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Abstract. In this paper, we propose an efficient sieving-based secant method to address the
computational challenges of solving sparse optimization problems with least-squares constraints. A
level-set method has been introduced in [X. Li, D. F. Sun, and K.-C. Toh, SIAM J. Optim., 28
(2018), pp. 1842--1866] that solves these problems by using the bisection method to find a root of a
univariate nonsmooth equation \varphi (\lambda ) = \varrho for some \varrho > 0, where \varphi (\cdot ) is the value function computed by
a solution of the corresponding regularized least-squares optimization problem. When the objective
function in the constrained problem is a polyhedral gauge function, we prove that (i) for any positive
integer k, \varphi (\cdot ) is piecewise Ck in an open interval containing the solution \lambda \ast to the equation \varphi (\lambda ) = \varrho 
and that (ii) the Clarke Jacobian of \varphi (\cdot ) is always positive. These results allow us to establish the
essential ingredients of the fast convergence rates of the secant method. Moreover, an adaptive
sieving technique is incorporated into the secant method to effectively reduce the dimension of the
level-set subproblems for computing the value of \varphi (\cdot ). The high efficiency of the proposed algorithm
is demonstrated by extensive numerical results.
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1. Introduction. In this paper, we consider the following least-squares con-
strained optimization problem:

min
x\in \BbbR n

\{ p(x) | \| Ax - b\| \leq \varrho \} ,(CP(\varrho ))

where A \in \BbbR m\times n and b \in \BbbR m are given data, \varrho is a given parameter satisfying
0<\varrho < \| b\| , and p :\BbbR n\rightarrow ( - \infty ,+\infty ] is a proper closed convex function with p(0) = 0
that possesses the property of promoting sparsity. Without loss of generality, we
assume that (CP(\varrho )) admits active solutions here.

Let \lambda > 0 be a given positive parameter. Compared to the regularized problem
of the form

min
x\in \BbbR n

\biggl\{ 
1

2
\| Ax - b\| 2 + \lambda p(x)

\biggr\} 
,(PLS(\lambda ))

the constrained optimization problem (CP(\varrho )) is usually preferred in practical model-
ing since we can regard \varrho as the noise level, which can be estimated in many applica-
tions. However, the optimization problem (CP(\varrho )) is perceived to be more challeng-
ing to solve in general due to the complicated geometry of the feasible set [1]. Some
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2039

algorithms, such as the alternating direction method of multipliers (ADMM) [13, 11],
are applicable to solve (CP(\varrho )). Nevertheless, to obtain an acceptable solution re-
mains challenging for these algorithms. In particular, when applying the ADMM for
solving (CP(\varrho )), it is computationally expensive to form the matrix AAT or to solve
the linear systems involved in the subproblems. Recently, dimension reduction tech-
niques, such as adaptive sieving (AS) [38, 37], have achieved some success in solving
large-scale sparse optimization problems numerically by exploiting the solution spar-
sity. But it is still unclear how to apply dimension reduction techniques to (CP(\varrho ))
due to the potential infeasibility issue for reduced problems.

A popular approach for solving (CP(\varrho )) and the more general convex constrained
optimization problems is the level-set method [33, 34, 1], which has been widely used
in many interesting applications [33, 34, 1, 17]. The idea of exchanging the role of
the objective function and the constraints, which is the key for the level-set method,
has a long history and can date back to Queen Dido's problem (see [26, page 548]).
The reader can refer to [1, section 1.3] and the references therein for a discussion of
the history of the level-set method. In particular, the level-set method developed in
[33, 34] solves the optimization problem (CP(\varrho )) by finding a root of the following
univariate nonlinear equation:

\phi (\tau ) = \varrho ,(E\phi )

where \phi (\cdot ) is the value function of the following level-set problem:

\phi (\tau ) := min
x\in \BbbR n

\{ \| Ax - b\| | p(x)\leq \tau \} , \tau \geq 0.(1.1)

Therefore, by executing a root-finding procedure for (E\phi ) (e.g., the bisection method),
one can obtain a solution to (CP(\varrho )) by solving a sequence of problems in the form
of (1.1) parameterized by \tau . In implementations, one needs an efficient procedure to
compute the metric projection of given vectors onto the constraint set \scrF p(\tau ) := \{ x \in 
\BbbR n | p(x) \leq \tau , \tau > 0\} . However, such an efficient computation procedure may not be
available. One example can be found in [17], where p(\cdot ) is the fused Lasso regularizer
[31]. Moreover, it is still not clear to us how to deal with the infeasibility issue when
a dimension reduction technique is applied to (1.1).

Recently, Li, Sun, and Toh [17] proposed a level-set method for solving (CP(\varrho ))
via solving a sequence of (PLS(\lambda )). The dual of (PLS(\lambda )) can be written as

max
y\in \BbbR m,u\in \BbbR n

\biggl\{ 
 - 1

2
\| y\| 2 + \langle b, y\rangle  - \lambda p\ast (u) | AT y - \lambda u= 0

\biggr\} 
,(DLS(\lambda ))

where p\ast (\cdot ) is the Fenchel conjugate function of p(\cdot ), i.e., p\ast (z) = supx\in \BbbR n \{ \langle z,x\rangle  - 
p(x)\} , z \in \BbbR n. Let \Omega (\lambda ) be the solution set to (PLS(\lambda )). Define the gauge \Upsilon (\cdot | C) of
a nonempty convex set C \subseteq \BbbR n as \Upsilon (x | C) := inf\{ \nu \geq 0 | x \in \nu C\} , x \in \BbbR n. Denote
\partial p(0) as the subdifferential of p(\cdot ) at the origin. In this paper, we assume that

\lambda \infty :=\Upsilon (AT b | \partial p(0))\in (0,+\infty )(1.2)

and that for any \lambda \prime > 0, there exists (y(\lambda \prime ), u(\lambda \prime ), x(\lambda \prime )) \in \BbbR m \times \BbbR n \times \BbbR n satisfying
the following Karush--Kuhn--Tucker (KKT) system:

x\in \partial p\ast (u), y - b+Ax= 0, AT y - \lambda \prime u= 0,(KKT)

where \partial p\ast (\cdot ) is the subdifferential of p\ast (\cdot ). Consequently, the solution set \Omega (\lambda ) to
(PLS(\lambda )) is nonempty, and b - Ax(\lambda ) is invariant for all x(\lambda )\in \Omega (\lambda ) since the solution
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2040 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

(y(\lambda ), u(\lambda )) to (DLS(\lambda )) is unique. Based on this fact, Li, Sun, and Toh [17] proposed
to solve (CP(\varrho )) by finding the root of the following equation:

\varphi (\lambda ) := \| Ax(\lambda ) - b\| = \varrho ,(E\varphi )

where x(\lambda ) \in \Omega (\lambda ) is any solution to (PLS(\lambda )). We assume that (E\varphi ) has at least
one solution \lambda \ast > 0. We then know that any x(\lambda \ast ) \in \Omega (\lambda \ast ) is a solution to (CP(\varrho ))
[17, 10]. There are several advantages to this approach. First, it requires computing
the proximal mapping of p(\cdot ), which is normally easier than computing the projec-
tion over the constraint set of (1.1). Second, efficient algorithms are available to
solve the regularized least-squares problem (PLS(\lambda )) for a wide class of functions p(\cdot )
[16, 17, 18, 39, 2, 13]. More important, this approach is well suited for applying di-
mension reduction techniques to solve (PLS(\lambda )), as can be seen in subsequent sections.

In this paper, we propose an efficient sieving-based secant method for solving
(CP(\varrho )) by finding the root of (E\varphi ). We call our algorithm SMOP, as it is a root-
finding--based secant method for solving the optimization problem (CP(\varrho )). We focus
on the case where p(\cdot ) is a gauge function (see [27, section 15]); i.e., p(\cdot ) is a nonnega-
tive positively homogeneous convex function with p(0) = 0. We start by studying the
properties of the value function \varphi (\cdot ) and the convergence rates of the secant method
for solving (E\varphi ). To address the computational challenges for solving (PLS(\lambda )) and
computing the function value of \varphi (\cdot ), we incorporate an AS technique [38, 37] into
the secant method to effectively reduce the dimension of (PLS(\lambda )). The AS technique
can exploit the sparsity of the solution of (PLS(\lambda )) so that one can obtain a solution
to (PLS(\lambda )) by solving a sequence of reduced problems with much smaller dimen-
sions. Extensive numerical results will be presented in this paper to demonstrate the
superior performance of the proposed algorithm in solving (CP(\varrho )).

The main contributions of this paper can be summarized in the following:
1. When p(\cdot ) is a gauge function, we prove that \varphi (\cdot ) is (strongly) semismooth for

a wide class of instances of p(\cdot ) via connecting DLS(\lambda ) to a metric projection
problem. More important, when p(\cdot ) is a polyhedral gauge function, we show
that \varphi (\cdot ) is locally piecewise Ck on (0, \lambda \infty ) for any integer k\geq 1, and for any
\=\lambda \in (0, \lambda \infty ), v > 0 for any v \in \partial \varphi (\=\lambda ).

2. Under the assumption that p(\cdot ) is a polyhedral gauge function, we show that
the secant method converges at least 3-step Q-quadratically for solving (E\varphi ),
and if \partial B\varphi (\lambda 

\ast ) is a singleton, the secant method converges superlinearly with
Q-order at least (1+

\surd 
5)/2. Furthermore, for a general strongly semismooth

function \varphi (\cdot ), if \partial \varphi (\lambda \ast ) is a singleton and nondegenerate, the secant method
converges superlinearly with R-order of at least (1 +

\surd 
5)/2.

3. We propose an efficient sieving-based secant method to address the compu-
tational challenges for solving (CP(\varrho )). The algorithm incorporates a fast
convergent secant method for root finding of (E\varphi ), along with an AS tech-
nique for effectively reducing the dimension of subproblems in the form of
(PLS(\lambda )). The efficiency of the proposed algorithm for solving (CP(\varrho )) will
be demonstrated by extensive numerical results.

The rest of the paper is organized as follows. We will introduce some necessary
preliminary results in section 2. We discuss the properties of the value function \varphi (\cdot ) in
sections 3 and 4. A secant method for solving (CP(\varrho )) will be introduced and analyzed
in section 5. We will introduce the AS technique in section 6 followed by presenting
extensive numerical results in section 7. We conclude the paper in section 8.

Notation. Let n\geq 1 be any given integer. Denote the nonnegative orthant and
the positive orthant of \BbbR n as \BbbR n

+ and \BbbR n
++, respectively. We denote [n] := \{ 1,2, . . . , n\} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2041

We denote the subvector generated by x \in \BbbR n indexed by K \subseteq [n] as xK and the
submatrix generated by the columns (rows) ofA\in \BbbR m\times n indexed byK \subseteq [n] (K \subseteq [m])
as A:K (AK:). For any x \in \BbbR n and any integer q \geq 1, the \ell q norm of x is defined
as \| x\| q := q

\sqrt{} 
| x1| q + \cdot \cdot \cdot + | xn| q. We denote \| \cdot \| = \| \cdot \| 2. Let U \subseteq \BbbR n be an open

set. We say that a function f : U \rightarrow \BbbR is Ck for some integer k \geq 1 if f(\cdot ) is k-times
continuously differentiable on U . Let p : \BbbR n\rightarrow ( - \infty ,+\infty ] be a proper closed convex
function. The proximal mapping of p(\cdot ) is defined by

Proxp(z) := arg min
x\in \BbbR n

\biggl\{ 
p(x) +

1

2
\| x - z\| 2

\biggr\} 
, z \in \BbbR n.

The polar of a gauge function p(\cdot ) is defined by

p\circ (y) := inf\{ \nu \geq 0 | \langle y,x\rangle \leq \nu p(x) \forall x\in \BbbR n\} , y \in \BbbR n.

Let C \subseteq \BbbR n be a nonempty closed convex set. We use \Pi C(\cdot ) to denote the metric
projector over C. The indicator function of C is defined as

\delta (x | C) :=

\biggl\{ 
0 if x\in C,
+\infty otherwise.

2. Preliminaries. Let \scrX and \scrY be two finite-dimensional real vector spaces
each equipped with a scalar product \langle \cdot , \cdot \rangle and its induced norm \| \cdot \| . Denote the
set of all linear operators from \scrX to \scrY by \scrL (\scrX ,\scrY ). We first review some pre-
liminary results related to the generalized Jacobians and the semismoothness. Let
\scrO \subseteq \scrX be an open set and F : \scrO \rightarrow \scrY be a locally Lipschitz continuous function
on \scrO . According to Rademacher's theorem, F (\cdot ) is differentiable (in the sense of
Fr\'echet) almost everywhere on \scrO . Denote by DF the set of all points on \scrO where
F (\cdot ) is differentiable. Denote F \prime (x) as the Jacobian of F (\cdot ) at x \in DF . Define the
B-subdifferential of F (\cdot ) at x\in \BbbR n as

\partial BF (x) :=

\biggl\{ 
lim

xk\rightarrow x,xk\in DF

F \prime (xk)

\biggr\} 
.(2.1)

The Clarke generalized Jacobian of F (\cdot ) at x\in \BbbR n is then defined as follows [8]:

\partial F (x) := conv(\partial BF (x)).(2.2)

Note that both \partial BF (\cdot ) and \partial F (\cdot ) are compact valued and upper-semicontinuous multi-
valued functions. For finitely valued convex functions, the Clarke generalized Jacobian
coincides with the subdifferential in the sense of convex analysis [8, Proposition 2.2.7].
Now we introduce the concept of G-semismoothness (with respect to a multifunction).

Definition 2.1. Let \scrO \subseteq \scrX be an open set, F : \scrO \rightarrow \scrY be a locally Lipschitz
continuous function, and TF : \scrO \rightrightarrows \scrL (\scrX ,\scrY ) be a nonempty and compact valued,
upper-semicontinuous set-valued mapping. F (\cdot ) is said to be G-semismooth at x \in \scrO 
with respect to the multifunction TF if for any V \in TF (x+\Delta x) with \Delta x\rightarrow 0,

F (x+\Delta x) - F (x) - V\Delta x= o(\| \Delta x\| ).(2.3)

Let \gamma > 0 be a constant. F (\cdot ) is said to be \gamma -order (strongly if \gamma = 1) G-semismooth
at x\in \scrO with respect to TF if for any V \in TF (x+\Delta x) with \Delta x\rightarrow 0,

F (x+\Delta x) - F (x) - V\Delta x=O(\| \Delta x\| 1+\gamma ).(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2042 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

F (\cdot ) is said to be G-semismooth (resp., \gamma -order G-semismooth, strongly G-semismooth)
on \scrO with respect to the multifunction TF if it is G-semismooth (resp., \gamma -order G-
semismooth, strongly G-semismooth) everywhere in \scrO with respect to the multifunction
TF . All the above definitions of G-semismoothness will be replaced by semismoothness
if F (\cdot ) happens to be directionally differentiable at the concerned point x\in \scrO .

Let f :\BbbR \rightarrow \BbbR be a real-valued functional. Denote for x \not = y that

\delta f (x, y) := (f(x) - f(y))/(x - y).(2.5)

The following lemma is useful for analyzing the convergence of the secant method.
Part (i) of this lemma is from [22, Lemma 2.2], and part (ii) can be proved by following
a similar procedure as in the proof of [22, Lemma 2.3].

Lemma 2.2. Assume that f : \BbbR \rightarrow \BbbR is semismooth at \=x \in \BbbR . Denote the lateral
derivatives of f at \=x by

\=d - := - f \prime (\=x; - 1) and \=d+ := f \prime (\=x; 1).(2.6)

(i) Then the lateral derivatives \=d - and \=d+ exist, and

\partial Bf(\=x) = \{ \=d - , \=d+\} .

(ii) It holds that

\=d -  - \delta f (u, v) = o(1) for all u \uparrow \=x, v \uparrow \=x,(2.7)
\=d+  - \delta f (u, v) = o(1) for all u \downarrow \=x, v \downarrow \=x;(2.8)

moreover, if f(\cdot ) is \gamma -order semismooth at \=x for some \gamma > 0, then

\=d -  - \delta f (u, v) =O(| u - \=x| \gamma + | v - \=x| \gamma ) for all u \uparrow \=x, v \uparrow \=x,(2.9)
\=d+  - \delta f (u, v) =O(| u - \=x| \gamma + | v - \=x| \gamma ) for all u \downarrow \=x, v \downarrow \=x.(2.10)

3. Properties of the value function \bfitvarphi (\cdot ). In this section, we first discuss
some useful properties of the function \varphi (\cdot ). Since p(\cdot ) is assumed to be a nonnegative
convex function with p(0) = 0, we know that 0\in \partial p(0).

Proposition 3.1. Assume that 0<\lambda \infty <+\infty . It holds that
(i) for all \lambda \geq \lambda \infty , y(\lambda ) = b and 0\in \Omega (\lambda );
(ii) the value function \varphi (\cdot ) is nondecreasing on (0,+\infty ), and for any 0 < \lambda 1 <

\lambda 2 < +\infty , \varphi (\lambda 1) = \varphi (\lambda 2) implies that p(x(\lambda 1)) = p(x(\lambda 2)), where for any
\lambda > 0, x(\lambda ) is an optimal solution to (PLS(\lambda )).

Proof. (i) Since 0\in \partial p(0), for all \lambda > \lambda \infty , it holds that

AT b/\lambda \in \partial p(0),

which implies that 0\in \Omega (\lambda ). Since \lambda \infty > 0 and \partial p(0) is closed, we know that

AT b/\lambda \infty \in \partial p(0),

which implies that 0\in \Omega (\lambda \infty ). Therefore, for all \lambda \geq \lambda \infty , 0\in \Omega (\lambda ) and y(\lambda ) = b.
(ii) Let 0 < \lambda 1 < \lambda 2 <\infty be arbitrarily chosen. Let x(\lambda 1) \in \Omega (\lambda 1) and x(\lambda 2) \in 

\Omega (\lambda 2). Then we have
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2043

1

2
\| Ax(\lambda 1) - b\| 2 + \lambda 1p(x(\lambda 1))\leq 

1

2
\| Ax(\lambda 2) - b\| 2 + \lambda 1p(x(\lambda 2)),(3.1)

1

2
\| Ax(\lambda 2) - b\| 2 + \lambda 2p(x(\lambda 2))\leq 

1

2
\| Ax(\lambda 1) - b\| 2 + \lambda 2p(x(\lambda 1)),(3.2)

which implies that

(\lambda 1  - \lambda 2)(p(x(\lambda 1)) - p(x(\lambda 2)))\leq 0.(3.3)

Since \lambda 1  - \lambda 2 < 0, we know that p(x(\lambda 1))\geq p(x(\lambda 2)). It follows from (3.1) that

1

2
\| Ax(\lambda 1) - b\| 2 \leq 1

2
\| Ax(\lambda 2) - b\| 2 + \lambda 1(p(x(\lambda 2)) - p(x(\lambda 1)))\leq 

1

2
\| Ax(\lambda 2) - b\| 2,

which implies that p(x(\lambda 1)) = p(x(\lambda 2)) if \varphi (\lambda 1) =\varphi (\lambda 2). This completes the proof of
the proposition.

Due to Proposition 3.1, we can apply the bisection method to solve (E\varphi ), and
for any \epsilon > 0, we can obtain a solution \lambda \varepsilon satisfying | \lambda \varepsilon  - \lambda \ast | \leq \varepsilon in O(log(1/\varepsilon ))
iterations, where \lambda \ast is a solution to (E\varphi ). In this paper, we will design a more
efficient secant method for solving (E\varphi ). To achieve this goal, we first study the
(strong) semismoothness property of \varphi (\cdot ).

In this paper, we focus on the case where p(\cdot ) is a gauge function. In most of the
applications, p(\cdot ) is a norm function, which is automatically a gauge function. We
will leave the study of the (strong) semismoothness of \varphi (\cdot ) for a general p(\cdot ) as future
work. Because of its repeated occurrence in this section, we present the following
assumption.

Assumption A: Assume that p(\cdot ) is a gauge function.
Under Assumption A, p\ast (\cdot ) = \delta (\cdot | \partial p(0)), and the optimization problem (DLS(\lambda ))

is equivalent to

max
y\in \BbbR m

\biggl\{ 
 - 1

2
\| y\| 2 + \langle b, y\rangle | \lambda  - 1y \in Q

\biggr\} 
,(3.4)

where

Q := \{ z \in \BbbR m | AT z \in \partial p(0)\} .(3.5)

Then by performing a variable substitution, we have the following useful observation
about the solution mapping to (3.4).

Proposition 3.2. Under Assumption A, for any 0< \lambda <+\infty , the unique solu-
tion to (3.4) can be written as

y(\lambda ) = \lambda \Pi Q(\lambda 
 - 1b) =\Pi \lambda Q(b).(3.6)

The following proposition is useful in understanding the semismoothness of y(\cdot )
and \varphi (\cdot ) even if p is nonpolyhedral. The definition of a tame set and a globally
subanalytic set can be found in [3, Definition 2] and [3, Example 2(a)], respectively.
Part (ii) of the proposition is generalized from [17, Proposition 1 (iv)] (p(\cdot ) is assumed
to be a polyhedral gauge function in [17]), and we provide a more explicit proof that
does not rely on the piecewise linearity of the solution mapping y(\cdot ) in (3.6).
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2044 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

Proposition 3.3. Under Assumption A, it holds that
(i) the functions y(\cdot ) and \varphi (\cdot ) are locally Lipschitz continuous on (0,+\infty );
(ii) if 0<\lambda \infty <+\infty , \varphi (\cdot ) is strictly increasing on (0, \lambda \infty ];
(iii) if the set Q is tame, \varphi (\cdot ) is semismooth on (0,+\infty );
(iv) if Q is globally subanalytic, \varphi (\cdot ) is \gamma -order semismooth on (0,+\infty ) for some

\gamma > 0.

Proof. For convenience, we denote \~y(\lambda ) :=\Pi Q(\lambda 
 - 1b) for any \lambda > 0.

(i) Since \Pi Q(\cdot ) is Lipschitz continuous with modulus 1, both \~y(\cdot ) and y(\cdot ) are
locally Lipschitz continuous on (0,+\infty ). Therefore, \varphi (\cdot ) = \| y(\cdot )\| is locally Lipschitz
continuous on (0,+\infty ).

(ii) It follows from Proposition 3.1 that \varphi (\cdot ) is nondecreasing. We will now prove
that \varphi (\cdot ) is strictly increasing on (0, \lambda \infty ]. We prove it by contradiction. Assume that
there exists 0 < \lambda 1 < \lambda 2 \leq \lambda \infty such that \varphi (\lambda 1) = \varphi (\lambda 2). Let x(\lambda 1) \in \Omega (\lambda 1) and
x(\lambda 2)\in \Omega (\lambda 2) be arbitrarily chosen. From Proposition 3.1(ii), we know that

p(x(\lambda 1)) = p(x(\lambda 2)),

which implies that x(\lambda 1)\in \Omega (\lambda 2) and x(\lambda 2)\in \Omega (\lambda 1). Therefore, we get

y(\lambda 1) = b - Ax(\lambda 1) = b - Ax(\lambda 2) = y(\lambda 2).

Thus, by using the facts 0 \in \lambda 2Q, y(\lambda 2) = \Pi \lambda 2Q(b), and \lambda  - 1
1 \lambda 2y(\lambda 2) = \lambda  - 1

1 \lambda 2y(\lambda 1) \in 
\lambda 2Q, we obtain from the properties of the metric projector \Pi \lambda 2Q(\cdot ) that

\langle b - y(\lambda 2),0 - y(\lambda 2)\rangle \leq 0, \langle b - y(\lambda 2), \lambda 
 - 1
1 \lambda 2y(\lambda 2) - y(\lambda 2)\rangle \leq 0.

Therefore,

\langle b - y(\lambda 1), y(\lambda 1)\rangle = \langle b - y(\lambda 2), y(\lambda 2)\rangle = 0.

Since \lambda 1 <\lambda \infty and y(\lambda 1) =\Pi \lambda 1Q(b), we know that y(\lambda 1) \not = b. Hence,

\langle b - y(\lambda 1), \lambda 
 - 1
\infty \lambda 1b - y(\lambda 1)\rangle = \lambda  - 1

\infty \lambda 1\| b - y(\lambda 1)\| 2 > 0.

However, \lambda  - 1
\infty \lambda 1b\in \lambda 1Q and y(\lambda 1) =\Pi \lambda 1Q(b) imply that

\langle b - y(\lambda 1), \lambda 
 - 1
\infty \lambda 1b - y(\lambda 1)\rangle \leq 0,

which is a contradiction. This contradiction shows that \varphi (\cdot ) is strictly increasing on
(0, \lambda \infty ].

(iii) Since \~y(\cdot ) is locally Lipschitz continuous on (0, \lambda \infty ), it follows from [3] that
\~y(\cdot ) is semismooth on (0,+\infty ) if Q is a tame set. Since \| \cdot \| is strongly semismooth,
we know that g1(\cdot ) = \| \~y(\cdot )\| is semismooth on (0, \lambda \infty ). Therefore, \varphi (\cdot ) is semismooth
on (0, \lambda \infty ) [9, Propositions 7.4.4 and 7.4.8].

(iv) The \gamma -order semismoothness of \varphi (\cdot ) can be proved similarly as for (iii).

The above proposition can be used to prove the semismoothness of \varphi (\cdot ) for a wide
class of functions p(\cdot ). For example, the next corollary shows the semismoothness of
\varphi (\cdot ) when p(\cdot ) is the nuclear norm function defined on \BbbR d\times n, using the fact that \partial p(0)
is linear matrix inequality representable [25].
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2045

Corollary 3.4. Denote the adjoint of the linear operator \scrA : \BbbR d\times n \rightarrow \BbbR m as
\scrA \ast . Let p(\cdot ) = \| \cdot \| \ast be the nuclear norm function defined on \BbbR d\times n. Then Q = \{ z \in 
\BbbR m | \scrA \ast z \in \partial p(0)\} is a tame set, and \Pi Q(\cdot ) is semismooth.

Next, we will show that \varphi (\cdot ) can be strongly semismooth for a class of important
instances of p(\cdot ).

Proposition 3.5. Define \Phi (x) := 1
2\| Ax - b\| 2, x\in \BbbR n, and

H(x,\lambda ) := x - Proxp(x - \lambda  - 1\nabla \Phi (x)), (x,\lambda )\in \BbbR n \times \BbbR ++.

For any (x,\lambda )\in \BbbR n\times \BbbR ++, denote \partial xH(x,\lambda ) as the canonical projection of \partial H(x,\lambda )
onto \BbbR n. Under Assumption A, it holds that

(i) if \Pi \partial p(0)(\cdot ) is strongly semismooth and \partial xH(\=x, \=\lambda ) is nondegenerate at some
(\=x, \=\lambda ) satisfying H(\=x, \=\lambda ) = 0, then y(\cdot ) and \varphi (\cdot ) are strongly semismooth at \=\lambda ;

(ii) if p(\cdot ) is further assumed to be polyhedral, the function y(\cdot ) is piecewise affine,
and \varphi (\cdot ) is strongly semismooth on \BbbR ++.

Proof. (i) It follows from the Moreau identity [27, Theorem 31.5] that for any
(x,\lambda )\in \BbbR n \times \BbbR ++,

H(x,\lambda ) = x - ((x - \lambda  - 1\nabla \Phi (x)) - Proxp\ast (x - \lambda  - 1\nabla \Phi (x)))
= \lambda  - 1\nabla \Phi (x) +\Pi \partial p(0)(x - \lambda  - 1\nabla \Phi (x)).

The rest of the proof can be obtained from the fact that \nabla \Phi (\cdot ) is linear and from the
implicit function theorem for semismooth functions [28, 19].

(ii) When p(\cdot ) is a polyhedral gauge function, we know that the set Q defined in
(3.5) is a convex polyhedral set [27, Theorem 19.3] and that the projector \Pi Q(\cdot ) is
piecewise affine [9, Proposition 4.1.4]. Therefore, y(\cdot ) is a piecewise affine function on
(0,+\infty ). Then both y(\cdot ) and \varphi (\cdot ) are strongly semismooth on (0,+\infty ) [9, Propositions
7.4.7, 7.4.4, and 7.4.8].

Remark 3.6. We make some remarks on the assumptions in part (i) of Proposition
3.5. On the one hand, the strong semismoothness of the projector \Pi K(\cdot ) has been
proved for some important nonpolyhedral closed convex sets K. In particular, \Pi K(\cdot )
is strongly semismooth if K is the positive semidefinite cone [30], the second-order
cone [6], or the \ell 2 norm ball [39, Lemma 2.1]. On the other hand, the assumption
of the nondegeneracy of \partial xH(\cdot , \cdot ) at the concerned point is closely related to the
important concept of strong regularity of the KKT system of (PLS(\lambda )). One can refer
to the monograph [4] and the references therein for a general discussion and to [29, 5]
for the semidefinite programming problems.

4. The HS-Jacobian of \bfitvarphi (\cdot ) for polyhedral gauge functions \bfitp (\cdot ). In this
section, we assume by default that p(\cdot ) is a polyhedral gauge function and that 0 <
\lambda \infty <+\infty . Then the set \partial p(0) is polyhedral [27, Theorem 19.2], which can be assumed
without loss of generality to take the form of

\partial p(0) := \{ u\in \BbbR n | Bu\leq d\} (4.1)

for some B \in \BbbR q\times n and d\in \BbbR q.
Inspired by the generalized Jacobian for the projector over a polyhedral set derived

by Han and Sun [14], which we call the HS-Jacobian, we will derive the HS-Jacobian
of the function \varphi (\cdot ). As an important implication, we will prove that the Clarke
Jacobian of \varphi (\cdot ) at any \lambda \in (0, \lambda \infty ) is positive. Note that the open interval (0, \lambda \infty )
contains the solution \lambda \ast to (E\varphi ).
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2046 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

Let \lambda \in (0, \lambda \infty ) be arbitrarily chosen. Let (y(\lambda ), u(\lambda )) be the unique solution to
(DLS(\lambda )) with the parameter \lambda . Here, we denote (y,u) = (y(\lambda ), u(\lambda )) to simplify our
notation and hide the dependency on \lambda . Then there exists x\in \Omega (\lambda ) such that (y,u,x)
satisfies the following KKT system:

u=\Pi \partial p(0)(u+ x), y - b+Ax= 0, AT y - \lambda u= 0.(4.2)

Therefore, u is the unique solution to the optimization problem

min
z\in \BbbR n

\biggl\{ 
1

2
\| z  - (u+ x)\| 2 | Bz \leq d

\biggr\} 
,(4.3)

and there exists \xi \in \BbbR q such that (u, \xi ) satisfies the following KKT system for (4.3):

BT \xi  - x= 0, Bu - d\leq 0, \xi \geq 0, \xi T (Bu - d) = 0.(4.4)

As a result, there exists (x, \xi ) \in \BbbR n \times \BbbR q such that (y,u,x, \xi ) satisfies the following
augmented KKT system:\biggl\{ 

BT \xi  - x= 0, Bu - d\leq 0, \xi \geq 0, \xi T (Bu - d) = 0,
y - b+Ax= 0, AT y - \lambda u= 0.

(4.5)

Let M(\lambda ) be the set of Lagrange multipliers associated with (y,u) defined as

M(\lambda ) := \{ (x, \xi )\in \BbbR n \times \BbbR q | (y,u,x, \xi ) satisfies (4.5)\} .

Since x=BT \xi , we obtain the following system by eliminating the variable x in (4.5):\biggl\{ 
Bu - d\leq 0, \xi \geq 0, \xi T (Bu - d) = 0,

y - b+ \widehat A\xi = 0, AT y - \lambda u= 0.
(4.6)

Here, \widehat A=ABT \in \BbbR m\times q. Denote\widehat M(\lambda ) := \{ \xi \in \BbbR q | (y,u, \xi ) satisfies (4.6)\} .(4.7)

Then the set M(\lambda ) is equivalent to

M(\lambda ) =
\Bigl\{ 
(x, \xi )\in \BbbR n \times \BbbR q | x=BT \xi , \xi \in \widehat M(\lambda )

\Bigr\} 
.(4.8)

Denote the active set of u as

I(u) := \{ i\in [q] | Bi:u - di = 0\} .(4.9)

For any \lambda \in (0, \lambda \infty ), we define

\scrB (\lambda ) :=
\Bigl\{ 
K \subseteq [q] | \exists \xi \in \widehat M(\lambda ) s.t. supp(\xi )\subseteq K \subseteq I(u) and rank( \widehat A:K) = | K| 

\Bigr\} 
.

(4.10)

Since the polyhedral set \widehat M(\lambda ) does not contain a line, this implies that \widehat M(\lambda ) has at
least one extreme point \=\xi [27, Corollary 18.5.3]. Note that 0 < \lambda < \lambda \infty and x \not = 0,
which implies that \=\xi \not = 0 and that \scrB (\lambda ) is nonempty.

Define the HS-Jacobian of y(\cdot ) as

\scrH (\lambda ) :=
\Bigl\{ 
hK \in \BbbR m | hK = \widehat A:K( \widehat AT

:K
\widehat A:K) - 1dK , K \in \scrB (\lambda )

\Bigr\} 
, \lambda \in (0, \lambda \infty ),(4.11)
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2047

where dK is the subvector of d indexed by K. For notational convenience, for any
\lambda \in (0, \lambda \infty ) and K \in \scrB (\lambda ), denote

PK = I  - \widehat A:K( \widehat AT
:K

\widehat A:K) - 1 \widehat AT
:K .(4.12)

Define

\scrV (\lambda ) :=
\bigl\{ 
t\in \BbbR | t= \lambda \| h\| 2/\varphi (\lambda ), h\in \scrH (\lambda )

\bigr\} 
, \lambda \in \scrD ,(4.13)

where \scrD = \{ \lambda \in (0, \lambda \infty ) | \varphi (\lambda ) > 0\} . The following lemma is proved by following the
same line as in [14, Lemma 2.1].

Lemma 4.1. Let \=\lambda \in (0, \lambda \infty ) be arbitrarily chosen. It holds that

y(\=\lambda ) = PKb+ \=\lambda hK \forall hK \in \scrH (\=\lambda ).(4.14)

Moreover, there exists a positive scalar \varsigma such that \scrN (\=\lambda ) := (\=\lambda  - \varsigma , \=\lambda + \varsigma ) \subseteq (0, \lambda \infty ),
and for all \lambda \in \scrN (\=\lambda ),

(i) \scrB (\lambda )\subseteq \scrB (\=\lambda ) and \scrH (\lambda )\subseteq \scrH (\=\lambda );
(ii) y(\lambda ) = y(\=\lambda ) + (\lambda  - \=\lambda )h \forall h\in \scrH (\lambda ).
Proof. Choose a sufficiently small \varsigma > 0 such that \scrN (\=\lambda ) := (\=\lambda  - \varsigma , \=\lambda + \varsigma )\subseteq (0, \lambda \infty ),

and let \lambda \in \scrN (\=\lambda )\setminus \=\lambda be arbitrarily chosen. Denote (\=y, \=u) = (y(\=\lambda ), u(\=\lambda )) and (y,u) =
(y(\lambda ), u(\lambda )) for notational simplicity.

Let K \in \scrB (\=\lambda ) be arbitarily chosen. From (4.6), there exists \=\xi \in \widehat M(\=\lambda ) with
supp(\=\xi )\subseteq K \subseteq I(\=u) such that (\=y, \=u, \=\xi ) satisfies

\=y= b - \widehat A:K
\=\xi K , BAT \=y= \widehat AT \=y= \=\lambda B\=u, BK:\=u= dK , \xi Kc = 0,(4.15)

where Kc is the complement of K, which implies that

\=\lambda dK = \widehat AT
:K(b - \widehat A:K

\=\xi K).

Since \widehat A:K is of full column rank, we have

\=\xi K = ( \widehat AT
:K

\widehat A:K) - 1( \widehat AT
:Kb - \=\lambda dK).

Consequently, we have

\=y= PKb+ \=\lambda hK ,

where hK = \widehat A:K( \widehat AT
:K

\widehat A:K) - 1dK \in \scrH (\=\lambda ).
(i) It follows from Proposition 3.3 that u(\cdot ) is locally Lipshitz continuous, which

implies that I(u)\subseteq I(\=u). Next, we prove that \scrB (\lambda )\subseteq \scrB (\=\lambda ). If not, then there exists a
sequence \{ \lambda k\} k\geq 1 \subseteq \scrN (\=\lambda ) that converges to \=\lambda such that for all k, there is an index set
Kk \in \scrB (\lambda k)\setminus \scrB (\=\lambda ). Denote the solution to (DLS(\lambda )) with the parameter \lambda k as (yk, uk).
Since there exist only finitely many choices for the index sets in \scrB (\cdot ), if necessary by
taking a subsequence, we assume that the index sets Kk are identical for all k \geq 1.
Denote the common index set as \~K. Then the matrix \widehat A: \~K has full column rank, and

there exists \xi k \in \widehat M(\lambda k) (and (BT \xi k, \xi k) \in M(\lambda k)) such that supp(\xi k) \subseteq \~K \subseteq I(uk),
but \~K \not \in \scrB (\=\lambda ). Since I(uk) \subseteq I(\=u), there is no \xi \in \scrB (\=\lambda ) such that supp(\xi ) \subseteq \~K.

However, since \xi k \in \widehat M(\lambda k), it satisfies

yk  - b+ \widehat A: \~K\xi k\~K = 0.(4.16)
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2048 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

As y(\cdot ) is locally Lipschitz continuous and \widehat A: \~K is of full column rank, the sequence
\{ \xi k\} k\geq 1 is bounded. Let \~\xi be an accumulation point of \{ \xi k\} k\geq 1. Then \~\xi \in \scrB (\=\lambda ) and
supp(\~\xi )\subseteq \~K. This is a contradiction. Therefore, \scrB (\lambda )\subseteq \scrB (\=\lambda ). From the definition of
\scrH (\cdot ) in (4.11), we also have \scrH (\lambda )\subseteq \scrH (\=\lambda ).

(ii) Let K \in \scrB (\lambda ) be arbitarily chosen. It follows from (4.14) that

y= PKb+ \lambda hK ,

where hK = \widehat A:K( \widehat AT
:K

\widehat A:K) - 1dK \in \scrH (\lambda ). Since K \in \scrB (\lambda ) \subseteq \scrB (\=\lambda ) and hK \in \scrH (\lambda ) \subseteq 
\scrH (\=\lambda ), in the same vein, we have

\=y= PKb+ \=\lambda hK .

As a result, for all h\in \scrH (\lambda ),

y= \=y+ (\lambda  - \=\lambda )h.

We complete the proof of the lemma.

Next, we prove the nondegeneracy of \partial \varphi (\=\lambda ) for any \=\lambda \in (0, \lambda \infty ), which is important
for analyzing the convergence rates of the secant method for solving (E\varphi ).

Theorem 4.2. Let p(\cdot ) be a polyhedral gauge function. Assume that 0 < \lambda \infty <
+\infty . For any \=\lambda \in (0, \lambda \infty ), it holds that

(i) for any integer k \geq 1, the function \varphi (\cdot ) is piecewise Ck in an open interval
containing \=\lambda ;

(ii) all v \in \partial \varphi (\=\lambda ) are positive.

Proof. Choose a sufficiently small \varsigma > 0 such that \scrN (\=\lambda ) = (\=\lambda  - \varsigma , \=\lambda + \varsigma )\subseteq (0, \lambda \infty )
and \scrB (\lambda ) \subseteq \scrB (\=\lambda ) for any \lambda \in \scrN (\=\lambda ). Let \lambda \in \scrN (\=\lambda )\setminus \=\lambda and K \in \scrB (\lambda ) be arbitrarily
chosen. Denote

hK = \widehat A:K( \widehat AT
:K

\widehat A:K) - 1dK .

Then we have hK \in \scrH (\lambda )\subseteq \scrH (\=\lambda ).
Now we prove part (i) of the theorem. From the fact that

\langle PKb,hK\rangle = 0

and Lemma 4.1, we know that

\varphi (\lambda ) =
\sqrt{} 
\| PKb\| 2 + \lambda 2\| hK\| 2 and \varphi (\=\lambda ) =

\sqrt{} 
\| PKb\| 2 + (\=\lambda )2\| hK\| 2.

Define \varphi K :\BbbR \rightarrow \BbbR + by

\varphi K(s) :=
\sqrt{} 
\| PKb\| 2 + s2\| hK\| 2, s\in \BbbR .(4.17)

From Proposition 3.3, we know that \varphi (\cdot ) is strictly increasing on (0, \lambda \infty ]. Therefore,
it holds that

\varphi K(\lambda ) =\varphi (\lambda ) \not =\varphi (\=\lambda ) =\varphi K(\=\lambda ),(4.18)

which implies that hK \not = 0. Since K \in \scrB (\lambda ) is arbitrarily chosen, we obtain that

hK \not = 0 \forall K \in \scrB (\lambda ).(4.19)
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2049

Thus, for any integer k\geq 1, \varphi K(\cdot ) is Ck on \scrN (\=\lambda ).
Denote \=\scrB =

\bigcup 
\lambda \in \scrN (\=\lambda )\setminus \=\lambda \scrB (\lambda ). We know that \=\scrB \subseteq \scrB (\=\lambda ) and that | \=\scrB | is finite.

Moreover,

\varphi (s)\in \{ \varphi K(s)\} K\in \=\scrB \forall s\in \scrN (\=\lambda ),(4.20)

which implies that for any k\geq 1, \varphi (\cdot ) is piecewise Ck on \scrN (\=\lambda ).
Next, we prove part (ii) of the theorem. It follows from (4.19) that for any K \in \=\scrB 

and \lambda > 0,

hK \not = 0 and (\varphi K)\prime (\lambda ) = \lambda \| hK\| 2/\varphi K(\lambda )> 0.(4.21)

By [8, Theorem 2.5.1] and the upper semicontinuity of \partial B\varphi (\cdot ), we have

\partial \varphi (\=\lambda )\subseteq conv(\{ \=\lambda \| hK\| 2/\varphi (\=\lambda ) | K \in \=\scrB \} ),(4.22)

which implies that

v > 0 \forall v \in \partial \varphi (\=\lambda ).

We complete the proof of the theorem.

5. A secant method for (CP(\varrho )). In this section, we will design a fast con-
vergent secant method for solving (E\varphi ) and prove its convergence rates.

5.1. A fast convergent secant method for semismooth equations. Let
f :\BbbR \rightarrow \BbbR be a locally Lipschitz continuous function which is semismooth at a solution
x\ast to the following equation:

f(x) = 0.(5.1)

In this section, we analyze the convergence of the secant method described in Algo-
rithm 5.1 with two generic starting points x - 1 and x0.

The convergence results of Algorithm 5.1 are given in the following proposition.
The proof can be obtained by following the procedure in the proof of [22, Theorem 3.2].

Proposition 5.1. Suppose that f : \BbbR \rightarrow \BbbR is semismooth at a solution x\ast to
(5.1). Let d - and d+ be the lateral derivatives of f at x\ast as defined in (2.6). If d - 

and d+ are both positive (or negative), then there are two neighborhoods \scrU and \scrN of
x\ast , \scrU \subseteq \scrN , such that for x - 1, x0 \in \scrU , Algorithm 5.1 is well defined and produces a
sequence of iterates \{ xk\} such that \{ xk\} \subseteq \scrN . The sequence \{ xk\} converges to x\ast 

3-step Q-superlinearly, i.e., | xk+3  - x\ast | = o(| xk  - x\ast | ). Moreover, it holds that

Algorithm 5.1 A secant method for solving (5.1).

1: Input: x - 1, x0 \in \BbbR .
2: Initialization: Set k= 0.
3: while f(xk) \not = 0 do
4: Step 1. Compute

xk+1 = xk  - (\delta f (x
k, xk - 1)) - 1f(xk).(5.2)

5: Step 2. Set k= k+ 1.
6: end while
7: Output: xk.
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Table 1
The numerical performance of finding the zero of (5.3). Case I: \beta = 1.1, d+ = 1.1, d - =

1, and \alpha = 0.1; Case II: \beta = 1.5, d+ = 1.5, d - = 1, and \alpha = 0.5; Case III: \beta = 2.1, d+ = 2.1, d - =
1, and \alpha = 1.1.

Case Iter 1 2 3 4 5 6 7 8

I x --5.1e--5 --4.3e--6 2.2e--10 --2.2e--11 --1.8e--12 4.1e--23 --4.1e--24 --3.4e--25
II x --5.1e--5 --1.7e--5 8.4e--10 --4.2e--10 --1.1e--10 4.5e--20 --2.2e--20 --5.6e--21

III x --5.1e--5 --2.6e--5 1.3e--9 --1.5e--9 --5.1e--10 7.4e--19 --8.2e--19 --2.8e--19

(i) | xk+1  - x\ast | \leq | d+ - d - +o(1)| 
min\{ | d+| ,| d - | \} +o(1) | x

k  - x\ast | for k\geq 0;

(ii) if \alpha := | d+ - d - | 
min\{ | d+| ,| d - | \} < 1, then \{ xk\} converges to x\ast Q-linearly with Q-factor

\alpha ;
(iii) if f is \gamma -order semismooth at x\ast for some \gamma > 0, then | xk+3  - x\ast | =O(| xk  - 

x\ast | 1+\gamma ) for sufficiently large k; the sequence \{ xk\} converges to x\ast 3-step
quadratically if f is strongly semismooth at x\ast .

Here, we only consider the case for d+ \cdot d - > 0 since the function \varphi (\cdot ) we are
interested in is nondecreasing. For the case d+ \cdot d - < 0, one can refer to [22, Theorem
3.3].

When | d+ - d - | is small and f is strongly semismooth, we know from Proposition
5.1 that the secant method converges with a fast linear rate and 3-step Q-quadratic
rate. We provide a numerical example slightly modified from [22, equation (3.15)] to
illustrate the convergence rates obtained in Proposition 5.1. We test Algorithm 5.1
with x - 1 = 0.01 and x0 = 0.005 for finding the zero x\ast = 0 of

f(x) =

\biggl\{ 
x(x+ 1) if x< 0,
 - \beta x(x - 1) if x\geq 0,

(5.3)

where \beta is chosen from \{ 1.1,1.5,2.1\} . The numerical results are shown in Table 1 and
coincide with our theoretical results.

Note that [22, Lemma 4.1] implies that the sequence \{ xk\} generated by Algorithm
5.1 converges suplinearly with R-order at least 3

\surd 
2. Next, we will prove that the

sequence \{ xk\} generated by Algorithm 5.1 converges superlinearly to a solution x\ast 

to (5.1) with R-order at least (1 +
\surd 
5)/2 when f is strongly semismooth at x\ast and

\partial f(x\ast ) is a singleton and nondegenerate.

Proposition 5.2. Let x\ast be a solution to (5.1). Let \{ xk\} be the sequence gener-
ated by Algorithm 5.1 for solving (5.1). For k\geq  - 1, denote ek := xk - x\ast , and assume
that | ek| > 0. For k \geq  - 1, denote ck := | ek| /(| ek - 1| | ek - 2| ). Assume that \partial f(x\ast ) is a
singleton and nondegenerate. It holds that

(i) if f is semismooth at x\ast , the sequence \{ xk\} converges to x\ast Q-superlinearly;
(ii) if f is strongly semismooth at x\ast , then either one of the following two prop-

erties is satisfied: (1) \{ xk\} converges to x\ast superlinearly with Q-order at
least (1+

\surd 
5)/2; (2) \{ xk\} converges to x\ast superlinearly with R-order at least

(1 +
\surd 
5)/2, and for any constant C > 0, there exists a subsequence \{ cik\} 

satisfying cik <Ci - ik
k .

Proof. Let \scrN and \scrU be the neighborhoods of x\ast specified in Proposition 5.1.
Assume that x - 1, x0 \in \scrU . Then Algorithm 5.1 is well defined, and it generates a
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2051

sequence \{ xk\} \subseteq \scrN which converges to x\ast . Denote \partial f(x\ast ) = \{ v\ast \} for some v\ast \not = 0.
Let d - and d+ be the lateral derivatives of f at x\ast as defined in (2.6). Then

d+ = d - = v\ast .

Let K1 be a sufficiently large integer. For all k\geq K1, we have

ek+1 = \delta f (x
k, xk - 1) - 1[\delta f (x

k, xk - 1) - \delta f (x
k, x\ast )]ek.(5.4)

(i) Assume that f is semismooth at x\ast . We estimate

\delta f (x
k, xk - 1) - 1[\delta f (x

k, xk - 1) - \delta f (x
k, x\ast )]

by considering the following two cases:
(i-a) xk, xk - 1 >x\ast or xk, xk - 1 <x\ast . From Lemma 2.2, we obtain that

| ek+1| = | \delta f (xk, xk - 1) - 1[\delta f (x
k, xk - 1) - \delta f (x

k, x\ast )]ek| 
= | (v\ast + o(1)) - 1[(v\ast + o(1)) - (v\ast + o(1))]ek| 
= o(| ek| ).

(i-b) xk - 1 < x\ast < xk or xk < x\ast < xk - 1. We will consider the first case. The
second case can be treated similarly. By Lemma 2.2, it holds that

\delta f (x
k, xk - 1) =

f(xk) - f(x\ast ) + f(x\ast ) - f(xk - 1)

xk  - xk - 1

=
(v\ast ek + o(| ek| )) - (v\ast ek - 1 + o(| ek - 1| ))

xk  - xk - 1

= v\ast + o(1).

Therefore,

| ek+1| = | \delta f (xk, xk - 1) - 1[\delta f (x
k, xk - 1) - \delta f (x

k, x\ast )]ek| 
= | (v\ast + o(1)) - 1| | (v\ast + o(1)) - (v\ast + o(1))| | ek| 
= o(| ek| ).

Thus, we prove that the sequence \{ xk\} converges to x\ast Q-superlinearly.
(ii) Now assume that f is strongly semismooth at x\ast . We build the recursion for

ek for sufficiently large integers k by considering the following two cases:
(ii-a) xk, xk - 1 >x\ast or xk, xk - 1 <x\ast . From Lemma 2.2, we obtain

| ek+1| = | \delta f (xk, xk - 1) - 1[\delta f (x
k, xk - 1) - \delta f (x

k, x\ast )]ek| 
= | v\ast +O(| ek| + | ek - 1| )|  - 1| (O(| ek| + | ek - 1| ))| | ek| 
=O(| ek| (| ek| + | ek - 1| )).

(ii-b) xk - 1 < x\ast < xk or xk < x\ast < xk - 1. We will consider the first case. The
second case can be treated similarly. By Lemma 2.2, it holds that

\delta f (x
k, xk - 1) =

f(xk) - f(x\ast ) + f(x\ast ) - f(xk - 1)

xk  - xk - 1

=
(v\ast ek +O(| ek| 2)) - (v\ast ek - 1 +O(| ek - 1| 2))

xk  - xk - 1

= v\ast +O(| ek| + | ek - 1| )
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2052 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

and

| ek+1| = | \delta f (xk, xk - 1) - 1[\delta f (x
k, xk - 1) - \delta f (x

k, x\ast )]ek| 
= | v\ast +O(| ek| + | ek - 1| )|  - 1| O(| ek| + | ek - 1| )| | ek| 
=O(| ek| (| ek| + | ek - 1| )).

Therefore, for sufficiently large integers k, we have

| ek+1| =O(| ek| 2 + | ek| | ek - 1| )(5.5)

and

limsup
k\rightarrow \infty 

ck =O(1/| v\ast | )<+\infty .(5.6)

Then there exists a constant \=C > 0 and a positive integer K2 such that

| ek+1| \leq \=C| ek| | ek - 1| \forall k\geq K2.

Therefore, it follows from [20, Theorem 9.2.9] that \{ xk\} converges to x\ast with R-order
at least (1 +

\surd 
5)/2.

If there exists a constant C > 0 such that ck \geq Ck - k for all k sufficiently large,
it follows from [21, Corollary 3.1] that \{ xk\} converges to x\ast Q-superlinearly with
Q-order at least (1 +

\surd 
5)/2. We complete the proof.

Proposition 5.3. Let p(\cdot ) be a polyhedral gauge function and \lambda \ast be the solution
to (E\varphi ). Assume that 0 < \lambda \infty < +\infty . If \partial \varphi (\lambda \ast ) is a singleton, the sequence \{ \lambda k\} 
generated by Algorithm 5.1 for solving (E\varphi ) converges to \lambda \ast Q-superlinearly with Q-
order at least (1 +

\surd 
5)/2.

Proof. The assumption that \partial \varphi (\lambda \ast ) is a singleton implies that \varphi (\cdot ) is strictly
differentiable at \lambda \ast [8, Proposition 2.2.4]. It follows from Theorem 4.2 that \varphi \prime (\lambda \ast )> 0
and that \varphi (\cdot ) is piecewise Ck for any positive integer k\geq 1 in a neighborhood of \lambda \ast .

Choose a sufficiently small \varsigma > 0 such that \scrN (\lambda \ast ) := (\lambda \ast  - \varsigma , \lambda \ast + \varsigma ) \subseteq (0, \lambda \infty )
and \scrB (\lambda ) \subseteq \scrB (\lambda \ast ) for any \lambda \in \scrN (\lambda \ast ). Denote \=\scrB =

\bigcup 
\lambda \in \scrN (\lambda \ast )\setminus \lambda \ast \scrB (\lambda ). Let K \in \=\scrB be

arbitrarily chosen. Define \varphi K :\BbbR \rightarrow \BbbR + by

\varphi K(s) :=
\sqrt{} 
\| PKb\| 2 + s2\| hK\| 2, s\in \BbbR .

By choosing a smaller \varsigma if necessary, we assume that \{ \varphi K\} K\in \=\scrB is a minimal local
representation for \varphi (\cdot ) at \lambda \ast . Therefore, it follows from [24, Theorem 2] that

\varphi \prime (\lambda \ast ) = (\varphi K)\prime (\lambda \ast ) = \lambda \ast \| hK\| 2/\varphi (\lambda \ast ) \forall K \in \=\scrB .

Since \varphi \prime (\lambda \ast )> 0, we have

\| hK\| = \| hK\prime 
\| , \| PKb\| = \| PK\prime 

b\| \forall K,K \prime \in \=\scrB .

Therefore, \varphi (\cdot ) is Ck on \scrN (\lambda \ast ) for any integer k \geq 1. It follows from [32, Example
6.1] that \{ \lambda k\} converges to \lambda \ast Q-superlinearly with Q-order at least (1 +

\surd 
5)/2.

We give the following example to show that a function satisfying the assumptions
in (ii) of Proposition 5.2 are not necessarily piecewise smooth:

f(x) =

\left\{   
\kappa x if x< 0,
 - 1

3

\bigl( 
1
4k

\bigr) 
+ (1+ 1

2k
)x if x\in 

\bigl[ 
1

2k+1 ,
1
2k

\bigr] 
\forall k\geq 0,

2x - 1
3 if x> 1,

(5.7)

where \kappa is a given constant.
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2053

Proposition 5.4. The function f defined in (5.7) is strongly semismooth at x= 0
but not piecewise smooth in the neighborhood of x= 0.

Proof. By the construction of f(\cdot ), we know that it is not piecewise smooth in the
neighborhood of x= 0 since there are infinitely many nondifferentiable points. Next,
we show that f is strongly semismooth at x= 0.

First, it is not difficult to verify that f is Lipschitz continuous with modulus
L = max\{ | \kappa | , 2\} . Second, we know that f \prime (0; - 1) = \kappa , and for any integer k \geq 0, it
holds that

1 +
1

3\times 2k
\leq f(x)/x\leq 

\biggl( 
1 +

1

3\times 2k - 1

\biggr) 
\forall x\in 

\biggl[ 
1

2k+1
,
1

2k

\biggr] 
,

which implies that

f \prime (x; 1) = lim
x\downarrow 0

f(x)/x= 1.

Therefore, f is directionally differentiable at x= 0. Note that both \partial f(0) and \partial Bf(0)
are singleton when \kappa = 1.

Next, we show that f(\cdot ) is strongly G-semismooth at x= 0. On the one hand, for
any x< 0, we have

| f(x) - f(0) - \kappa x| = | \kappa x - \kappa x| = 0.

On the other hand, for any integer k\geq 1 and x\in 
\bigl[ 

1
2k+1 ,

1
2k

\bigr] 
, we know that

1 + 2 - k \leq | v| \leq 1 + 21 - k \forall v \in \partial f(x),

which implies that

| f(x) - f(0) - v(x)x| =
\bigm| \bigm| \bigm| \bigm|  - 1

3

\biggl( 
1

4k

\biggr) 
+

\biggl( 
1 +

1

2k

\biggr) 
x - v(x)x

\bigm| \bigm| \bigm| \bigm| \leq 1

2k - 1
x\leq 4x2.

Therefore,

| f(x) - f(0) - v(x)x| =O(| x| 2) \forall x\rightarrow 0.

The proof of the proposition is completed.

We end this subsection by illustrating the numerical performance of Algorithm 5.1
for finding the root of f(x) given in (5.7) with \kappa = 1. Note that x\ast = 0 is the unique
solution. In Algorithm 5.1, we choose x0 = 0.5 and x - 1 = x0 + 0.1\times f(0.5)2 = 0.545.
The numerical results are shown in Table 2.

We can observe that the generated sequence \{ xk\} converges to the solution x\ast = 0
superlinearly with R-order at least (1 +

\surd 
5)/2.

Table 2
The numerical performance of Algorithm 5.1 on finding the zero of (5.7).

Iter 1 2 3 4 5 6 7 8

x 1.7e-1 3.6e-2 4.0e-3 1.0e-4 2.7e-7 2.0e-11 4.0e-18 6.1e-29

f(x) 1.9e-1 3.7e-2 4.0e-3 1.0e-4 2.7e-7 2.0e-11 4.0e-18 6.1e-29
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2054 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

Algorithm 5.2 A globally convergent secant method for (CP(\varrho )).

1: Input: A\in \BbbR m\times n, b\in \BbbR n, \mu \in (0,1), \lambda  - 1, \lambda 0, \lambda 1 in (0, \lambda \infty ) satisfying \varphi (\lambda 0)>\varrho ,
and \varphi (\lambda  - 1)<\varrho .

2: Initialization: Set i= 0, \lambda = \lambda  - 1, and \lambda = \lambda 0.
3: for k= 1,2, . . . do
4: Compute

\^\lambda k+1 = \lambda k  - 
\lambda k  - \lambda k - 1

\varphi (\lambda k) - \varphi (\lambda k - 1)
(\varphi (\lambda k) - \varrho ).(5.8)

5: if \^\lambda k+1 \in [\lambda  - 1, \lambda 0] then

6: Compute x(\^\lambda k+1) and \varphi (\^\lambda k+1). Set i= i+ 1.

7: if either (i) or (ii) holds: (i) i\geq 3 and | \varphi (\^\lambda k+1) - \varrho | \leq \mu | \varphi (\lambda k - 2) - \varrho | (ii)
i < 3, then set \lambda k+1 = \^\lambda k+1, x(\lambda k+1) = x(\^\lambda k+1); else go to line 9.

8: else

9: if \varphi (\^\lambda k+1)>\varrho , then set \lambda =min\{ \lambda , \^\lambda k+1\} ; else set \lambda =max\{ \lambda , \^\lambda k+1\} .
10: Set \lambda k+1 = 1/2(\lambda + \lambda ). Compute x(\lambda k+1) and \varphi (\lambda k+1). Set i= 0.
11: end if

12: if \varphi (\lambda k+1)>\varrho , then set \lambda =min\{ \lambda ,\lambda k+1\} ; else set \lambda =max\{ \lambda ,\lambda k+1\} .
13: end for
14: Output: x(\lambda k) and \lambda k.

5.2. A globally convergent secant method for (CP(\varrho )). In this section,
we propose a globally convergent secant method for solving (CP(\varrho )) via finding the
root of (E\varphi ). The algorithm is described in Algorithm 5.2.

Theorem 5.5. Let p(\cdot ) be a gauge function, and assume that 0<\lambda \infty <+\infty . De-
note \lambda \ast as the solution to (E\varphi ). Then Algorithm 5.2 is well defined, and the sequences
\{ \lambda k\} and \{ x(\lambda k)\} converge to \lambda \ast and a solution x(\lambda \ast ) to (CP(\varrho )), respectively. De-
note ek = \lambda k  - \lambda \ast for all k\geq 1. Suppose that both d+ and d - of \varphi (\cdot ) at \lambda \ast as defined
in (2.6) are positive. The following properties hold for all sufficiently large integer k:

(i) If \varphi (\cdot ) is semismooth at \lambda \ast , then | ek+3| = o(| ek| ).
(ii) If \varphi (\cdot ) is \gamma -order semismooth at \lambda \ast for some \gamma > 0, then | ek+3| =O(| ek| 1+\gamma ).
(iii) If \partial \varphi (\lambda \ast ) is a singleton and \varphi (\cdot ) is semismooth at \lambda \ast , then \{ ek\} converges to

zero Q-superlinearly; if p(\cdot ) is further assumed to be polyhedral and \partial \varphi (\lambda \ast ) is
a singleton, then \{ ek\} converges to zero superlinearly with Q-order (1+

\surd 
5)/2.

Proof. When p(\cdot ) is a gauge function, we know from Proposition 3.3 that \varphi (\cdot )
is strictly increasing on (0, \lambda \infty ], which implies that the sequences \{ \^\lambda k\} and \{ \lambda k\} 
generated in Algorithm 5.2 are well defined. For any k \geq 1, if we run the algorithm
for three more iterations, then it holds that either (a) (\lambda  - \lambda ) will reduce at least half
or (b) | \varphi (\lambda k+3) - \varrho | \leq \mu | \varphi (\lambda k) - \varrho | . Therefore, the sequence \{ \lambda k\} will converge to \lambda \ast .
Suppose that \varphi (\cdot ) is semismooth at \lambda \ast and that both d+ and d - are positive. We
know from Proposition 5.1 that there exists a positive integer kmax such that for all
k\geq kmax, \^\lambda k \in [\lambda  - 1, \lambda 0] and

| \^\lambda k+3  - \lambda \ast | = o(| \lambda k  - x\ast | ).(5.9)

Therefore, it follows from Lemma 2.2 that

| \varphi (\^\lambda k+3) - \varrho | 
| \varphi (\lambda k) - \varrho | 

=
\delta \varphi (\^\lambda k+3, \lambda 

\ast )

\delta \varphi (\lambda k, \lambda \ast )
\times | 

\^\lambda k+3  - \lambda \ast | 
| \lambda k  - \lambda \ast | 

\leq max\{ d+, d - \} + o(1)

min\{ d+, d - \} + o(1)
\times o(1).
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2055

Thus, for all k\geq kmax,

| \varphi (\^\lambda k+3) - \varrho | \leq \mu | \varphi (\lambda k) - \varrho | .

The rest of the proof of this theorem follows from Propositions 5.1 and 5.3.

To better illustrate the efficiency of Algorithm 5.2, we will compare its perfor-
mance to the HS-Jacobian--based semismooth Newton method for solving (E\varphi ) on
the least-squares constrained Lasso problem, where the HS-Jacobian is available. The
following proposition shows that for the least-squares constrained Lasso problem,
\partial HS\varphi (\=\lambda ) is positive for any \=\lambda \in (0, \lambda \infty ).

Proposition 5.6. Suppose that p(\cdot ) is a polyhedral gauge function and that \partial p(0)
has the expression as in (4.1). Assume that 0 < \lambda \infty < +\infty , and let \=\lambda \in (0, \lambda \infty ) be
arbitrarily chosen. Let \scrB (\=\lambda ) and \scrV (\=\lambda ) be the sets defined as in (4.10) and (4.13) for
\lambda = \=\lambda . If dK \not = 0 for all K \in \scrB (\=\lambda ), then v > 0 for all v \in \scrV (\=\lambda ). Moreover, dK \not = 0 for
all K \in \scrB (\=\lambda ) when p(\cdot ) = \| \cdot \| 1.

Proof. Recall that \scrB (\=\lambda ) is nonempty. Let K \in \scrB (\=\lambda ) be arbitrarily chosen. We
know that \widehat A:K is of full column rank. Denote hK = \widehat A:K( \widehat AT

:K
\widehat A:K) - 1dK \in \scrH (\=\lambda ). Since

dK \not = 0, it holds that

\| hK\| 2 = \langle \widehat A:K( \widehat AT
:K

\widehat A:K) - 1dK , \widehat A:K( \widehat AT
:K

\widehat A:K) - 1dK\rangle = \langle dK , ( \widehat AT
:K

\widehat A:K) - 1dK\rangle > 0.

Therefore, it follows from Lemma 4.1 and the facts \=\lambda > 0 and \langle PKb,hK\rangle = 0 that

\varphi (\=\lambda ) =
\sqrt{} 
\| PKb\| 2 + \=\lambda 2\| hK\| 2 > 0,

which implies that

vK = \=\lambda \| hK\| 2/\varphi (\=\lambda )\in \scrV (\=\lambda ) and vK > 0.

Since K \in \scrB (\=\lambda ) is arbitrarily chosen, we know that v > 0 for all v \in \scrV (\=\lambda ).
When p(\cdot ) = \| \cdot \| 1, the set \partial p(0) has the representation of

\partial p(0) = \{ u\in \BbbR n |  - 1\leq ui \leq 1, i\in [n]\} .

In other words, B = [In  - In]
T \in \BbbR 2n\times n and d = e2n. Therefore, dK \not = 0 for any

\=\lambda \in (0, \lambda \infty ) and K \in \scrB (\=\lambda ).
The numerical results in section 7 will show that the secant method and the

semismooth Newton method are comparable for solving the least-squares constrained
Lasso problem, which also demonstrates the high efficiency of the secant method even
for the case that the HS-Jacobian can be computed.

6. An AS-based secant method for (CP(\varrho )). A main computational chal-
lenge (especially for high-dimensional problems) for solving (E\varphi ) comes from com-
puting the function value of \varphi (\cdot ), which requires solving the optimization prob-
lem (PLS(\lambda )). To address this challenge, we will incorporate AS to Algorithm 5.2.

6.1. An AS technique for sparse optimization problems. We briefly in-
troduce the AS technique developed in [38] for solving sparse optimization problems
of the following form:

min
x\in \BbbR n

\{ \Phi (x) + P (x)\} ,(6.1)
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2056 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

where \Phi : \BbbR n \rightarrow \BbbR is a continuously differentiable convex function and P : \BbbR n \rightarrow 
( - \infty ,+\infty ] is a closed proper convex function. We assume that the convex composite
optimization problem (6.1) has at least one solution. Certainly, the optimization
problem (PLS(\lambda )) is a special case of (6.1). We define the proximal residual function
R :\BbbR n\rightarrow \BbbR n as

R(x) := x - ProxP (x - \nabla \Phi (x)), x\in \BbbR n.(6.2)

The norm of R(x) is a standard measurement for the quality of an obtained solution,
and x is a solution to (6.1) if and only if R(x) = 0.

Let I \subseteq [n] be an index set. We consider the following constrained optimization
problem with the index set I:

min
x\in \BbbR n

\{ \Phi (x) + P (x) | xIc = 0\} ,(6.3)

Algorithm 6.1 An AS strategy for solving (6.1).

1: Input: an initial index set I0 \subseteq [n], a given tolerance \epsilon \geq 0, and a given
positive integer kmax (e.g., kmax = 500).

2: Output: a solution x\ast to the problem (6.1) satisfying \| R(x\ast )\| \leq \epsilon .
3: 1. Find

x0 \in argmin
x\in \BbbR n

\Bigl\{ 
\Phi (x) + P (x) - \langle \delta 0, x\rangle | xIc

0
= 0

\Bigr\} 
,(6.4)

where \delta 0 \in \BbbR n is an error vector such that \| \delta 0\| \leq \epsilon and (\delta 0)Ic
0
= 0.

2. Compute R(x0), and set s= 0.
4: while \| R(xs)\| > \epsilon do
5: 3.1. Create Js+1 as

Js+1 =
\Bigl\{ 
j \in Ics | (R(xs))j \not = 0

\Bigr\} 
.(6.5)

If Js+1 = \emptyset , let Is+1\leftarrow Is; otherwise, let k be a positive integer satisfying
k\leq min\{ | Js+1| , kmax\} , and define

\widehat Js+1 =
\Bigl\{ 
j \in Js+1

\bigm| \bigm| | (R(xs))j | is among the first

k largest values in \{ | (R(xs))i| \} i\in Js+1

\Bigr\} 
.

Update Is+1 as

Is+1\leftarrow Is \cup \widehat Js+1.

6: 3.2. Solve the constrained problem

xs+1 \in argmin
x\in \BbbR n

\Bigl\{ 
\Phi (x) + P (x) - \langle \delta s+1, x\rangle | xIc

s+1
= 0

\Bigr\} 
,(6.6)

where \delta s+1 \in \BbbR n is an error vector such that \| \delta s+1\| \leq \epsilon and (\delta s+1)Ic
s+1

= 0.

7: 3.3: Compute R(xs+1), and set s\leftarrow s+ 1.
8: end while
9: return: Set x\ast = xs.
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2057

where Ic = [n]\setminus I is the complement of I. A key fact is that a solution to (6.3) is also
a solution to (6.1) if there exists a solution \=x to (6.1) such that supp(\=x)\subseteq I. The AS
technique is motivated by this fact. Specifically, starting with a reasonable guessing
I0 \subseteq [n], the AS technique is an adaptive strategy to refine the current index set Ik
based on a solution to (6.3) with I = Ik. We present the details of the AS technique
for solving (6.1) in Algorithm 6.1.

It is worthwhile mentioning that in Algorithm 6.1, the error vectors \delta 0, \{ \delta s+1\} in
(6.4) and (6.6) are not given but imply that the corresponding minimization problems
can be solved inexactly. We can just take \delta s = 0 (for s \geq 0) if we solve the reduced
subproblems exactly. The following proposition shows that we can obtain an inexact
solution by solving a reduced problem with a much smaller dimension.

Proposition 6.1 (see [38, Proposition 1]). For any given nonnegative integer s,
the updating rule of xs in Algorithm 6.1 can be interpreted in the procedure as follows.
Let Ms be a linear map from \BbbR | Is| to \BbbR n defined as

(Msz)Is = z, (Msz)Ic
s
= 0, z \in \BbbR | Is| ,

and \Phi s, P s be functions from \BbbR | Is| to \BbbR defined as \Phi s(z) := \Phi (Msz), P
s(z) := P (Msz)

for all z \in \BbbR | Is| . Then xs \in \BbbR n can be computed as

(xs)Is := ProxP s(\^z  - \nabla \Phi s(\^z)),

and (xs)Ic
s
= 0, where \^z is an approximate solution to the problem

min
z\in \BbbR | Is| 

\Bigl\{ 
\Phi s(z) + P s(z)

\Bigr\} 
,(6.7)

which satisfies

\| \^z  - ProxP s(\^z  - \nabla \Phi s(\^z)) +\nabla \Phi s(ProxP s(\^z  - \nabla \Phi s(\^z))) - \nabla \Phi s(\^z)\| \leq \epsilon ,(6.8)

and \epsilon is the parameter given in Algorithm 6.1.

The finite termination property of Algorithm 6.1 for solving (6.1) is shown in the
following proposition.

Proposition 6.2 (see [38, Theorem 1]). For any given initial index set I0 \subseteq [n]
and tolerance \epsilon \geq 0, the while loop in Algorithm 6.1 will terminate after a finite number
of iterations.

The high efficiency of the AS technique for solving a wide class of sparse opti-
mization problems in the form of (6.1) has been demonstrated in [38, 37, 15, 36].

6.2. An AS-based secant method for (CP(\varrho )). When applying the level-set
method to solve (CP(\varrho )), one needs to solve a sequence of regularized problems in the
form of (PLS(\lambda )) with \lambda \in \{ \lambda k\} k\geq 0 generated by the root-finding algorithm for solving
(E\varphi ). This naturally motivates us to incorporate Algorithm 6.1 into Algorithm 5.2
for solving the regularized least-squares problems in the form of (PLS(\lambda )) since we can
effectively construct an initial index set for the AS technique based on the solution
of the previous problem on the solution path. For the first problem on the solution
path, we will choose \lambda 0 to be relatively large such that its solution is highly sparse.
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2058 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

Algorithm 6.2 SMOP: A root-finding--based secant method for (CP(\varrho )).

1: Input: A\in \BbbR m\times n, b\in \BbbR n, \mu \in (0,1), 0<\lambda <\lambda 1 <\lambda 0 \leq \lambda \leq \lambda \infty satisfying
\varphi (\lambda )<\varrho <\varphi (\lambda ).

2: Step 1. Call Algorithm 6.1 with I0 = \emptyset to solve (PLS(\lambda )) with \lambda = \lambda 0, and
obtain the solution x(\lambda 0). Compute \varphi (\lambda 0).

3: while \varphi (\lambda k) \not = \varrho do
4: Step 2.1. Set k= k+ 1. Set Ik0 = \{ i\in [n] | (x(\lambda k - 1))i \not = 0\} .
5: Step 2.2. Call Algorithm 6.1 with I0 = Ik0 to solve (PLS(\lambda )) with \lambda = \lambda k to

obtain x(\lambda k), and compute \varphi (\lambda k).
6: Step 2.3. Generate \lambda k+1 by Algorithm 5.2.
7: end while
8: Step 3. Set \lambda \ast = \lambda k and x\ast = x(\lambda k).
9: Return: \lambda \ast and x\ast .

In such a way, we choose I0 = \emptyset in Algorithm 6.1 for the first problem. We present
the details in Algorithm 6.2.

We make some remarks before concluding this section. First, we can naturally
apply Algorithm 6.2 to efficiently generate a solution path for (CP(\varrho )) with a sequence
of noise-level controlling parameters \varrho 1 > \varrho 2 > \cdot \cdot \cdot > \varrho T > 0. Second, we know that
if we apply the AS technique to the level-set method based on (E\phi ), we may easily
encounter the infeasibility issue if \tau k+1 < \tau k in (1.1).

7. Numerical experiments. In this section, we will present numerical results
to demonstrate the high efficiency of our proposed SMOP. We will focus on solving
(CP(\varrho )) with two objective functions: (1) the \ell 1 penalty: p(x) = \| x\| 1, x \in \BbbR n; (2)
the sorted \ell 1 penalty: p(x) =

\sum n
i=1 \gamma i| x| (i), x \in \BbbR n, with given parameters \gamma 1 \geq \gamma 2 \geq 

\cdot \cdot \cdot \geq \gamma n \geq 0 and \gamma 1 > 0, where | x| (1) \geq | x| (2) \geq \cdot \cdot \cdot \geq | x| (n), which serve as illustrative
examples to highlight the efficiency of our algorithm. It is worthwhile mentioning
that the sorted \ell 1 penalty is not separable. For demonstration purposes only, we will
test the performance of SMOP when p(\cdot ) is a nonpolyhedral function at the end of
this section.

In our numerical experiments, we measure the accuracy of the obtained solution
\~x for (CP(\varrho )) by the following relative residual:

\eta :=
| \~\varphi  - \varrho | 

max\{ 1, \varrho \} 
,

where \~\varphi := \| A\~x - b\| . We test all algorithms on datasets from the UCI Machine
Learning Repository as in [16, 17], which are originally obtained from the LIBSVM
datasets [7]. Table 3 presents the statistics of the tested UCI instances. All our com-
putational results are obtained using MATLAB R2023a on a Windows workstation
with the following specifications: a 12-core Intel Core i7-12700 (2.10GHz) processor
and 64GB of RAM. In all the tables presented in this section, nnz(x) represents the
number of elements in the solution x obtained by SMOP (with a stopping tolerance of
10 - 6) for solving (CP(\varrho )) that have an absolute value greater than 10 - 8. In addition,
we denote BMOP (NMOP) as the root-finding--based bisection method (hybrid of the
bisection method and the semismooth Newton method) for solving the optimization
problem (CP(\varrho )).
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2059

Table 3
Statistics of the UCI test instances.

Problem idx Name m n Sparsity(A) Norm(b)

1 E2006.train 16087 150360 0.0083 452.8605
2 log1p.E2006.train 16087 4272227 0.0014 452.8605

3 E2006.test 3308 150358 0.0092 221.8758

4 log1p.E2006.test 3308 4272226 0.0016 221.8758
5 pyrim5 74 201376 0.5405 5.7768

6 triazines4 186 635376 0.6569 9.1455

7 bodyfat7 252 116280 1.0000 16.7594
8 housing7 506 77520 1.0000 547.3813

Table 4
The values of c to obtain \varrho = c\| b\| for the \ell 1 penalized problems with least-squares constraints.

In this table, cLS = \lambda \ast 

\| AT b\| \infty 
represents the regularization parameter for the corresponding P\mathrm{L}\mathrm{S}(\lambda 

\ast ),

where the optimal solution \lambda \ast to \varphi (\lambda ) = \varrho is obtained by SMOP.

Test idx 1 2 3 4 5 6 7 8

I c 0.1 0.1 0.08 0.08 0.05 0.1 0.001 0.1

nnz(x) 339 110 246 405 79 655 107 148

cLS 2.6-7 2.8-4 4.2-7 2.1-4 5.7-3 2.8-3 1.1-6 1.3-3

II c 0.09 0.09 0.06 0.06 0.015 0.03 0.0001 0.04
nnz(x) 1387 1475 884 1196 92 497 231 377

cLS 1.1-7 6.2-5 1.7-7 9.6-5 3.0-4 5.6-5 3.8-8 3.0-5

7.1. The \ell 1 penalized problems with least-squares constraints. In this
subsection, we focus on the problem (CP(\varrho )) with p(\cdot ) = \| \cdot \| 1. We will compare
the efficiency of SMOP to the state-of-the-art SSNAL-LSM algorithm [17], SPGL1
solver [33, 35], and ADMM. Moreover, we perform experiments to demonstrate that
our secant method is considerably more efficient than the bisection method for root
finding while performing on par with the semismooth Newton method, where the
HS-Jacobian is computable.

In practice, we have multiple choices for solving the subproblems in SMOP. In
our experiments, we utilized the squared smoothing Newton method [23, 12] and
SSNAL to solve the subproblems in SMOP. The maximum number of iterations for
SPGL1, SSNAL, and ADMM is set to 100,000, while for SMOP and SSNAL-LSM,
the maximum number of iterations of the outermost loop is set to 200. Additionally,
we have set the maximum running time to 1 hour. To select \varrho , we use the values of c
in Table 4 for each instance listed in Table 3 and let \varrho = c\| b\| . Finally, we point out
that the AS technique is not employed in the SSNAL-LSM.

We compare SMOP to SPGL1, SSNAL-LSM, and ADMM to solve (CP(\varrho )) with
the tolerances of 10 - 4 and 10 - 6, respectively. The test results are presented in Ta-
ble 5. These results indicate that SMOP successfully solves all the tested instances
and outperforms SSNAL-LSM, SPGL1, and ADMM. It can be seen from Table 5
that SMOP can achieve a speedup of up to 1,000 times compared to SPGL1 for the
problems that can be solved by SPGL1 (a significant number of instances cannot be
solved by SPGL1 to the required accuracy). Regarding ADMM, SMOP remains signif-
icantly superior in terms of efficiency for all cases, with a speedup of over 1,300 times.
Furthermore, compared to SSNAL-LSM, SMOP also shows vast superiority, with ef-
ficiency improvements up to more than 260 times. Note that SPGL1 has two modes:
the primal mode (denoted by SPGL1) and the hybrid mode (denoted by SPGL1 H).
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2060 QIAN LI, DEFENG SUN, AND YANCHENG YUAN

Table 5
The performance of SMOP (A1), SSNAL-LSM (A2), SPGL1(A3), and ADMM (A4) in solving

the \ell 1 penalized problems with least-squares constraints (CP(\varrho )) with \varrho = c\| b\| , where the specific
value of c for each problem is listed in Table 4. In the table, the underline is used to mark cases
where the algorithm fails to reach the given tolerance. For simplicity, we omit the ``e"" in the scientific
notation.

Time (s) \eta Outermost iter

idx A1 | A2 | A3 | A4 A1 | A2 | A3 | A4 A1 | A2 | A3 | A4

Test I with stoptol = 10 - 4

1 1.39+0 | 2.18+2 | 3.51+2 | 4.22+2 2.3-5 | 4.9-5 | 1.0-4 | 1.0-4 24 | 29 | 7342 | 2049
2 2.29+0 | 5.12+2 | 1.45+3 | 6.84+2 3.1-6 | 7.8-5 | 9.0-5 | 8.7-5 12 | 16 | 3445 | 1470
3 4.02 - 1 | 5.83+1 | 3.21+2 | 8.87+1 9.4-6 | 2.6-5 | 1.0-4 | 1.0-4 24 | 30 | 21094 | 4918
4 1.59+0 | 2.06+2 | 7.19+2 | 9.90+1 1.2-5 | 7.3-5 | 9.5-5 | 1.3-5 13 | 15 | 3174 | 854
5 2.73 - 1 | 1.20+1 | 9.81+0 | 5.63+0 6.9-6 | 5.4-6 | 7.4-5 | 2.2-5 6 | 14 | 498 | 273
6 2.32+0 | 1.74+2 | 3.35+2 | 1.01+2 5.8-6 | 4.4-5 | 9.1-5 | 7.5-5 9 | 17 | 1987 | 571
7 4.35 - 1 | 9.12+0 | 8.98+0 | 8.59+0 2.8-5 | 5.9-5 | 9.8-5 | 9.9-5 15 | 18 | 539 | 583
8 2.99 - 1 | 9.07+0 | 1.29+1 | 7.94+0 2.6-5 | 8.6-5 | 1.0-4 | 9.0-5 10 | 14 | 515 | 424

Test I with stoptol = 10 - 6

1 1.45+0 | 3.22+2 | 1.51+3 | 7.06+2 2.5-7 | 6.1-8 | 9.9-7 | 1.0-6 25 | 36 | 28172 | 3539
2 2.52+0 | 6.68+2 | 1.75+3 | 3.42+3 9.9-8 | 3.5-8 | 9.2-7 | 9.9-7 13 | 24 | 4155 | 8725
3 4.12 - 1 | 7.40+1 | 2.11+3 | 1.81+2 1.1-8 | 2.3-7 | 6.2-6 | 1.0-6 25 | 35 | 100000 | 10100
4 1.72+0 | 3.40+2 | 1.04+3 | 4.03+2 1.3-9 | 5.7-7 | 7.2-7 | 7.9-7 14 | 26 | 4584 | 3820
5 2.93 - 1 | 1.61+1 | 4.58+1 | 3.95+2 1.0-7 | 6.0-8 | 9.1-7 | 9.8-7 7 | 19 | 2468 | 20155
6 2.47+0 | 2.13+2 | 8.24+2 | 2.31+3 3.0-7 | 4.0-7 | 8.2-7 | 3.4-7 10 | 23 | 5578 | 13672
7 4.68 - 1 | 1.18+1 | 9.11+0 | 1.85+1 1.9-9 | 9.6-7 | 2.7-7 | 9.9-7 17 | 22 | 544 | 1250
8 3.28 - 1 | 1.45+1 | 3.84+1 | 4.40+1 2.4-7 | 8.4-8 | 4.0-7 | 8.7-7 11 | 24 | 1539 | 2427

Test II with stoptol = 10 - 4

1 7.26+0 | 4.51+2 | 1.38+3 | 6.12+2 3.0-6 | 4.6-5 | 1.0-4 | 1.0-4 26 | 30 | 27775 | 3014
2 6.79+0 | 1.54+3 | 1.32+3 | 4.01+2 1.8-5 | 3.6-5 | 9.7-5 | 6.8-5 14 | 21 | 3000 | 733
3 3.51+0 | 1.84+2 | 1.50+3 | 1.34+2 1.3-5 | 2.3-5 | 8.7-2 | 1.0-4 25 | 29 | 100000 | 7333
4 2.91+0 | 6.91+2 | 6.23+2 | 4.94+1 7.5-6 | 3.6-6 | 9.6-5 | 5.8-5 14 | 22 | 2694 | 385
5 6.23 - 1 | 1.53+1 | 8.65+0 | 2.01+1 2.8-5 | 7.9-6 | 6.6-5 | 9.5-5 9 | 13 | 395 | 1000
6 9.02+0 | 3.46+2 | 3.60+3 | 3.82+2 6.8-6 | 3.7-5 | 7.6-2 | 9.9-5 12 | 17 | 24924 | 2232
7 1.50+0 | 1.59+1 | 3.06+2 | 3.39+1 1.6-5 | 8.7-6 | 9.9-5 | 9.8-5 12 | 18 | 19820 | 2340
8 2.37+0 | 1.90+1 | 1.69+2 | 1.19+1 1.4-6 | 8.9-5 | 9.1-5 | 9.8-5 13 | 18 | 5914 | 644

Test II with stoptol = 10 - 6

1 7.23+0 | 5.96+2 | 3.60+3 | 8.82+2 3.7 - 9 | 2.9-7 | 3.6-2 | 1.0-6 27 | 35 | 62384 | 4453
2 7.37+0 | 1.85+3 | 2.04+3 | 1.46+3 1.4 - 7 | 3.9-7 | 9.7-7 | 1.0-7 15 | 27 | 4688 | 3464
3 3.59+0 | 2.36+2 | 1.49+3 | 1.99+2 8.1-10 | 8.3-7 | 8.7-2 | 1.0-6 26 | 36 | 100000 | 11051
4 3.02+0 | 8.44+2 | 1.37+3 | 2.18+2 3.1 - 9 | 4.3-7 | 9.9-7 | 6.0-7 15 | 28 | 5912 | 1980
5 6.37 - 1 | 2.49+1 | 4.14+2 | 1.48+2 2.4 - 7 | 3.0-8 | 8.7-7 | 9.7-7 10 | 22 | 22091 | 7592
6 9.37+0 | 4.25+2 | 3.60+3 | 3.60+3 5.4-11 | 6.7-7 | 7.5-2 | 1.2-7 14 | 22 | 25158 | 21556
7 1.59+0 | 2.09+1 | 3.37+2 | 8.54+1 3.2 - 7 | 1.9-8 | 8.8-7 | 9.7-7 13 | 23 | 21523 | 5817
8 2.39+0 | 2.68+1 | 1.65+3 | 3.34+1 4.5 - 7 | 6.9-7 | 8.8-7 | 9.8-7 14 | 26 | 59147 | 1834

We do not print the results of SPGL1 H since SPGL1 outperforms SPGL1 H in most
of the cases in our tests.

Subsequently, we perform numerical experiments to compare the performance of
the secant method to the bisection method and the HS-Jacobian--based semismooth
Newton method for finding the root of (E\varphi ) to further illustrate the efficiency of
SMOP. Figure 1 presents the ratio of the computation time between BMOP and
NMOP to the computation time of SMOP on solving (CP(\varrho )) for some instances. The
numerical results show that SMOP easily beats BMOP, with a large margin when a
higher-precision solution is required. The results also reveal that SMOP performs
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AN EFFICIENT SIEVING-BASED SECANT METHOD 2061

Test I

Test II

Fig. 1. The ratio of the computation time between BMOP (B) and NMOP (N) to the compu-
tation time of SMOP in solving (CP(\varrho )) with the \ell 1 regularization.

comparably to NMOP for solving the \ell 1 penalized least-squares constrained problem,
in which the HS-Jacobian is computable. This is more strong evidence to illustrate
the efficiency of SMOP.

Next, we perform tests on BMOP and SMOP to generate a solution path for
(CP(\varrho )) involving multiple choices of tuning parameters \varrho > 0. In this test, we solve
(CP(\varrho )) with \varrho i = ci \cdot c\| b\| , i= 1, . . . ,100, where ci = 1.5 - 0.5\times (i - 1)/99 and c is the
same constant as in Table 4. In this test, we apply the warm-start strategy to both
algorithms. The average iteration numbers of BMOP and SMOP and the ratio of the
computation time of BMOP to the computation time of SMOP are shown in Figure
2 with a tolerance of 10 - 6. From this figure, it is evident that utilizing the secant
method for root finding significantly reduces the number of iterations by around 4
times. The reduction in iterations results in a substantial decrease in computation
time for SMOP, which is typically less than one-third of the time required by BMOP.

7.2. The sorted \ell 1 penalized problems with least-squares constraints.
In this subsection, we will present the numerical results of SMOP in solving the
sorted \ell 1 penalized problems with least-squares constraints (CP(\varrho )). For comparison
purposes, we also conducted tests on Newt-ALM-LSM (similar to SSNAL-LSM but
with the subproblems solved by Newt-ALM [18]) and ADMM for (CP(\varrho )).

In our numerical experiments, we choose the parameters \gamma i = 1 - (i - 1)/(n - 1), i=
1, . . . , n, in the sorted \ell 1 penalty function p(x) =

\sum n
i=1 \gamma i| x| (i), x\in \BbbR n. The maximum

iteration number is set to 200 for SMOP and Newt-ALM-LSM and 100,000 for ADMM.
The subproblems in SMOP are solved by Newt-ALM in this test. In all experiments
within this subsection, the stopping tolerance is set to 10 - 6. The results obtained with
a tolerance of 10 - 4 are similar to those obtained with a tolerance of 10 - 6; therefore,
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Test I Test II

Fig. 2. The performance of BMOP and SMOP in generating a solution path for (CP(\varrho )) with
the \ell 1 regularization and stopping tolerance 10 - 6.

Table 6
The performance of SMOP (A1), Newt-ALM-LSM (A2), and ADMM (A4) in solving the sorted

\ell 1 penalized problems with least-squares constraints (CP(\varrho )) with \varrho = c\| b\| . In the table, cLS =
\lambda \ast 

\| AT b\| \infty 
represents the regularization parameter for the corresponding P\mathrm{L}\mathrm{S}(\lambda 

\ast ), where the optimal

solution \lambda \ast to \varphi (\lambda ) = \varrho is obtained by SMOP. The stopping tolerance is set to 10 - 6, and the underline
is used to mark cases where the algorithm fails to reach the given tolerance. For simplicity, we omit
the ``e"" in the scientific notation.

Time (s) \eta Outermost iter

idx c | nnz(x) | cLS A1 | A2 | A4 A1 | A2 | A4 A1 | A2 | A4

Test I

2 0.15 | 3 | 2.4-2 3.84+0 | 1.34+2 | 3.60+3 1.1-7 | 5.3-7 | 2.8-1 8 | 21 | 8637
4 0.1 | 3 | 4.8-3 4.79+0 | 1.35+2 | 3.60+3 6.0-7 | 8.9-7 | 2.9-4 10 | 17 | 28891
5 0.1 | 113 | 1.9-2 6.29 - 1 | 4.98+1 | 4.23+2 1.0-7 | 4.5-7 | 1.5-7 7 | 22 | 17974
6 0.15 | 413 | 1.0-2 3.10+0 | 2.43+2 | 3.60+3 2.7-7 | 1.6-7 | 1.9-4 9 | 21 | 19071
7 0.002 | 22 | 1.9-5 3.56 - 1 | 1.67+1 | 2.44+1 3.6-9 | 6.0-7 | 9.9-7 14 | 22 | 1616
8 0.15 | 95 | 6.9-3 6.06 - 1 | 2.55+1 | 1.57+2 1.3-7 | 7.7-7 | 9.0-7 10 | 23 | 8329

Test II

1 0.1 | 339 | 2.6-7 2.53+1 | 1.40+2 | 5.13+2 2.9-7 | 5.6-7 | 1.0-6 25 | 34 | 2490
2 0.095 | 629 | 1.0-4 5.39+1 | 4.82+2 | 2.87+3 1.7-7 | 2.9-7 | 9.4-7 17 | 27 | 6770
3 0.08 | 246 | 4.2-7 4.98+0 | 6.54+1 | 1.60+2 2.0-8 | 7.1-7 | 1.0-6 25 | 36 | 8491
4 0.07 | 758 | 1.4-4 2.26+1 | 4.26+2 | 5.86+2 4.0-8 | 9.0-7 | 9.8-7 16 | 27 | 4550
5 0.02 | 95 | 5.7-4 2.05+0 | 9.87+1 | 3.58+2 3.2-8 | 5.6-7 | 7.6-7 11 | 20 | 15582
6 0.05 | 997 | 5.5-4 2.32+1 | 1.04+3 | 3.60+3 8.4-7 | 2.1-7 | 3.5-6 10 | 23 | 19159
7 0.001 | 107 | 1.1-6 1.02+0 | 2.85+1 | 1.30+1 5.9-8 | 6.9-9 | 9.5-7 17 | 22 | 826
8 0.08 | 206 | 4.3-4 3.38+0 | 1.03+2 | 5.58+1 5.7-9 | 7.4-7 | 3.8-7 13 | 25 | 2842

we will not present them in order to save space. We set \varrho = c\| b\| , where the values
of c are specified in Table 6. The numerical results are presented in Table 6. From
the table, it is evident that SMOP outperforms Newt-ALM-LSM and ADMM for all
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Fig. 3. The ratio of the computation time between BMOP to the computation time of SMOP
in solving (CP(\varrho )) with the sorted \ell 1 regularization.

the cases. More specifically, SMOP can be up to around 80 times faster than Newt-
ALM-LSM and up to more than 600 times faster than ADMM for the problems that
can be solved by ADMM. Additionally, Figure 3 presents the computation time ratio
between BMOP and SMOP for both Test I and Test II. This also demonstrates the
significance of the secant method in root finding for achieving higher efficiency.

7.3. A group Lasso penalized problems with least-squares constraints.
In this subsection, we will present the numerical experiments conducted to solve a
group Lasso penalized problems with least-squares constraints. The purpose of this
demonstration is to illustrate the potential and high efficiency of our proposed secant
method in solving the equation \varphi (\lambda ) = \varrho for the nonpolyhedral function penalized
problems with least-squares constraints. We will compare our algorithm, SMOP, with
other state-of-the-art algorithms to demonstrate its high efficiency and robustness.

We consider the following penalty function p(\cdot ) in this subsection:

p(x) =

l\sum 
t=1

\sqrt{} 
x2
2t - 1 + x2

2t, x\in \BbbR 2l.(7.1)

For the purpose of demonstration, we will keep using the UCI dataset that was utilized
in the previous two subsections. However, it is necessary to ensure that the value of n
is even. Next, we group the ith and (i+1)th elements together for all i= 1,3, \cdot \cdot \cdot , n - 1.
The values of c utilized to obtain \varrho = c\| b\| are presented in Table 7. In SMOP, the
subproblems are solved by SSNAL [39]. The maximum iteration number for both
SMOP and SSNAL-LSM is set to 200, while for SPGL1 and ADMM, their maximum
iteration number is set to 100,000. As for the maximum running time, it remains set
at 1 hour. Next, we will compare SMOP with the state-of-the-art algorithms SSNAL-
LSM, SPGL1, and ADMM. The results of the tests are presented in Table 8. From the
table, it is evident that SMOP outperforms SSNAL-LSM, SPGL1, and ADMM with
speedups of up to 300, 900, and 1,100, respectively. In addition, Figure 4 illustrates the
ratio of computation time between BMOP and SMOP. This figure clearly shows that
using the secant method can greatly enhance overall efficiency, resulting in a speed
improvement of approximately 1.5--4 times, even when dealing with the nonpolyhedral
penalty function (7.1).

8. Conclusion. In this paper, we have designed an efficient sieving-based secant
method for solving (CP(\varrho )). When p(\cdot ) is a polyhedral gauge function, we have
proven that for any \=\lambda \in (0, \lambda \infty ), all v \in \partial \varphi (\=\lambda ) are positive. Consequently, when
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Table 7
The values of c to obtain \varrho = c\| b\| for the group Lasso penalized problems with least-squares con-

straints. In the table, cLS = \lambda \ast 

\| AT b\| \infty 
represents the regularization parameter for the corresponding

P\mathrm{L}\mathrm{S}(\lambda 
\ast ), where the optimal solution \lambda \ast to \varphi (\lambda ) = \varrho is obtained by SMOP.

idx c nnz(x) cLS

Test I 4 0.1 6 4.4-3

5 0.1 50 2.4-2

6 0.15 138 1.3-2
7 0.002 28 2.4-5

8 0.15 66 8.4-3

Test II 1 0.105 95 7.5-7

3 0.08 403 4.3-7

4 0.08 731 2.2-4
5 0.02 120 9.1-4

6 0.05 372 6.3-4
7 0.001 186 1.3-6

8 0.08 260 4.9-4

Table 8
The performance of SMOP (A1), SSNAL-LSM (A2), SPGL1 (A3), and ADMM (A4) in solv-

ing the group Lasso penalized problems with least-squares constraints (CP(\varrho )) with \varrho = c\| b\| . The
stopping tolerance is set to 10 - 6, and the underline is used to mark cases where the algorithm fails
to reach the given tolerance. For simplicity, we omit the ``e"" in the scientific notation.

Time (s) \eta Outermost iter

idx A1 | A2 | A3 | A4 A1 | A2 | A3 | A4 A1 | A2 | A3 | A4

Test I

4 3.75+0 | 1.16+2 | 8.49+2 | 3.60+3 1.3 - 7 | 3.1-7 | 6.37-7 | 7.2-5 11 | 21 | 3024 | 22125
5 8.14 - 1 | 2.74+2 | 2.96+1 | 9.16+2 1.4 - 9 | 3.5-7 | 6.05-7 | 1.0-6 11 | 21 | 1319 | 38530
6 5.19+0 | 1.46+3 | 1.70+2 | 3.02+3 3.2-10 | 4.5-7 | 5.98-7 | 9.8-7 10 | 22 | 1086 | 15768
7 5.98 - 1 | 8.80+0 | 3.02+1 | 2.59+1 3.7 - 8 | 5.0-7 | 2.07-7 | 1.0-6 14 | 19 | 2102 | 1627
8 6.88 - 1 | 1.41+2 | 8.30+0 | 1.19+2 1.8 - 8 | 2.6-7 | 2.46-7 | 9.6-7 9 | 22 | 334 | 6211

Test II

1 3.29+0 | 4.33+1 | 3.18+3 | 1.12+3 2.7-7 | 2.7-7 | 9.8-7 | 1.0-6 24 | 29 | 55596 | 5826
3 3.83+0 | 3.00+1 | 2.06+3 | 2.57+2 1.3-7 | 3.4-7 | 3.8-6 | 1.0-6 22 | 36 | 100000 | 13031
4 2.97+1 | 2.42+3 | 1.19+3 | 5.86+2 5.2-7 | 9.6-9 | 8.6-7 | 7.4-7 13 | 27 | 4241 | 3401
5 1.70+0 | 1.29+2 | 3.30+2 | 9.27+1 8.0-7 | 1.7-8 | 8.9-7 | 6.5-7 9 | 20 | 18001 | 3959
6 2.51+1 | 1.39+3 | 3.60+3 | 3.60+3 1.3-8 | 1.4-7 | 5.8-5 | 2.6-7 11 | 22 | 20646 | 19075
7 1.22+0 | 1.88+1 | 5.99+2 | 2.69+1 5.3-8 | 2.1-8 | 6.9-7 | 9.9-7 15 | 23 | 41578 | 1685
8 5.75+0 | 1.47+2 | 1.14+2 | 1.94+2 2.5-7 | 3.7-7 | 4.4-7 | 9.8-7 15 | 25 | 4373 | 9974

Fig. 4. The ratio of the computation time between BMOP to the computation time of SMOP
in solving (CP(\varrho )) with the group Lasso regularization.
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p(\cdot ) is a polyhedral gauge function, the secant method can solve (E\varphi ) with at least
a 3-step Q-quadratic convergence rate. We have demonstrated the high efficiency
of our method for solving (CP(\varrho )) by two representative instances, specifically, the
\ell 1 and the sorted \ell 1 penalized constrained problems. It is worth mentioning that
to the best of our knowledge, calculating \partial HS\varphi (\cdot ) or \partial \varphi (\cdot ) is not an easy task for
the sorted \ell 1 penalized constrained problems. Moreover, our numerical results on
the \ell 1 penalized constrained problems, in which the \partial HS\varphi (\cdot ) is computable as shown
in Proposition 5.6, have verified that the efficiency of SMOP is not compromised
compared to the performance of the HS-Jacobian--based semismooth Newton method.
This motivates us to use the secant method instead of the semismooth Newton method
for solving (E\varphi ) regardless of the availability of the generalized Jacobians. For future
research, we will investigate the properties of \varphi (\cdot ) for nonpolyhedral functions p(\cdot ),
particularly when the nondegenerate condition does not hold.

Acknowledgments. The authors would like to thank the referees and the asso-
ciate editor for their valuable suggestions to improve the quality of this paper. Thanks
also go to Mr. Jiaming Ma at The Hong Kong Polytechnic University for his helpful
discussions on the proof of Proposition 3.3(ii).
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