further simplified because in this case some or all of the
diagonal entries of the diagonal matfixx¥) are zeros. For example, for NCP, if
wk < —uk/2, then from Lemma 1gi (x¥) = 0,i e N, and soC(x¥) = 0. Hence,
in this case

AXK = —G(Z) — [(F'(p(Z) — HDU"] AUk,

Solving a form reduced linear equation is very favourable. However, this is not
without a price because by choosing the smoothing funetiondefined by (20)

we need stronger conditions to ensure the nonsingularky/@¥) than by choosing

the smoothing functiog(-) defined by either (16) or (18).

(iv) From the design of our algorithm we can see that the paremetay not change
until ¥(z) < 1. To make the parameter change at each step we can let the
steplengths’s < 1 in Step 3 for allk such thaty(z¢) > 1 though this is not
recommended in practiacl computation.

Lemma 5. Suppose that Assumption 1 holds. For @any= (0, X) € %7, x %" and
H’(2) is nonsingular, then there exist a closed neighbourh&@d) of Z and a positive
numbera € (0, 1] such that for anyz = (u, x) € N'(2) and alla € [0, a] we have
ue R, H'(2) isinvertible and

Y(Z+aAz) < [1-20(1—y[alDaly(2). (29)

Proof. Since H'(2) is invertible andd € %', , there exists a closed neighbourhood
N (2) of z such that for ang = (u, x) € N (2) we haveu € %", and thatH'(z) is
invertible. For anyz € N'(2), let Az = (Au, AX) € W™ x %" be the unique solution of
the following equation:

H@2 + H'(2Az= B2z (30)
and for anyx € [0, 1], define
0z(a) = G(z+ aAz) — G(2) —aG' () Az
From (30), for anyz € N (2),
AU = —U+ B(2)u.
Then for alle € [0, 1] and allz € N (2),
U+aAu=1—-aou+ap(@ie R, . (31)

It follows from the Mean Value Theorem that

1
0z(a) = a/ [G'(z+ 6aAZ) — G (2)]Azd.
0
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SinceG/(-) is uniformly continuous oW'(z) andAz — Azasz — z,forallz € N'(2),

E%Hgﬂwnﬂx=0.

Then, from (31), (30) and the fact thgtz) < yy(2)Y/2, for all & € [0, 1] and all
z e N'(2), we have
lu+ aAul?

= [(1—wu+B2)u|?

= (1—-?|ul?+2(1 - w)ap@u' U + o?B(2)?| T2

< (1= a)?(ull? + 2(1 — @)eB@|ull|T] + ?B(2)?|T]?

< (1= a)?||ull? + 208 |lull Tl + O(?)

< (1= a)?||ull? + 2099 (22| H@) || |Gl| + O(e?)

= (1 - ?|Jull? + 2y |Gl ¥(2) + Oe?) (32)

and

1G(z+ aAZ)|?
=G(2) + oG (D AZ + gz()]|?
=[1-a0)G(@ + g(@|?
=(1-a)?IG@|?+2(1 - )G " gz(e) + [|gz() |12
= (1-a)?IG®@|?+ o(w). (33)

It then follows from (32) and (33) that for all € [0, 1] and allz € N'(Z), we have

W(Z+ aAz)

= [Hz+ aA2)|?

= [lu+ «Au|? + |Gz + aA2)|?

< (1= a)?(|u)l® + 2oy 0] ¥(2) + (1~ 0)?|G@) |1 + o(e) + O(&?)

= (1 —®¥(@) + 2y |UllY(2) + o)

= (1 - 20)Y(2) + 2y |U[1¥(2) + O(e)

=[1-2(1—yllalDaly(2) + o(). (34)
Then from inequality (34) we can find a positive numbege (0, 1] such that for all

a € [0, @] and allz € M (2), (29) holds.
o

We can get the following result directly from Lemma 5.
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Proposition 5. Suppose that Assumption 1 holds. For &ny 0, if X € %7 x %"
and H'(ZX) is nonsingular, then Algorithm 1 is well definedkai iteration andz“*? e
N x RN

Proposition 6. Suppose that Assumption 1 holds. For each fiked0, if uk € ",
ZX € Q andH’(Z") is nonsingular, then for any < [0, 1] such that

Y(Z + aAZ) < [1 - 20(1 — y||U])al(Z), (35)
it holds thatz® + o AZK € Q.

Proof. We prove this proposition by considering the following two cases:

(i) If ¥(Z) > 1. Then,gx = y. It therefore follows fromz € Q and (z) =
y min{1, ¥(2)} < y for anyz € %?" that for alle € [0, 1], we have

uk + aAuk — B(Z + aAZ)E
> (1— a)uk + afxl — yu
> (1 - a)pku+ aft — yu
=1 —-ayl+aylu—yu
=0. (36)

(ii) If ¥(Z%) < 1. Then, for any € [0, 1] satisfying (35), we have
Y +aAZ) < [1-20(1 - ylalDely (@) < 1. (37)
So, for anyw € [0, 1] satisfying (35),
B(EZ + aAZS) = yyp(Z¢ + aAZ).

Hence, again becaugk € €, by using the first inequality in (37), for any € [0, 1]
satisfying (35) we have

uK 4+ AUk — B(Z¢ + aAZ)T

= (1 — )X + afkl — pY (2 + «AZ)D

> (1 — )il + afll — y[1— 20(1 — y [[GIDe]y(Z4)a

= Bkl — y[1 — 20(1 — y|[UlNe]y (20

= y¥(Z90 — y[1 - 20(1 — y[|TlDaly(Z)0

= [2y0(1 — y[[Ul)Jay(Z)T

> 0. (38)
Thus, by combining (36) and (38), we have proved that fox &l [0, 1] satisfying (35),

X+ aneQ.

This completes our proof.
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By combining Propositions 5 and 6, we have

Proposition 7. Suppose that Assumption 1 holds. For each fixed 0, if uk e "o,
ZX € Q andH/(Z) is invertible, then

en, and ZFleq.

Proposition 8. Suppose that Assumption 1 holds and that for ekery 0 with uk ¢
%1, andZ€ € Q we have thaH (zk) is invertible. Then an infinite sequent#} is
generated by Algorithm LXK e and{z } € Q.

Proof. First, because:O (@, xo) € ©, we have from Proposition 7 that is well
defined,u! e andz € Q. Then, by repeatedly resorting to Proposition 7 we can
prove that an |nf|n|te sequen¢z} is generated,lk e R, andz* € Q.

O

5. Global convergence

In order to discuss the global convergence of Algorithm 1 we need the following
assumption.

Assumption 2. () For everyk > 0, if uk € %" | andZ € Q, thenH’(Z") is nonsin-
gular; and

(i) for any accumulation poing* = (u*, x*) of {ZX} if u* € ", andz* € @, then
H’(z*) is nonsingular.

Theorem 4. Suppose that Assumptions 1 and 2 are satisfied. Then an infinite sequence
{Z¥} is generated by Algorithm 1 and each accumulation ppinit{z¥} is a solution of
H(@) =

Proof. It follows from Proposition 8 and Assumption 2 that an infinite sequértes
generated such th&z} € Q. From the design of Algorithm 1y (Z<t1) < y(Z¥) for
all k > 0. Hence the two sequenc{aﬁ(zk)} and{ﬂ(zk)} are monotonically decreasmg
Slncel//(zk) B(Z) = 0 (k > 0), there existyy, B > 0 such thaty(z) — v and
B(Z) — B ask — oco. If ¥ = 0 and{zX} has an accumulation poiif then from the
continuity ofy(-) andﬁ( ) we obtain/(z) = 0 and,B(z) 0. Then we obtain the desired
result. Suppose that > 0 andz = (i, X) € ®" x R" is an accumulation point qek).
By taking a subsequence if necessary, we may assum{a‘fmabnverges ta@. Itis easy
to see thaty = y(2), B(2) = B andz € Q. Thus, fromB(2) = y min{1, (2)} > 0
andz € Q, we see thafl € %} . Then, from (ii) of Assumption 2H'(2) exists and
is invertible. Hence, from Lemma 5 there exist a closed neighbourhd@ of Zz and

a positive numbed < (0, 1] such that for any = (u, x) € N'(2) and alla € [0, @] we
haveu € i1 |, H'(2) is invertible and (29) holds. Therefore, for a nonnegative integer
such thas' € (0, @], we have

Y@ +6'a7) < [1- 20— yaDs' ]y (@)
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for all sufficiently largek. Then, for every sufficiently largk, we see thatX < | and
hences'’k > §'. Then

YY) < [1- 20(1— pl|a])s"TY(Z) < [1 - 20(1 — plla])s' Ty ()

for all sufficiently largek. This contradicts the fact that the sequehgeX)} converges
to v > 0. So, we complete our proof.
O

Theorem 5. Suppose that the smoothing functigt) is defined by either (16) or
(18) or (20). Then an infinite sequen¢&} is generated by Algorithm 1 and each
accumulation point of {z} is a solution ofH(z) = 0, under one of the following two
conditions,

(i) foreachz = (u,x) € Qwithu e E}ti+, F'(p(2)) is a P-matrix;
(i) if ¢(-) is defined by either (16) or (18), for eacke N, at least one o& andby; is
finite, and for eaclz = (u, x) € Q withu € R} |, F'(p(2)) is a Po-matrix.

Proof. By using Theorems 2 and 4 directly, we get the results of this theorem.
O

6. Bounded level sets

In Sect. 5 we proved, under the assumptions of Theorem 4, that any accumulation point
of {Z} generated by Algorithm 1, if it exists, is a solution ldfz) = 0. An important
guestion remained unanswered is whether such an accumulation point exists or not. In
this section we answer this question by investigating under what conditions the level
sets ofy(z) = ||H(2)||? are bounded. For this, let

L&) = {ze %" y(@ < v(@)}.
Theorem 6. If X is bounded, theih (2°) is bounded.

Proof. SinceX is bounded, it follows from (8) thdtp(z)|| is bounded for any € H?".
For the sake of contradiction, suppose that there exists a seq(#nee (uk, x¥)
MM x M} such thatz € L(Z% and|Z¢| — oo. Apparently, sincez € L(Z%),
Ukl < IHE)|| < [HE)]. So, x| — oo. Hence, by using the fact thiap(uk, xK)||
is bounded, we have

|Gk, x| = || F(p, x) + x* = pu¥, x| — oo,

which contradicts that® € L(z°) becausé H(Z)|| > |G(Z9)].
O

Theorem 7. Suppose thaF is a uniformP-function onX, i.e., there exists a positive
number > 0 such that

max(y = ¥?)(F(y) - Fiy) z vy =" v yhyPe X (39)

ThenL (2°) is bounded.
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Proof. For the sake of contradiction, suppose that there exists a seq{Ehce
(uk, xK) € ;" x %"} such that® € L(2°) and||Z¢| — oo. Since, apparentlyjuX|| is
bounded||xX|| — oo. Itis easy to prove that

Imidai, bi, X)| — 0o = |xK| = oo and |xk — mid(a, bi, x| - 0, ieN
(40)

From Lemma 2 and the definition @f-), there exists a constaht > 0 such that

| pi (U¥, x¥) — mid(ai, bi. xf)| < L'|uf

, ieN (41)

Define the index sed by J := {i| {pi(uk, x¥)} is unboundedi € N}. Then it follows

thatJ = ¢ because otherwisgG(Z4) || = ||F(p(Z¥)) + XX — p(ZX)|| — oo. Let X =
(@K, XKy € R x R" be defined by
G Juritigd
" lo ified
and
k . .
Cf J
g [ ITED o
0 ified
Then
k . .
—k Pi (z% if i ¢ J .
- = N.
Pi(z) {mid(a;,bi,O) ficy’ '€

Hence{|| p(zk)||} is bounded. Therefore, from (39), we have

Y (P = pi@9)? = vl pZ) — pE)|?
ied
< max(p (Z) — pi @) (Fi(p) — Fi(p(Z)))
< max|p, () — pi@)IIFi (p(Z) — Fi(p9)|

= max|p (Z) — pi@|IFi (p(Z) — Fi(p(Z9)|

< ;(pi (Z) — pi (zk)>2rinea3x|ﬁ(p(zk)> — Fi(p@9)].

Then max; |Fi(p(Z¥) — F(pZX)] — oo ask — oo. Since {|[F(p(Z) |} is
bounded, for eachkthere exists at least omge J such that

|Fi (pZ)| — oc.

SinceJ has only a finite number of elements, by taking a subsequence if necessary, we
may assume that there existsian J such that

|Fi (p(Z)]| — 0.
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Then, in view of (41), the definition af and the boundedness{gii¥||}, we have proved
that there exists at least one J such that
|Fi(p@)|. |pi(2

Hence, by (40), (41) and th@tuX||} is bounded, for suche J, [xK— pi(2)| is bounded.
It then follows that for such € J, {|G;(Z¥)|} is unbounded. This is a contradiction
becausél H(ZX)| > ||G(Z¥)|. This contradiction showk (z°) is bounded.

mid(ai, bi, x)| — oc.

9 ’

O

There are several papers in the literature dealing with the bounded level sets issue
for different merit functions by assuming thgtis a uniform P-function on%", i.e.,
(39) holds for ally!, y* € %", see, e.g., [16,28,14,11,32,55]. Here we only require
(39) to hold onX.

7. Superlinear and quadratic convergence

Theorem 8. Suppose that Assumptions 1 and 2 are satisfiedz&iglan accumulation
point of the infinite sequende®} generated by Algorithm 1. Suppose thhis semi-
smooth atz* and that allV € dH(z*) are nonsingular. Then the whole sequemz"e
converges ta*,

|24t =z = 012~ Z°I) (42)
and
ukt = o(uf), ieN. (43)
Furthermore, ifH is strongly semismooth at, then
|21 - 2| = o(1 ¢ - 1) (44)
and
Ut = o(uk)?, i eN. (45)

Proof. First, from Theorem 4 that* is a solution ofH(z) = 0. Then, from [48,
Proposition 3.1], for al¢X sufficiently close taz*,

[H' @Y = o).

Hence, under the assumption tlirats semismooth (strongly semismooth, respectively)
atz*, from Lemma 3, fo* sufficiently close ta*, we have

sz AR 7 [
= |2+ H@) - H@ + sz] - Z7||
= O(IH(Z) — H(Z") — H'(Z)(Z* — )|l + Bellull)
=0(|Z— Z'|) + O((Z)) (= O(lIZ* — z*|%) + O(y(Z"))).  (46)
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Then, becauskl is semismooth at*, H is locally Lipschitz continuous neat, for all
Z¥ close toz*,
2
W) = [H@|
Therefore, from (46) and (47), H is semismooth (strongly semismooth, respectively)
atz*, for all Z¢ sufficiently close ta*,

12+ AZ =z = o(IZ — z*l) (= O(IZ - Z'1I?)). (48)

= O(|IZ* — z*|1?). (47)

By following the proof of Theorem 3.1 of [45], for a#¢ sufficiently close taz*, we
have

12 — 2| = O(IIH(Z) — HZ" ). (49)

Hence, ifH is semismooth (strongly semismooth, respectivelyj*afor all Z¢ suffi-
ciently close taz*, we have

Y2+ AZ)

= [HZ + a9

= O(IZX + AZ* — z*|?)

=o(|Z -3 (= O(lIZ—z*|*)

= o([H@) — H@)?) (= O(IIHZ) — H@z)II*))

= o)) (= O0(v¥(Z)?)). (50)
Therefore, for al* sufficiently close ta* we have

Zk+l — Zk+ Azk,

which, together with (48), proves (42), andHf is strongly semismooth &, proves
(44).

Next, from the definition offx and the fact thatk — z* ask — oo, for all k
sufficiently large,

Bk = (@) = yIIHE@9|1%.
Also, because for akt sufficiently largeZ<t1 = ZK + AZK, we have for alk sufficiently
large that
Ut = Uk AUk = B
Hence, for alk sufficiently large,
Ut =y | HEZ9 )%,
which, together with (42), (47) and (49), gives

k+1 Ky 112 k 112

W . H(z . H(Z*) — H(Z .
im Uy LRI IHE ZREIE
k—oo U k—oo ||HEZD|| k—oo ||[H(Z1) — H(zY)||

This proves (43). IH is strongly semismooth at, then from the above argument we
can easily get (45). So, we complete our proof.
o
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Next, we study under what conditions all the matrives dH(z*) are nonsingular
at a solution poing* = (u*, x*) € %" x R" of H(z) = 0. Apparentlyu* = 0 andx* is
a solution ofE(x) = 0, whereE is defined in (5). For convenience of handling notation
we denote
IZ:={ila <x <b & FIIx(x")) =0, i € N},

J = {ilx =a & FTx(x") =0,ieNJulilx =b & FIIx(x*)) =0, i e N}
and
K= {i1x <a&FRIx(x*) > 0,ie NJu{i|x* > b & F(ITx(x*)) <0, i € N}.

Then
ZTUJUK =N.

By rearrangement we assume tRaE(I1x (x*)) can be rewritten as
VEIx(x*)zz VFIMx(X)z7 VFIIx(X)z1K
VEIIx (X)) = | VRIIx(X*) 7z VFEIIx(X*) 77 VFIIX(X") 7K
VEIx(X* )z VFIIx(X Ny VEIIx(X)kk

BVI is said to beR-regular atx* if VF(I1x(x*))zz is nonsingular and its Shur-
complement in the matrix

VEIx(x*)zz VFEIIx(X)zg
VEIx(x*)gz VFEIIx (X)) g7

is a P-matrix, see [50].

Proposition 9. Suppose that* = (u*, x*) € X" x R"is a solution oH(z) = 0. If BVI
is R-regular atx*, then allV € dH(z*) are nonsingular.

Proof. Itis easy to see that for any € dH(z*) there exists &/ = (W, Wx) € aG(z*)
with Wy, Wy € i7" such that

I 0
V=g )
Hence, proving/ is nonsingular is equivalent to proviiy is nonsingular. Recall that

G(u,x) = F(p(u, x)) + x — p(u, x). Then, for anyW = (W, Wx) € dG(z*) with
Wy, Wy € RN there exists & = (Uy, Uy) € 9p(z*) such that

Wy = F'(p(Z*))Ux + | — Uy.
By the definition ofp, we have
Ip2(Z*) x 9p2(Z) x -+ x Ipn(Z") = IP(Z").

Then for each € N, theith row ofU, U; € ap;(Z*). Apparently, from the definition of
pand Lemma 1,
x = diag{(ux)i, 1 € N},
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where
(upi =1 ifiel
(upi e[0,1] ifieJ .
(uy)i =0 ifiek

Hence, for eachy and each € J there exists,; € [0, 1] such that

VFE(p(z*))i ifieZ
(W), = { MiVF(P@))i + 1 —re ified |
& ifi ek

whereg is theith unit row vector ofi",i € N. Then, by using standard analysis (see,
e.g., [16, Proposition 3.2]), we can prove thdf, and soW, is nonsingular under
the assumption oR-regularity (note thap(z*) = IIx(x*)). Then, any € dH(z*) is
nonsingular. So, we complete our proof.

O

The following result follows from Theorem 8 and Proposition 9 directly.

Theorem 9. Suppose that Assumptions 1 and 2 are satisfied Zng- (u*, x*) €
M x RN is an accumulation point of the infinite sequeiz’d generated by Algorithm 1.
Suppose that is semismooth a* and that BVI isR-regular atx*. Then (42) and (43)
in Theorem 8 hold. Furthermore, H is strongly semismooth at, then (44) and (45)
in Theorem 8 hold.

By combining Theorems 3, 5 and 9 we can directly obtain the following result.

Theorem 10. Suppose that the smoothing functipq) is defined by either (16) or
(18) or (20). Then an infinite sequen¢®} is generated by Algorithm 1 and each
accumulation poing* = (u*, x*) € {" x R" of {ZX} is a solution ofH(z) = 0, under
one of the following two conditions,

(i) foreachz = (u,x) € Qwithu e E}ti+, F’(p(2)) is a P-matrix;
(i) if ¢(-) is defined by either (16) or (18), for eatke N, at least one o& andb; is
finite, and for eaclz = (u, x) € Qwithu € R}, F'(p(2)) is a Po-matrix.

Further, if the R-regularity holds atx*, then the whole sequen¢z} converges ta*,
and (42) and (43) in Theorem 8 hold. MoreoverHf is Lipschitz continuous near
[Tx(x*), then (44) and (45) in Theorem 8 hold.

Corollary 1. Suppose that the smoothing functigi) is defined by either (16) or (18)
or (20). If F is a uniformP-function onX, then

() a bounded infinite sequen¢g®} is generated by Algorithm 1 and the whole se-
quencgz} converges to the unique solutigh= (u*, x*) € R"xR"of H(z) = O;
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(i) (42)and (43) in Theorem 8 hold, and
(ii) if F’is Lipschitz continuous nedt x (x*), then (44) and (45) in Theorem 8 hold.

Proof. It follows from (39) in Theorem 7 that for any € X and allh € %",

maxh; (F'(y)h)i > vllh|}?,

ieN
which, according to [38, Lemma 3.6], implies tHal(y) is a P-matrix. Then, for any
z € W2, becausep(z) € X, F/(p(2)) is a P-matrix. Therefore, from Theorem 10,
an infinite sequencgX} is generated by Algorithm 1 and each accumulation point
of {Z} is a solution ofH(z) = 0. Also, sinceF is a uniformP-function on X, from
Theorem 7L(z°), and sz}, is bounded. Hence, there exists at least one accumulation
pointz* = (u*, x*) € R" x N of {zX} such thatH(z*) = 0. SinceF’ (IMx (x*)), and so
VF(ITx (x*)), is aP-matrix, R-regularity holds ax*. Hence, we obtain from Theorem 10
that the bounded sequen@} converges ta* and (i) and (iii) hold. Finally, sincé is
a uniformP-function, BVI has a unique solutioyi* € X (see, e.g., [25, Theorem 3.9]).
Hence, the equatioB(x) = 0 has a unique solutiaxt = y* — F(y*), and soH(z) =0
has a unique solutiort = (0, x*). So, we complete our proof.

|

8. Preliminary numerical results

In this section we present some numerical experiments for the nonmonotone line search
version of Algorithm 1 Step 3s replaced by

Step 3 Letlk be the smallest nonnegative integsatisfying
X+8AeQ (51)
and
Y@+ 8 AZ) < W - 20(1 - y a8 (@), (52)
where)V is any value satisfying

w(zk) <W< j_OnIaXMkI/,(Zkfj)

andMX are nonnegative integers bounded above fdk alich that the occur-
rence of nonnegative indices does not happen. Defike:= ZX 4 §'kAZ¥.

Remark 2.(i) We choose a nonmonotone line search here is because in most cases it
increases the stability of algorithms.

(i) The requirement (51) is for guaranteeing the global convergence of the algorithm.
This requirementautomatically holds for our algorithm with a monotone line search,
see Proposition 7. The consistency between (51) and (52) can be seen clearly from
Propositions 5 and 6.
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In the implementation we choo3#' as follows:
(1) Setw = y/(2°) at the beginning of the algorithm.
(2) Keep the value ofV fixed as long as

k : k—j
Y(Z) < ,-:5?1'?._,51/’(2 ). (53)

(3) If (53) is not satisfied kth iteration, seWV = y(Z¥).

For a detailed description of the above nonmonotone line search technique and its
motivation, see [14].

The above algorithm was implemented in Matlab and run on a DEC Alpha Server
8200. Throughout the computational experiments, the parameters used in the algorithm
weres = 0.5,0 = 0.5x1074,0 = (0.1,0.1, ..., 0.1),andy = 0.2xmin{1, 1/|a||}. We
usedy(z) < 1012 as the stopping rule. The numerical results are summarized in Ta-
bles 1-3 for different smoothing functions and different tested problems. In Tables 1-3,
Dim denotes the number of the variables in the problstart. points denote the start-
ing points,lter denotes the number of iterations, which is also equal to the number of
Jacobian evaluations for the functién NF denotes the number of function evaluations
for the functionF, andFF denotes the value af at the final iterate. In the following,
we give a brief description of the tested problems, wi@essthe vector of all zeros and
e is the vector of all ones. The source reported for the problem is not necessarily the
original one.

Problem 1. This is the Kojima-Shindo problem, see [4E(y) is not a Po-function.

This problem has two solutiong? = (+/6/2, 0, 0, 0.5) andy? = (1, 0, 3, 0).

Starting points(a) 0, (b)—e, (c) e — F(e).

Problem 2. This is a linear complementarity problem. See the first example of Jiang
and Qi [28].

Starting points(a)0, (b) e.

Problem 3.This is a linear complementarity problem. See the second example of Jiang
and Qi [28].

Starting points(a)0, (b) e.

Problem 4.Thisis the fourth example of Watson [56]. This problem represents &
conditions for a convex programming problem involving exponentials. The resiting
is monotone on the positive orthant but not eWgron R".

Starting points(a)0, (b) e.

Problem 5.This is a modification of the Mathiesen example of a Walrasian equilibrium
model as suggested in [30f. is not defined everywhere and does not belong to any
known class of functions.

Starting points(a) 0 — F(0), (b)e — F(e), (c) e

Problem 6. This is the Nash-Cournot production problem [4R]is not twice continu-
ously differentiableF is a P-function on the strictly positive orthant.

Starting points(a) 0, (b) e, (c) 1Ce.
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Problem 7. This is a Mathiesen equilibrium problem [36,41], in whiEhis not de-
fined everywhere. Two set of constants were usedby, b3) = (0.75, 1, 0.5) and

(o, bp, bg) = (0.9, 5, 3). We use Problem 7a and Problem 7b to represent this problem
with these two set of constants, respectively.

Starting points(a) e, (b) e/2,

Problem 8. This is the Kojima-Josephy problem, see [1B{x) is not aPy-function.

The problem has a unique solution which is Rstegular.

Starting points(a) —e, (b) e — F(e), (c) 0.

Problem 9. This is a problem arising from a spatial equilibrium model, see [Bl a
P-function and the unique solution R-regular.

Starting points(a) 0, (b) e.

Problem 10.This is a traffic equilibrium problem with elastic demand, see [41].
Starting points(a) All the components are 0 exceqt, X2, X3, X10, X11, X20, X21, X22,

X29, X30, X40, X45 which are 1X3g, X42, X43, X46 Which are 7 X41, X47, X48, X550 which

are 6, andkg4 andxgg which are 10, (bp.

Problem 11.See Problem 9 of [57]. This is a linear complementarity problem for which
Lemke’s algorithm is known to run in exponential time.

Starting points(a) 0.

Problem 12.This is the third problem of Watson [56], which is a linear complementarity
problem withF(x) = Mx 4 g. M is not even semimonotone and none of the standard
algebraic techniques can solve it. loggbe the vector with-1 in the 8th coordinate and
zeros elsewhere. The continuation method of [56] fails on this problem.

Starting points(a) 0.

Problem 13.See [1]. This is a linear variational inequality problem with lower and
upper bounds. Hera= (0, ...,0), b= (1, ..., 1).

Starting points(a) e, (b) —2e.

Problem 14.This problem is transformed from Problem 11 by adding lower and upper
bounds to the constraint set. The resulting problem is a linear variational inequality
problem with box constraints. Here we choaese (—10, ..., —10), b= (0, ..., 0).

Starting points(a) 0, (b) e.

Problem 15.This problem is transformed from Problem 1 by adding lower and upper
bounds to the constraint set. The resulting problem is a nonlinear variational inequality
problem with box constraints. Here we choaese (—10, ..., —10), b= (10, ..., 10).
Starting points(a) 0, (b) e, (c) 0 — F(0).

Problem 16.This is a nonlinear variational inequality problem with box constraints [52].
The mappind- is a polynomial operator. Heee= (0, ..., 0),b= (1, ..., 1).

Starting points(a) 0, (b) e.

Problem 17.This problem is transformed from a linear complementarity problem in
[17] by adding lower and upper bounds to the constraint set. The resulting problem
is a linear variational inequality problem with box constraints. Here we chaose
(-10, ..., -10,b = (-5, ..., =5).

Starting points(a) e.
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Table 1.Numerical results for the algorithm with the neural networks smoothing function (16)

[ Problem || Dim. [ Start. point] Iter [ NF [ FF |
Problem1 || 4 a 5 8 4.7x10°20
4 b 5 10 | 1.3x1071°
4 c 4 6 2.7x10-20
Problem 2 || 10,000 | a 5 6 1.1x10°21
10,000 | b 5 6 1.1x10721
Problem 3 || 10,000 | a 5 6 1.1x10°21
10,000 | b 5 6 1.1x10721
Problem4 || 5 a 19 20 | 1.4x10°23
5 b 15 16 | 1.9x10°14
Problem5 || 4 a 4 1.8x10°13
4 b 5 6 3.4x10°14
4 c 7 8 2.7x10°20
Problem 6 || 10 a 9 10 | 1.4x10°14
10 b 7 8 1.3x10-20
10 c 7 8 1.6x10°21
Problem 7a|| 4 a 7 9 9.2x10-20
4 b 7 9 1.8x10°15
Problem 7b || 4 a fail
4 b 7 8 1.9x10°16
Problem 8 || 4 a 6 9 1.1x1025
4 b 5 7 9.0x10713
4 c > 50
Problem 9 || 42 a 11 22 | 6.7x10°18
42 b 10 14 | 9.0x10°19
Problem 10| 50 a 12 26 | 8.3x10718
50 b 16 42 | 1.4x10714
Problem 11|| 1000 | a 10 11 | 1.7x10°20
Problem 12|| 10 a 6 10 | 4.2x10°%4
Problem 13| 10,000 | a 6 7 1.4x10°21
10,000 | b 5 6 1.1x10721
Problem 14|| 1000 | a 6 7 1.1x10721
1000 | b 5 6 1.1x10721
Problem 15| 4 a fail
4 b 4 5 1.8x10°13
4 c 6 7 3.9x10°13
Problem 16| 10,000 | a 6 8 1.1x10°21
10,000 | b 7 8 2.2x10723
Problem 17| 400 a 5 6 1.1x10°21

The numerical results reported in Tables 1-3 show that the algorithms proposed in
this paper for the three chosen smoothing functions work quite well for both nonlinear
complementarity problems and box constrained variational inequalities. It is observed
during our numerical experiment that the algorithms based on the neural networks
smoothing function (16) and the Chen-Harker-Kanzow-Smale smoothing function (18),
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Table 2. Numerical results for the algorithm with the Chen-Harker-Kanzow-Smale smoothing function (18)

13 15 | 3.6x10°18
6 10 | 9.9x10°20
11 12 | 5.5x10°17

Problem 11|| 1000
Problem 12| 10
Problem 13|| 10,000

[ Problem || Dim. [ Start. point] Iter [ NF [ FF |
Problem1 || 4 a 6 9 5.6x10718
4 b 6 11 | 3.3x10°23
4 c 5 7 | 3.9x10723
Problem 2 || 10,000 | a 5 6 1.1x10°21
10,000 | b 5 6 1.1x10721
Problem 3 || 10,000 | a 5 6 1.1x10°21
10,000 | b 5 6 1.1x10721
Problem4 || 5 a 19 20 | 7.6x10°26
5 b 16 17 | 2.8x10°%4
Problem5 || 4 a 5 7 8.8x10°15
4 b 6 7 1.8x10722
4 c 8 9 2.7x10°20
Problem 6 || 10 a 10 11 | 5.0x10°15
10 b 8 9 1.4x 1022
10 c 7 1.6x10°13
Problem 7a|| 4 a 8 11 | 3.4x10°23
4 b 7 10 | 4.2x10713
Problem 7b|| 4 a 5 7 2.7x10721
4 b 4 6 1.1x10°15
Problem 8 || 4 a 6 9 4.2x10°16
4 b 6 8 3.2x10°19
4 c > 50
Problem 9 || 42 a 15 28 | 8.2x10°26
42 b 14 24 | 8.3x10°20
Problem 10|| 50 a 14 28 | 1.2x10°19
50 b 17 41 | 55x10°15
a
a
a
b
a
b
a
b
C
a
b
a

10,000 13 14 | 9.7x10°26
Problem 14 || 1000 11 13 | 7.1x1071°
1000 9 11 | 6.6x10°20
Problem 15| 4 6 33 | 8.4x10°13
4 4 5 5.0x10713
4 6 7 1.4x10-16
Problem 16 || 10,000 6 8 4.7x10721
10,000 7 9 4.8x10°17
Problem 17 || 400 5 6 1.1x10721

in particular the latter one, have stronger numerical stability. However, when using the
uniform smoothing function (20) we only solve a form reduced linear equation per
iteration. A possible way is to use the neural networks smoothing function (16) or the
Chen-Harker-Kanzow-Smale smoothing function (18) at the first several iterations and
then to use the uniform smoothing function (20). We leave this as a future research topic.
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Table 3. Numerical results for the algorithm with the uniform smoothing function (20)

[ Problem || Dim. [ Start. point] Iter [ NF [ FF |
Problem 1 4 a > 50
4 b 6 10 | 9.8x10°20
4 c 4 6 2.7x10-20
Problem 2 || 10,000 | a 5 6 1.1x10°21
10,000 | b 5 6 1.1x10721
Problem 3 || 10,000 | a 5 6 1.1x10°21
10,000 | b 4 5 1.1x10721
Problem4 || 5 a 19 20 | 2.5x10°13
5 b 15 16 | 9.9x10°17
Problem5 || 4 a 4 5 1.3x10°17
4 b 4 5 3.7x10°16
4 c 9 58 | 2.7x10°20
Problem 6 || 10 a 12 13 | 1.9x10°25
10 b 7 8 1.3x10-20
10 c 7 8 1.6x10°21
Problem 7a|| 4 a 7 10 | 4.0x10724
4 b 6 9 4.0x10"14
Problem 7b|| 4 a 5 7 5.0x10°16
4 b 4 6 3.8x10°24
Problem 8 || 4 a 5 8 4.0x10°13
4 b 5 7 9.0x10713
4 [ > 50
Problem 9 || 42 a 10 18 | 9.9x10°14
42 b 10 14 | 5.7x10°1°
Problem 10| 50 a 11 25 | 5.8x10°16
50 b 16 41 | 6.5x10°13
Problem 11| 1000 | a 11 12 | 1.1x10°2L
Problem 12| 10 a 6 15 | 4.7x1071°
Problem 13| 10,000 | a 8 10 | 9.7x10°26
10,000 | b 10 12 | 9.7x10°26
Problem 14| 1000 | a 11 12 | 1.1x10°2L
1000 | b 4 5 1.1x10°21
Problem 15| 4 a fail
4 b 4 5 | 5.0x10713
4 c 6 7 8.9x10°17
Problem 16 || 10,000 | a 5 7 1.1x10721
10,000 | b 7 9 2.5x10°15
Problem 17| 400 a 4 5 1.1x10°21

9. Conclusions

In this paper we constructed a new class of smoothing Newton methods for solving
nonlinear complementarity problems and box constrained variational inequalities by
making use of the facts that the most often used smoothing functions are continuously
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differentiable jointly withu andw at any(u, w) € %44 x 3% and they lead to strongly
semismooth functions ofi2. The techniques provided in this paper can be applied
to smoothing Newton methods based on the mappifig defined in (4). Numerical
results showed that our algorithms worked very satisfactorily for the tested problems.
We expect that these algorithms can be used to solve practical large-scale problems
efficiently.

In [27] Jiang proposed a smoothing method for solving nonlinear complementarity
problems withPy-functions. Jiang’s approach shares some similarities with ours in the
sense that the smoothing parameter is treated as a variable. Fartargye %, define

ors(@, b, &) =va2+ b2+ 2 — (a+h). (54)

This function is a smoothed form of Fischer-Burmeister function and was first defined
by Kanzow [31]. Jiang [27] proves thatrg(-, -, -) = ¢ra(- -, -)? is continuously
differentiable orii®. DefineG : Rt — Q" by

Gi(e, X) := ¢ (X, Fi(%),e), 1=12,...,n. (55)

Jiang [27] provided a different form dfl, which was defined by

H(e, x) := <g(8_xl)> (56)

An interesting property of such definétlis that for anye > 0 and any. € (0, 1],
e+ AAe >0

and
e+ AAe < ¢,

whered := (Ag, AX) € i x R" is a solution of
H(e, x) + H'(e, x)d = 0.

Based on this observation, Jiang [27] designed a smoothing Newton method for solving
the NCP with the assumption thitis a Pp-function. By using the continuous differen-
tiability of |H |2 and the assumption that the search directions are bounded, which can
be satisfied by assuming thgtis a uniform P-function, Jiang proved global and local
superlinearly (quadratically) convergent results of his method. It is noted that Jiang’s
idea may be used to any smoothing functibmhere a smoothing parameter is involved

if the following two conditions are satisfied:

() The square/H ||? is continuously differentiable;
(ii) The search directions are bounded.

Meanwhile, our approach needs neither condition (i) nor condition (ii). The key point

is that we can control the smoothing parameter in such a way that it converges nei-
ther too fast nor too slow by using a particularly designed Newton equation and a line
search model. To see the benefit of our approach clearly, let's consider the NCP with
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a Po-function. For this problem we proved that any accumulation point of our iter-
ation sequence is a solution while Jiang proved the same result under the additional
condition (ii). Moreover, we requirE to be aPo-function oni’} only instead of omi".

After the announcement of this paper, our method has soon been used to solve
various regularized smoothing equations to get stronger global convergent results [53,
43,60] and to solve extended vertical linear complementarity problems [44].

In this paper we treated the smoothing parametbe same as the original variable
x except thau is always kept positive. It is an interesting question to know that if the
updating rule fou used in this paper can be relaxed or more interestingly if it is possible
not to treat the parametaras a free variable while superlinearly convergent results can
still be obtained for the problems considered here or in [53,43,60]. We leave these as
further reaserch topics.

AcknowledgementsThe authors would like to thank Houduo Qi and the two referees for their helpful
comments.

Appendix A

Proof of Proposition 1From (16) and the definition af.q(-), we can see thajeq(-) is
at least twice continuously differentiable at ang %2 with x; # 0. So, we only need
to prove that (24) holds at any= (0, x2) with x2 € ). After simple computations, for
any(u, w) € W2 with u > 0, we have

t(w, w)
1+eCc—w/n 14 ed-w/n

where
—w 1

w1+ elc—w)/n

Cc
t(n, w) =In[1+ e(C*“’)/“] +

d—w 1 d—c
PR R

—In [1 + e(d*w)/ll] —

and for any(i, w) € R with 1 < 0, we have

Suppose = (0, xp) € %2 andh = (hy, hp) € R2. If hy # 0, it then follows from the
fact thatqeq is continuously differentiable a¢+ h,

ed(X + h) = {Vaea(x + )T}

We consider several cases:
(i) X2 < c. Suppose thah is small enough such that for dlle [0, 1], xo + thy < c.
Then from the definition,

Ocd(X + th) — Qed(X) _
t

0.

Lg% hy =i
qu(X7 ) tI[rc])
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Then, for any/ € dgcq(X + h), h — 0 andh; # 0O,

Vh — gly(x; h) = Vaea(x + )Th =0
= |hy|In {1 + e[C*(X2+h2)]/|hl‘} — |hg|In {1 + e[df(X2+hz)]/\h1|}

cC— X d—xo d
et~ 14 gd-oarhaymg T (@0
= 0(h?)
= O(|Ih[1?)

and for anyV € dqcq(x + h), h = (0, hp) — 0,
Vh—glyx;h)=Vi%0+0%xh,—0=0

because inthe latter caglgy(x; h) = 0 and forany € d0cq(0, X2+h2) andxz+hz < c,
Vo = 0.

(i) ¢ < x2 < d. Suppose thah is small enough such that for alle [0, 1], ¢ <
X2 + tho < d. Then, from the definition,

Qcd(X + th) — Qed(X) _

ho.
" 2

Gea(x: h) = lim
Then for any € dgcq(X + h), h — 0 andhy # 0O,
Vh — gy (X; h) = Vdea(x + ) Th — hy
= 0(h?)
= O([[h]?)
and for anyV € dqcq(x + h), h = (0, hp) — 0,
Vh—qeg(x;h) =Vi %0+ 1xhy—hy=0

because in the latter case for aviye d0cq(0, X2 + hp) andc < x2 + hy < d, Vo = 1.
(i) x2 = c. Suppose that € %2 is sufficiently small such that; + h, < b. Then from
the definition, ifhy # 0,

Ocd(X 4+ th) — Qed(X)

. = |h1|In (l + eﬁhZ/lhll) + ho

Lg(x; h)y =i
ch(xs ) tI[]a

andifhy =0
dg(x; h) = max0, hy}.
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Then, for anyV € dgcq(X + h), h — 0 andh; # 0O,
Vh — gy(; h) = V1 % hy + Vo hy — [[hy| In (1 + e7"2/IN1l) 4 hy ]

hz 1

= |hy|In (1+ e /1Ml — 1ha| 1+ e P/l [hyl

ho 1

_ (d—c—hp)/|hy| e —
lha|In[1+ € 1+ |h1| 1 + e(d—c-ha)/lhy]

[ha]

d-—c hs h ho
e T Tre e M T T @

—[Iha]In (1 + e M2/Il) 4 hy]

= —|hy|In[1+ed-c"N/Nil] 4 g —c—h,
= O(h})
= O(Ih|1?)
and for anyV € dqedq(x + h), h = (0, hp) — 0O,
Vh — gg(x; h) = V1 % 0+ V2 % hy — max0, hp} =0

because in the latter caqu(x; h) = max0, h} and for anyV € 3gcq4(0, X2 4+ h2) and
X2 +hy <dif hp >0,Vo =1andifhy, < 0,V, =0.

(iv) d < x2. Suppose thdt is small enough such that for dlle [0, 1], d < x2 + tho.
Then, from the definition,

Ocd(X + th) — Qed(X) _
t

Then, for anyV € 9qcq(X + h), h — 0 andhy # 0,

0.

Oeg(X: h) = |t|?(1)

Vh — g 4(x; h) = Vaea(x + )Th -0
= 0(h9)
= O(lh%)
and for anyV € dqcq(x + h), h = (0, hp) — 0,
Vh — qlg(x; h) = V4 %0+ 0 hy — 0 = 0.

because in the latter case for aviye d0cq(0, X2 + hp) andxz + hy > d, Vo = 0.
(V) x2 = d. The proof of this case is similar to that of case (iii). We omit the detail here.
Then we have proved thgtq(-) is a strongly semismooth function.

O

Proof of Proposition 2By the definition, for anyu, w) € %2,

c+ (C—w)2+4,u2+ d—/(d—w)2+4u?

Ocd(it, w) = 5
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Itis easy to prove thayv2 + u2 is a strongly semismooth function. Since the composi-
tion of strongly semismooth functions is still a strongly semismooth function [21, Theo-

o212 S a2 )
rem 19], the two function§= 4" gV A" 46 strongly semismooth

ones, and sajcq(-) is a strongly semismooth function. This completes our proof.
o

Proof of Proposition 3For the sake of simplicity we only prove the case- 0 and
d = oo. The proof of other cases is very similar.

From (22) (note that we assume= 0 andd = oo) and the definition ofcq(-), we
can see thatcq(-) is continuously differentiable at ary., w) € %2 with 1 % 0 and if
w >0,

00 if w=<-—p/2
, 1 w2 w1\ |
ch(ﬂ‘s w): (é_ﬁ ;4‘5) if |1,U| <,LL/2
01 if w>pu/2

andifu <0,
/ , -10
ch(/’L7 w) = ch(_/'La U)) < 0 1) .

It is easy to verify thaty 4(-) is locally Lipschitz continuous around aiiy, w) € N2
with © # 0 and it is known that a function which is continuously differentiable at
a certain point is strongly semismooth at this point if its derivative is locally Lipschitz
continuous around this point. Hengg(-) is strongly semismooth at ariy., w) € N2
with u # 0.

Next, we prove that (24) holds at ary= (0, x2) € %t2. We consider the following
several cases to prove this.
(i) x2 < 0. Then for anyV € dgcq(X + h), h — 0 andh; # 0,

Vh—qig(x; h) =0xh1+0xh,—0=0
and for anyV € dqcq(X + h), h = (0, hp) — 0,

Vh—qlg(x;h) =V1x0+0xh, —0=0.
(ii) X2 > 0. Then for any € dqcq(X + h), h — 0 andh; # 0,

Vh—qgy(x;h)y =0xh1 +1xhy —hy =0
and for any € dgcq(x + h), h = (0, hy) — 0,

Vh — qly(x; h) = V1 %0+ 1xhy —hy =0.
(iii) X2 = 0. Then for anyV € 9qcq(X + h), h — 0,h; # 0 andhy < —1|h1|/2,

Vh—qLg(x;h) =0xh; +0xhy —0=0;
foranyV € 9qcq(X + h), h — 0, h; # 0 andhy > |h1]/2,

Vh —q.4(x; h) =0xhy + 1xhy —hy =0;
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foranyV € dgcqg(x + h), h — 0,hy # 0 and|hz| < |hy1]|/2,

1 h3 hy 1 (h2 + |h1]/2)2
A 2h2 I+ T 2 2/hy|

and for anyV € dqgeq(x + h), h = (0, hp) — 0,

Vh — qu(x; h) = V1 %0+ V2 % ho — maxQ0, ho} = max0, ho} — max0, hp} =0

because in the latter cagg;(x; h) = max0, hz} and for anyV € 0qcq(0, X2 + hy) if
h, > 0,Vo =1andifhy, <0,V> =0.

Then we have proved thgtq(-) is a strongly semismooth function.
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