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SEMISMOOTH HOMEOMORPHISMS AND STRONG STABILITY OF
SEMIDEFINITE AND LORENTZ COMPLEMENTARITY PROBLEMS

JONG-SHI PANG, DEFENG SUN, and JIE SUN

Based on an inverse function theorem for a system of semismooth equations, this paper establishes
several necessary and sufficient conditions for an isolated solution of a complementarity problem
defined on the cone of symmetric positive semidefinite matrices to be strongly regular/stable. We
show further that for a parametric complementarity problem of this kind, if a solution corresponding
to a base parameter is strongly stable, then a semismooth implicit solution function exists whose
directional derivatives can be computed by solving certain affine problems on the critical cone at the
base solution. Similar results are also derived for a complementarity problem defined on the Lorentz
cone. The analysis relies on some new properties of the directional derivatives of the projector onto
the semidefinite cone and the Lorentz cone.

1. Introduction. The concept of a strongly regular solution to a generalized equation
introduced by Robinson (1980) and the related concept of a strongly stable stationary point
of a differentiable nonlinear program (NLP) introduced by Kojima (1980) are two of the
most important ideas in contemporary perturbation analysis of mathematical programming
problems. Beginning with Jongen et al. (1987), many authors have established the equiv-
alence between these two concepts for the Karush-Kuhn-Tucker (KKT) system of a non-
linear program with finitely many twice differentiable functions. The article by Klatte and
Kummer (1999) presents a unified framework that handles both concepts simultaneously
and contains a brief bibliographical note. For an excellent survey of perturbation analysis
of optimization problems, see the review by Bonnans and Shapiro (1998) and their com-
prehensive monograph (Bonnans and Shapiro 2000).
Extending the seminal work of Robinson and Kojima mentioned above, many authors

have investigated the solution stability of variational inequalities (VIs); see, e.g., Dontchev
and Rockafellar (1996), which characterizes strong stability in linearly constrained VIs in
terms of the “Aubin property.” For a comprehensive treatment of the subject of solution
stability of VIs, we refer the reader to Facchinei and Pang (2003, Chapter 4). As explained
in Liu (1995), there are substantial differences between the sensitivity and stability analysis
of an NLP and that of a VI. Most importantly, the lack of symmetry in the defining function
of a VI invalidates a straightforward optimization approach for such analysis. Focusing on
an NLP, Kojima was the first person to utilize degree theory on a nondifferentiable system
of equations to derive stability results in mathematical programming. Kojima’s equation
approach turns out to be very fruitful for the sensitivity and stability study of the VI and the
related complementarity problem (CP). The forthcoming monograph (Facchinei and Pang
2003) contains a long chapter on this subject, which is developed based on the equation
approach and degree theory; there are many references in the bibliography therein. Among
its many applications, the strong stability of a solution to a VI plays a very important
role in the derivation of optimality conditions for mathematical programs with equilibrium
constraints; see Luo et al. (1996) and Outrata et al. (1998).
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As evidenced in Kojima’s classic paper, the strong stability and strong regularity con-
cepts are intimately related to inverse and implicit function theorems for systems of non-
smooth equations. This connection was further illustrated in the work of Robinson (1991),
who obtained an implicit function theorem of a B-differentiable equation under a cru-
cial strong B-differentiability assumption. Prior to Robinson, Clarke (1983) established an
implicit function theorem for a locally Lipschitz continuous function under a nonsingular-
ity assumption on the generalized Jacobian matrices that he championed. Kummer (1989,
1991a, 1991b) obtained a complete characterization of a locally Lipschitz homeomorphism
in terms of a set of directional-derivative-like vectors and applied the results to nonsmooth
parametric optimization. To date, the application of Kummer’s implicit function theorem to
the VI has not been fruitfully explored.

Nonsmooth implicit/inverse function theorems. While the assumption in Clarke’s
implicit function theorem is very restrictive, the orignal application of Robinson’s implicit
function theorem for a strongly B-differentiable function to the VI was essentially restricted
to a linearly constrained problem (Robinson 1980). The restrictiveness of the strong
B-differentiability was first noted by Kuntz and Scholtes (1994), who wrote that “strong
B-differentiability is a rather restrictive requirement for piecewise differentiable functions”;
in the same paper, they also showed that “generically a piecewise differentiable function can
be locally transformed into a B-differentiable function by means of a piecewise differen-
tiable homeomorphism.” These results allow these two authors to obtain “structural inverse
function theorems for piecewise differentiable functions.” When applied to a VI defined
by finitely many differentiable convex functions, Kuntz and Scholtes assumed that “every
collection of at most n of the (active constraint gradients) are linearly independent.”
About the same time as Kuntz and Scholtes (1994), Pang and Ralph (1996) employed

degree theory to obtain an implicit function theorem for a piecewise smooth function and
applied it to the parametric analysis of normal maps defined on nonpolyhedral sets satisfying
Janin’s constant-rank constraint qualification (CRCQ). The latter CQ is much broader than
the assumption used by Kuntz and Scholtes (e.g., linear constraints naturally satisfy the
CRCQ but not necessarily the Kuntz-Scholtes condition). Subsequently, Ralph and Scholtes
(1997) extended the Pang-Ralph theorem to a composite piecewise smooth function.
Ideally, a complete inverse (or implicit) function theorem should contain the following

two ingredients: (1) conditions on a “first-order approximation” of the base function that
are necessary and sufficient for the existence and uniqueness of the inverse (or implicit)
function, and (2) inheritance of continuity and differentiability properties of the inverse
(or implicit) function from the given function. The Pang-Ralph implicit/inverse function
theorem for piecewise differentiable functions is complete in this sense. Our main contri-
bution in this paper is twofold: one, to provide such a theorem for the class of vector semi-
smooth functions (Mifflin 1977, Qi and Sun 1993); and two, more importantly, to apply the
theorem to complementarity problems defined on the cone of symmetric positive semidef-
inite matrices and on the Lorentz cone, thereby obtaining necessary and sufficient condi-
tions for the strong stability/regularity of a solution to such a complementarity problem in
terms of a canonically linearized complementarity subproblem of the same kind. The latter
application is made possible by recent results that establish the semismoothness of metric
projections onto these cones: For the cone of symmetric positive semidefinite matrices, see
Sun and Sun (2002); for the Lorentz cone, see Chen et al. (2003).
The inverse function Theorem 6 and the implicit function Corollary 8 for semismooth

functions that we establish later in this paper are a synthesis of various known results in
the literature, which by themselves are not complete in the aforementioned sense. Specifi-
cally, in his habilitation thesis, Scholtes (1994, part 1 of Theorem 3.2.3) showed that if a
“B-differentiable” vector function � is a “locally Lipschitz homeomorphism” at a point x,
then its “B-derivative” is a Lipschitz homeomorphism”; moreover, the local inverse of �
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is B-differentiable at ��x� and its B-derivative is the inverse of the directional derivative
�′�x� ·�. (The latter result is contained in the earlier paper by Kummer 1992, Lemma 2.)
Scholtes’ result is not a complete inverse function theorem because it does not provide
sufficient conditions on the B-derivative �′�x� ·� (which is a pointwise first-order approx-
imation of a B-differentiable function) for � to be a locally Lipschitz homeomorphism.
To be fair, the converse of Scholtes’ result (i.e., the Lipschitz homeomorphism of �′�x� ·�
implying the locally Lipschitz homeomorphism of � at x) does not hold in general. In
fact, a major contribution of our work is to show that if � is semismooth in the sense of
Definition 4, then the converse in question is valid under a certain technical assumption
relating the B-subdifferential �B��x� of � at x to that of �′�x� ·� at the origin; see (8) in
Theorem 6. This assumption first appears in Pang and Ralph (1996) for the class of piece-
wise differentiable functions.
Within the class of “H-differentiable” functions introduced in Tawhid and Gowda (2000),

Gowda (2000) obtained inverse and implicit functions theorems that are in the spirit of
Pang and Ralph (1996) but not quite complete in the aforementioned sense. Specifically,
for the subclass of “G-semismooth” functions � considered in Gowda (2000), (see the
discussion immediately following Theorem 5 for the definition of such a function), the
author shows that a G-semismooth local inverse exists at a point x if and only if �B��x�
consists of positively (negatively) oriented matrices and the index of � at x is equal to 1
(−1, respectively). While Gowda has not published his manuscript, a recent short note of
Sun (2001) establishes the same G-semismoothness of the local inverse function, assuming
that the latter exists. It should be noted that the G-semismoothness property used by Gowda
and Sun deviates from the original definition in Qi and Sun (1993) in that they do not
impose directional differentiability on the function. For semismooth functions in the original
sense of Qi and Sun (1993), which are directionally differentiable, one has to combine
the previous results of Scholtes with those of Gowda and Sun in order to deduce the
directional differentiability of the implicit/inverse function. Yet, such a combined result is
still not complete without the technical assumption (8) on the B-subdifferentials �B��x�
and �B�

′�x� ·��0�.

2. The finite-dimensional VI/CP. We begin with a brief review of the VI/CP, followed
by the formal definition of strong stability and strong regularity. The section ends with a
result that establishes several equivalent ways of describing these two solution concepts. We
refer the reader to the monograph (Facchinei and Pang 2003) for a comprehensive study of
the finite-dimensional variational inequality and complementarity problem.
Given a closed convex set K ⊆ �n, a mapping F � �n→�n, the VI �K�F � is to find a

vector x ∈ K such that

�y−x�T F �x�≥ 0� ∀ y ∈ K�
The solution set of this problem is denoted SOL�K�F �. Of fundamental importance to the
VI is its normal map (Robinson 1992a, 1992b, 1993):

Fnor
K �z�≡ F ��K�z��+ z−�K�z�� ∀ z ∈ �n�

where �K denotes the Euclidean projector onto K. It is well known that if x ∈ SOL�K�F �,
then z≡ x−F �x� is a zero of Fnor

K ; conversely, if z is a zero of Fnor
K , then x≡�K�z� solves

the VI �K�F �. When K is in addition a cone, the VI �K�F � is equivalent to the CP �K�F �:

K � x ⊥ F �x� ∈ K∗�
where K∗ is the dual cone of C; i.e., K∗ ≡ �y ∈�n � yT x≥ 0� ∀ x ∈K�. For a positive scalar
�, we let ��0� �� denote the open Euclidean ball with center at the origin and radius �. For
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any subset S of �n, we write clS to denote the closure of S. We formally define strong
stability and strong regularity as follows.
Definition 1. A solution x∗ of the VI �K�F � is said to be
(a) strongly regular if for every open neighborhood � of x∗ satisfying

SOL�K�F �∩ cl� = �x∗��(1)

there exist a positive scalar � and a Lipschitz continuous function x� � ��0� ��→ K such
that, for every q ∈ ��0� ��, x� �q� is the unique solution of the VI �K�q+F � that belongs
to � ;
(b) strongly stable if for every open neighborhood � of x∗ satisfying (1), there exist two

positive scalars c and � such that for every continuous function G satisfying

sup
x∈K∩ cl�

�G�x�−F �x�� ≤ ��

the set SOL�K�G�∩� is a singleton; moreover, for another continuous function G̃ satis-
fying the same condition as G, it holds that

�x−x′∥∥≤ c��F �x�−G�x��− �F �x′�− G̃�x′��∥∥�
where x and x′ are the unique elements in the sets SOL�K�G�∩� and SOL�K� G̃�∩� ,
respectively.
In essence, strong regularity pertains to small, constant perturbations of F , whereas strong

stability pertains to small, continuous perturbations of F . Thus it is clear that strong sta-
bility implies strong regularity. Interestingly, the converse turns out to be also true. Before
formally stating this result (see Theorem 3), we note that Definition 1 is certainly applica-
ble to a VI ��n�H�, which corresponds to the system of equations H�x�= 0 where H is a
mapping from �n into itself. Thus we say that x ∈ H−1�0� is strongly regular if for every
open neighborhood � of x satisfying H−1�0�∩ cl� = �x�, a scalar � > 0 and a Lipschitz
continuous function x� � ��0� ��→�n exist such that, for every q ∈ ��0� ��, x� �q� is the
unique zero of q+H�x� = 0 in � . A similar statement can be made for a strongly stable
zero of H . In particular, we can speak about the strong regularity and strong stability of a
zero of the normal map Fnor

K . Because the latter map involves a change of variables (from x
to z) and because the domain of the original VI �K�F �, which is the set K, is different from
the domain of the equation Fnor

K �z�= 0, which is the entire space �n, it is not immediately
obvious how the strong regularity (stability) of a solution x∗ ∈ SOL�K�F � is related to the
strong regularity (stability) of the zero z∗ ≡ x∗ − F �x∗� of the normal map Fnor

K . Again, it
can be shown that the two descriptions are equivalent. Let us consider another concept.
Definition 2. A function H� �n→�n is said to be a locally Lipschitz homeomorphism

near a vector x if there exists an open neighborhood � of x such that the restricted map
H �� � � → H�� � is Lipchitz continuous and bijective, and its inverse is also Lipschitz
continuous.
We can now state the following result, whose proof can be found in Facchinei and Pang

(2003). The significance of this result is that the strong stability/regularity of a solution to
a VI can be deduced from an inverse function theorem for the normal map.

Theorem 3. Let F � K ⊆�n→�n be locally Lipschitz continuous on the closed convex
set K. Let x∗ ∈ SOL�K�F � be given. Let z∗ ≡ x∗ − F �x∗�. The following statements are
equivalent:

(a) x∗ is a strongly stable solution of the VI �K�F �;
(b) x∗ is a strongly regular solution of the VI �K�F �;
(c) z∗ is a strongly regular zero of Fnor

K ;
(d) z∗ is a strongly stable zero of Fnor

K ;
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(e) Fnor
K is a locally Lipschitz homeomorphism near z∗;

(f) There exist an open neighborhood � of z∗ and a constant c > 0 such that

�Fnor
K �z�−Fnor

K �z′�� ≥ c�z− z′�� ∀ z� z′ ∈��

The equivalence of statements (d), (e), and (f) in the above theorem remains valid for all
locally Lipschitz continuous functions, of which the normal map Fnor

K is a special instance;
see Facchinei and Pang (2003).

3. Semismooth homeomorphisms. Extending Mifflin’s (1977) definition for a scalar
function, Qi and Sun (1993) introduced the semismoothness property for a vector function.
There are several equivalent ways to define this property. We first give a definition and then
summarize the equivalent conditions in Theorem 5 below.
Definition 4. Let G� �⊆�n→�m be a locally Lipschitz continuous function on the

open set �. We say that G is semismooth at a point x̄ ∈� if G is directionally differentiable
near x̄ (thus, G is B-differentiable near x̄) and

lim
x̄ �=x→x̄

�G′�x� x− x̄�−G′�x̄� x− x̄��
�x− x̄� = 0�

If the above requirement is strengthened to

lim sup
x̄ �=x→x̄

�G′�x� x− x̄�−G′�x̄� x− x̄��
�x− x̄�2 <��(2)

we say that G is strongly semismooth at x̄.
For a locally Lipschitz continuous function G� � ⊆ �n → �m, with � open, the

B-subdifferential of G at x̄ ∈�, denoted �BG�x̄�, is the set of all m×n matrices V such that

V = lim
k→�

JG�xk��

where �xk� ⊂� is a sequence of F(réchet)-differentiable points of G converging to x̄ and
JG�xk� denotes the F-derivative of G at xk, which is a linear operator mapping �n into
�m. The convex hull of �BG�x̄� yields Clarke’s generalized Jacobian of G at x̄, denoted
�G�x̄� (Clarke 1983). For a piecewise smooth function G, �BG�x̄� is a finite set, see Pang
and Ralph (1996) and Ralph and Scholtes (1997). Nevertheless, if G is semismooth but not
piecewise smooth, �BG�x̄� generally can have infinitely many elements, but it must be a
nonempty compact set; moreover, as a set-valued map, �BG is upper semicontinuous.

In terms of the elements in the B-subdifferential, we have the following result, whose
proof can be found in Qi and Sun (1993) and Facchinei and Pang (2003).

Theorem 5. Let G� �⊆�n→�m, with � open, be B-differentiable; i.e., G is locally
Lipschitz continuous and directionally differentiable near x̄ ∈�. The following three state-
ments are equivalent:
(a) G is semismooth at x̄;
(b) the following limit holds:

lim
x̄ �=x→x̄
∀V∈�G�x�

�G′�x̄� x− x̄�−V �x− x̄��
�x− x̄� = 0�(3)

(c) the following limit holds:

lim
x̄ �=x→x̄
∀V∈�G�x�

�G�x�+V �x̄−x�−G�x̄��
�x− x̄� = 0�(4)
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If G is strongly semismooth at x̄, then

lim sup
x̄ �=x→x̄

�G�x�−G�x̄�−G′�x̄� x− x̄��
�x− x̄�2 < ��(5)

lim sup
x̄ �=x→x̄
∀V∈�G�x�

�G�x�+V �x̄−x�−G�x̄��
�x− x̄�2 < ��(6)

Gowda (2000) called a locally Lipschitz continuous function � that satisfies condition (4)
“semismooth” at x̄. To distinguish this kind of semismoothness, which does not require
� to be directionally differentiable, we attach the letter G (for Gowda) and say that � is
G-semismooth at x̄ if condition (4) holds.
Theorem 3 has reduced the strong stability/regularity of a solution to the VI to the locally

Lipschitz homeomorphism property of the normal map near a zero. By the next result,
Theorem 6, we obtain several necessary and sufficient conditions for the latter property
to hold. Most important among these conditions is a globally Lipschitz homeomorphism
property of the directional derivative of the normal map. It is the latter property that enables
us to obtain the ultimate necessary and sufficient conditions for the strong stability/regularity
of a solution to a CP on two special nonpolyhedral, self-dual cones that are discussed in
the next section.
The following result is the promised inverse function theorem for semismooth functions.

It uses degree theory and the index of a continuous function � at its zero x∗, denoted
ind���x∗�. The reader who is unfamiliar with this theory can consult many excellent ref-
erences, e.g., Lloyd (1978) and Ortega and Rheinboldt (1970). As mentioned in the intro-
duction, the theorem is a synthesis of various existing results in the literature; as such, we
give only the sources of the proofs.

Theorem 6. Let �� �n→�n be Lipschitz continuous in an open neighborhood � of
a vector x∗ ∈�−1�0�. Consider the following three statements:

(a) every matrix in ���x∗� is nonsingular;
(b) � is a locally Lipschitz homeomorphism near x∗;
(c) for every V ∈ �B��x∗�, sgn detV = ind���x∗�=±1.

It holds that (a) ⇒ (b) ⇒ (c). Assume in addition that � is directionally differentiable at
x∗. Consider the following two additional statements:
(d) # ≡�′�x∗� ·� is a globally Lipschitz homeomorphism;
(e) for every V ∈ �B#�0�, sgn detV = ind�#�0�= ind���x∗�=±1.

It holds that (b) ⇒ (d) ⇒ (e). Moreover, if (b) holds and � is directionally differentiable
at x∗, then the local inverse of � near x∗, denoted �−1, is directionally differentiable at
the origin; and

��−1�′�0�h�=#−1�h�� ∀ h ∈ �n�(7)

If � is semismooth on � then (b) ⇔ (c); in this case, the local inverse of � near x∗ is
semismooth near the origin. Finally, if � is semismooth on � and

�B��x
∗�⊆ �B#�0��(8)

then the four statements (b), (c), (d), and (e) are equivalent.

Proof. (a) ⇒ (b) is proved by Clarke (1983). (b) ⇒ (c) is proved by Gowda (2000,
Theorem 3). (b)⇒ (d) is proved by Kuntz and Scholtes (1994). (d)⇒ (e) is a special case
of (b)⇒ (c). Suppose that � is directionally differentiable at x∗ and (b) holds. The formula
(7) can be found in Kummer (1992). If � is semismooth on � and (c) holds, then by Gowda
(2000, Corollary 4), it follows that the local inverse of � at x∗ exists and is G-semismooth,
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hence locally Lipschitz continuous, in a neighborhood of the origin. Therefore, (b) ⇔ (c)
if � is semismooth on �. In this case, the semismoothness of �−1 follows from results
of Scholtes and Gowda. Finally, if � is semismooth on � and inclusion (8) holds, then
clearly (e) implies (c). Hence, we have established (b) ⇒ (d) ⇒ (e) ⇒ (c) ⇒ (b); the four
statements (b), (c), (d), and (e) are therefore equivalent. �

The inclusion (8) plays an essential role for the statements (b) and (c) in Theorem 6,
which pertain to the original function �, to be equivalent to the corresponding statements
(d) and (e), which pertain to the directional derivative # . This inclusion is not used by
either Sun or Gowda in their papers. In what follows, we state and prove a result pertaining
to this inclusion for a composite function.

Proposition 7. Let �� �⊆�n→�m, with � open, be B-differentiable on �. Suppose
that for every x ∈�,

�B��x�= �B#�0��(9)

where # ≡ �′�x� ·�. Let F � �m→�% be continuously differentiable in an open neighbor-
hood of ��x̄�, where x̄ ∈�. With &≡ �F ���′�x̄� ·� it holds that

�B�F ����x̄�= JF ���x̄��� �B��x̄�= �B&�0��(10)

Proof. To prove the first equality in Equation (10), observe that if y ∈ � is a
F-differentiable point of � that is sufficiently close to x̄, then y is also a F-differentiable
point of F ��; moreover, we have J �F ����y� = JF ���y�� � J��y�. Consequently,
JF ���x̄�� � �B��x̄� ⊆ �B�F ����x̄�. Conversely, let V ∈ �B�F ����x̄�. There exists a
sequence of F-differentiable points �xk� ⊂ � of F �� converging to x̄ such that V =
limk→�J �F ����xk�. For each fixed k, L ≡ J �F ����xk� is a linear operator from �n

into �%. We have, for each y ∈ �n, L�y�= JF ���xk����′�xk� y�. As a linear operator, we
have L= JL�y� for any y ∈�n; i.e., L is the F-derivative of itself at every vector in the whole
space �n. In particular, taking any sequence �y(� of F-differentiable points of #k≡�′�xk� ·�
that converges to zero, we then have J �F ����xk� = JL�y(� = JF ���xk�� � J#k�y(�.
Because the sequence �J#k�y(�� (indexed by ( with k fixed) is bounded and every accumu-
lation point of this sequence belongs to �B#

k�0�, it follows that J �F ����xk�∈ JF ���xk���
�B#

k�0�. By Equation (9), we deduce J �F ����xk� ∈ JF ���xk����B��xk�. Passing to the
limit k→�, using the continuous differentiability of F and the upper semicontinuity of
�B, we deduce V ∈ JF ���x̄��� �B��x̄�. Consequently �B�F ����x̄�= JF ���x̄��� �B��x̄�.
Since &�y�= JF ���x̄����′�x̄� y�, it follows that & is the composition of the linear trans-
formation JF ���x̄��� �m→�% and the directional derivative # =�′�x̄� ·�� �n→�m. We
can therefore apply the previous proof to & and deduce that �B&�0�= JF �)�x̄����B#�0�,
provided that �B#�0� = �B*�0�, where * ≡ # ′�0� ·�. Because # is a positively homo-
geneous function, its directional derivative at the origin is equal to # itself; i.e., # = * .
Consequently, the last displayed equality holds. By (9), (10) follows readily. �

We make two remarks regarding the above proposition. First, without assuming the direc-
tional differentiability of �, Clarke (1983) showed that for any v ∈ �n,

��F ����x̄�v = JF ���x̄������x̄�v��

This, however, does not imply either

��F ����x̄�= JF ���x̄��� ���x̄��
or

�B�F ����x̄�= JF ���x̄��� �B��x̄��
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Second, it is natural for the reader to wonder why it is necessary to give the detailed
proof for the first equality in (10) as we did above, because after all it seems that the set
of F-differentiable points of the composite function F �� would naturally coincide with
that of the function �. A moment’s thought reveals that this is false in general; an easy
counterexample is to let F be the zero function. Therefore, our proof, while not difficult, is
needed.
We apply Theorem 6 to the following situation. Let G� �N+m → �n be a function

of two arguments �w�p� ∈ �N+m, and let �� �n → �N be a nonsmooth function. Let
G���x∗��p∗� = 0; suppose that � is semismooth near x∗ and G is continuously differen-
tiable in an open neighborhood of ���x∗��p∗�. Consider the mapping &� �n+m →�n+m

defined by

&�x�p�≡
[
G���x��p�

p−p∗
]
� �x�p� ∈ �n+m�

which vanishes at �x∗� p∗�. We have

&′��x∗� p∗�� �dx�dp�� =
[
JwG���x

∗��p∗��′�x∗�dx�+ JpG���x∗��p∗�dp
dp

]

=
[
JwG���x

∗��p∗� JpG���x
∗��p∗�

0 I

][
�′�x∗�dx�

dp

]
�

where JwG and JpG denote the partial F-derivative of G with respect to the w and p
argument, respectively. We have the following implicit function theorem for the parametric
composite equation G���x��p�= 0, which does not require a proof.

Corollary 8. Assume that �B��x
∗� ⊆ �B�

′�x∗� ·��0� and that JwG���x
∗��p∗� �

�′�x∗� ·� is a globally Lipschitz homeomorphism. There exist a neighborhood � of p∗,
a neighborhood � of x∗, and a Lipschitz continuous function x� �→ � that is semi-
smooth near p∗ such that for every p ∈ �, x�p� is the unique vector in � satisfying
G���x�p���p�= 0. Moreover, for every vector dp ∈ �m, x′�p∗�dp� is the unique solution
dx of the following equation:

JwG���x
∗��p∗��′�x∗�dx�+ JpG���x∗��p∗�dp = 0�

The normal map: General discussion. Consider the VI �K�F �, where K is a closed
convex set in �n and F � �n→�n is continuously differentiable in an open neighborhood
of a solution x∗ of the problem. We wish to apply Theorem 6 to the normal map:

Fnor
K �z�= F ��K�z��+ z−�K�z�� z ∈ �n�

at the zero z∗ ≡ x∗ −F �x∗�. For this purpose, we need to establish the semismoothness of
Fnor
K at z∗ and to verify the key equality:

�BF
nor
K �z∗�≡ �B��F

nor
K �′�z∗� ·���0��(11)

If F is continuously differentiable, the semismoothness of Fnor
K follows easily from that of

the projector �K . The verification of (11) is easy provided that we can establish

�B�K�u�= �B�
′
K�u� ·��0�� ∀u ∈ �n�(12)

This is because Fnor
K is the composite map G��, where G� �2n→�n is given by G�u�v�≡

F �u�+v−u and ��u�≡ ��K�u��u�. Assuming that �K is directionally differentiable, we
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have �′�u�du�= ��′K�u�du��du�. Moreover, � is F-differentiable at u if and only if �K

is F-differentiable at u; at such a vector, we have

J��u�=
[
J�K�u�

I

]
�

Consequently, �B��u�= �B�K�u�× �I�. Hence �B��u�= �B�
′�u� ·��0� if and only if (12)

holds.
In summary, we see that Theorem 6 is applicable to the normal map Fnor

K provided that
we can establish two things: (1) the projector �K is semismooth, and (2) condition (12)
holds. For the special cones K we are interested in, the semismoothness of �K follows from
existing results. So the main task in the next section is the verification of (12) for these
cones. This turns out to be not an easy task. After completing this technical task, we then
study the strong stability/regularity of a solution to the associated CPs in §5.

4. Projections on two self-dual cones. In this section, we focus on two special self-
dual cones: the cone of symmetric positive semidefinite matrices and the Lorentz cone. For
the purpose of verifying (12) for these cones, we first establish several new properties of
the projections onto them, extending some recent results in Bonnans et al. (1998) and Sun
(2002) for the positive semidefinite cone and Chen et al. (2003) for the Lorentz cone.

4.1. The semidefinite cone. Let � n denote the space of n×n symmetric matrices; let
� n
+ and � n

++ denote the cone of n×n symmetric positive semidefinite and positive definite
matrices, respectively. We write A� 0 to mean that A is a symmetric positive semidefinite
matrix. For any two matrices A and B in � n, we write

A �B ≡
n∑

i� j=1
aijbij = tr�AB�

for the Frobenius inner product between A and B, where tr denotes the trace of a matrix.
We note that for any orthogonal matrix Q,

�QAQT � � �QBQT �= A �B�
The Frobenius norm on � n is the norm induced by the above inner product:

�A� ≡√A �A=
√

n∑
i� j=1

a2ij �

Under the Frobenius norm, the projection �� n+�A� of a matrix A ∈� n onto the cone � n
+ is

the unique minimizer of the following convex program in the matrix variable B:

minimize �A−B��
subject to B ∈� n

+�

Throughout the following discussion, we let A+ denote the (Frobenius) projection of A∈� n

onto � n
+. This projection satisfies the following complementarity condition:

� n
+ � A+ ⊥ A+−A ∈� n

+�(13)

where the ⊥ notation means “perpendicular under the above matrix inner product”; i.e.,
C ⊥D⇔C �D= 0 for any two matrices C and D in � n. The projection A+ has an explicit
representation. Namely, if

A= P:PT �(14)
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where : is the diagonal matrix of eigenvalues of A and P is a corresponding orthogonal
matrix of orthonormal eigenvectors, then

A+ = P:+P
T �

where :+ is the diagonal matrix whose diagonal entries are the nonnegative parts of the
respective diagonal entries of :. Define three fundamental index sets associated with the
matrix A:

;≡ �i � <i > 0�� =≡ �i � <i = 0�� > ≡ �i � <i < 0��

these are the index sets of positive, zero, and negative eigenvalues of A, respectively. Write

:=

:; 0 0

0 :> 0

0 0 0


 and P = [W; W> Z

]

with W; ∈ �n×�;�, W> ∈ �n×�>�, and Z ∈ �n×�=�. Thus the columns of W;, W> , and Z are the
orthonormal eigenvectors corresponding to the positive, negative, and zero eigenvalues of
A, respectively. Let A≡ ;∪> and define three diagonal matrices of order �A�:

D ≡
[
:; 0
0 :>

]
D+ ≡

[
:; 0
0 0

]
and �D� ≡

[
:; 0

0 �:> �
]
�

Define the matrix U ∈� n with entries

uij ≡
max�<i�0�+max�<j�0�

�<i�+ �<j �
� i� j = 1� C C C � n�

where 0/0 is defined to be 1. Define the linear transformation �A� �
n→ � n as follows:

For H ∈� n,

�A�H�≡ P




WT
; HW; U;> �WT

; HW> WT
; HZ

WT
> HW; �UT

;> WT
> HW> WT

> HZ

ZTHW; ZTHW> ZTHZ


PT �

where � denotes the Hadamard product.
Associated with the projection problem (13) is the critical cone of � n

+ at A ∈ � n

defined as

	�A�� n
+�≡ 
 �A+��

n
+�∩ �A+−A�⊥�

where 
 �A+�� n
+� is the tangent cone of � n

+ at A+ and �A+−A�⊥ is the subset of matrices
in � n that are orthogonal to �A+−A� under the matrix inner product. The importance of the
critical cone in the local analysis of constrained optimization is well known. In the present
context, this cone can be completely described (Bonnans and Shapiro 2000, Facchinei and
Pang 2003):

	�A�� n
+�= �C ∈� n � W T

> CW> = 0�W T
> CZ = 0�ZT CZ � 0��(15)

The affine hull of 	�A�� n
+�, which we denote ��A�� n

+�, is easily seen to be the linear
subspace

�C ∈� n � W T
> CW> = 0�W T

> CZ = 0��
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Directional derivatives of A+. Based on the theory of second-order regular sets
(Bonnans et al. 1999), Bonnans et al. (1998) have shown that �� n+ is directionally differen-
tiable and that for any H ∈� n, �′� n+�A�H� is the unique minimizer of the following convex
program in the matrix variable X:

minimize 1
2 �X−H� � �X−H�+ tr�B−XB+X��

subject to X ∈	�A�� n
+��

(16)

where

B− ≡W> �:> �WT
> and B+ ≡W;:

−1
; WT

;

with B+ taken to be the vacuous matrix if ; is empty. Sun and Sun (2002) show that
�� n+ is a strongly semismooth matrix-valued function and give an explicit formula for the
directional derivative of the absolute value function

�A�� n+ ≡�� n+�A�+�� n+�−A��
(See Chen et al. 2003 for some extended results on more general matrix-valued functions.)
Such a formula immediately yields a corresponding formula for the directional derivative
�′� n+�A�H�; see Equation (17). The convex program (16) suggests that �′� n+�A�H� can be
viewed as a “skewed projection” of a certain matrix onto the critical cone 	�A�� n

+�. In
Equation (18), we make this view precise by showing that the directional derivative of
the projector �� n+ at a matrix A ∈ � n along the direction H ∈ � n is equal to the projec-
tion of the image of the direction H under the linear transformation �A onto the critical
cone 	�A�� n�. This interpretation generalizes a similar but much simpler result for the
Euclidean projector onto a polyhedral set (Haraux 1977, Pang 1990) whose directional
derivative is equal to the projection onto the critical cone.

Proposition 9. For any two matrices A and H in � n,

�′� n+�A�H� = P




WT
; HW; U;> �WT

; HW> WT
; HZ

WT
> HW; � �U;>�

T 0 0

ZTHW; 0 �
�
�=�
+
�ZTHZ�


PT �(17)

and

�′� n+�A�H�=�	�A�� n+���A�H���(18)

Proof. Write f �A�≡ �A�� n+ for A ∈� n. By a result in Sun and Sun (2002), we have

f ′�A�H�= P

[
L−1�D��DH̃AA+ H̃AAD� �D�−1DH̃A=

H̃T
A=D�D�−1 �H̃==�

]
PT �

for any H ∈� n, where H̃ ≡ PTHP and LX� �
n→� n is the Lyapunov operator:

LX�Y �≡ XY +YX� ∀Y ∈� n�

Because �� n+ = �I + � · �� n+�/2, the identity (17) follows easily from the above expression
for f ′�A�H� and a simple manipulation. Because H�tr�B−XB+X��= B−XB++B+XB−, the
unique minimizer of (16), denoted X̄, satisfies

	�A�� n
+� � X̄ ⊥ X̄−H +B−X̄B++B+X̄B̄− ∈	�A�� n

+�
∗�

Using (17) for X̄ =�′� n+�A�H�, we can easily verify that H−B−X̄B+−B+X̄B̄− =�A�H�.
This establishes the desired second equality in (18). �
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The following corollary is stated for ease of reference later.

Corollary 10. The following two statements hold.
(a) The functions � · �� n+ and �� n+ are F-differentiable at A ∈ � n if and only if A is

nonsingular. In this case, �′� n+�A� ·�= L−1�A��n+
�LA+ .

(b) For any A ∈� n, the directional derivative �′� n+�A� ·� is F-differentiable at H ∈� n if
and only if H̃== is nonsingular.
(c) For any A�H ∈� n

�′� n+�A�H�= P

[
L−1�D�LD+H̃AA �D�−1D+H̃A=

�H̃A=�
T D+�D�−1 �

�
�=�
+
�H̃==�

]
PT �(19)

The next technical result establishes the equality (9) that paves the way for the application
of Proposition 7.

Lemma 11. Let A ∈� n be arbitrary. Let # ≡�′� n+�A� ·�. It holds that

�B�� n+�A�= �B#�0��(20)

Moreover, for any V ∈ �B�� n+�A�, there exist two index sets ;′ and > ′ that partition = and
a matrix I;′> ′ with entries in �0�1� such that for any H ∈� n,

V �H�= P




WT
; HW; U;> �WT

; HW> WT
; HZ

WT
> HW; � �U;>�

T 0 0

ZTHW; 0 S�ZTHZ�


PT �

where

S�ZTHZ�≡
[

�ZTHZ�;′;′ I;′> ′ � �ZTHZ�;′> ′

�ZTHZ�> ′;′ � �I;′> ′�T 0

]
�

Thus V �H� belongs to the linear subspace

�> ′�A��
n
+�≡ �C ∈��A�� n

+� � Z
T
> ′CZ> ′ = 0��

where ��A�� n
+� is the affine hull of the critical cone 	�A�� n

+�.

Proof. Let V ∈ �B�� n+�A�. By Corollary 10 and the definition of the elements in
�B�� n+�A�, it follows that there exists a sequence of nonsingular matrices �Ak� in � n con-
verging to A such that V = limk→�J�� n+�A

k�, where J�� n+�A
k� denotes the F-derivative

of �� n+ at Ak. Let Ak ≡ Pk:k�Pk�T be the orthogonal decomposition of Ak, where :k is
the diagonal matrix of eigenvalues of Ak and Pk is a corresponding matrix of orthonormal
eigenvectors. Writing each :k in the same form as :,

:k =


:k

; 0 0

0 :k
> 0

0 0 :k
=


 �

we have := limk→�:k, which implies that :k
A is a nonsingular matrix for all k sufficiently

large and limk→�:k
= = 0. For any H ∈� n with H̃k = �Pk�T HPk, we have

J�� n+�A
k��H�= Pk

[
L−1�:k �L�:k�+�H̃

k�
]
�Pk�T �
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Without loss of generality, by taking a subsequence if necessary, we may assume that �Pk�
is a convergent sequence with limit P� ≡ limk→�Pk, which implies that

A= lim
k→�

Ak = lim
k→�

Pk:k�Pk�T = P�:�P��T �

Therefore, P� can be identified with the matrix P that we have been using all along for
diagonalizing A. We will simply use P , rather than P�, in the remainder of the proof. Let
Zk ≡ J�� n+�A

k��H�. We have

Z̃k ≡ �Pk�T �J�� n+�A
k��H��Pk = L−1�:k �L�:k�+�H̃

k��

which implies that �:k�Z̃k+ Z̃k�:k� = �:k�+H̃k+ H̃k�:k�+. Writing this out, we have

[ �:k
A�Z̃k

AA+ Z̃k
AA�:k

A� �:k
A�Z̃k

A=+ Z̃k
A=�:k

=�
�:k

=�Z̃k
=A+ Z̃k

=A�:k
A� �:k

=�Z̃k
==+ Z̃k

==�:k
=�

]

=
[
�:k

A�+H̃
k
AA+ H̃k

AA�:
k
A�+ �:k

A�+H̃
k
A=+ H̃k

A=�:
k
=�+

�:k
=�+H̃

k
=A+ H̃k

=A�:
k
A�+ �:k

=�+H̃
k
==+ H̃k

==�:
k
=�+

]
�

Hence, it follows that Z̃k
AA = L−1�:k

A�L�:k
A�+�H̃

k
AA�, Z̃

k
== = L−1�:k

=�
L�:k

=�+�H̃
k
==� and

lim
k→�

�Z̃k
A=−�:k

A�−1�:k
A�+�H̃

k
A=��= 0�

Again, by taking a subsequence if necessary, we may assume that �Z̃k
==� is a convergent

sequence. Hence, for any H ∈� n, it holds that

PT V �H�P =

 L−1�D�LD+�H̃AA� �D�−1D+H̃A=

�H̃A=�
T D+�D�−1 lim

k→�

{
L−1�:k

=�L�:k
=�+�H̃

k
==�
}

 �(21)

where H̃ = PTHP� For each k, define

Mk ≡ P

[0 0

0 :k
=

]
PT �

Let M̃k ≡ PTMkP . Then

M̃k =
[0 0

0 :k
=

]
�

Because M̃k
== is nonsingular, it follows that # is F-differentiable at Mk and for any H ∈� n,

J#�Mk��H� = lim
K↓0

{
#�Mk+ KH�−#�Mk�

K

}

= P




L−1�D�LD+�H̃AA� �D�−1D+H̃A=

�H̃A=�
T D+�D�−1 lim

K↓0

�
�
�=�
+
�:k

=+ KH̃==�−��
�=�
+
�:k

=�

K


PT

= P

[
L−1�D�LD+�H̃AA� �D�−1D+H̃A=

�H̃A=�
T D+�D�−1 L−1�:k

=�L�:k
=�+�H̃==�

]
PT �
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where we have used (19) and part (a) of Corollary 10 applied to �
�
�=�
+

at the F-differentiable
point :k

= in the bottom right block in the last equality. Comparing with (21), we conclude
that V �H�= limk→�J#�Mk��H�. Because H is arbitrary in � n, it follows that V ∈ �B#�0�.
Conversely, let V ∈ �B#�0�. We know that # is F-differentiable at M ∈� n if and only if

M̃== is nonsingular, where M̃ = PTMP . Hence there exists a sequence of matrices �Mk�⊂
� n converging to 0 such that M̃k

== is nonsingular for every k and V = limk→�J#�Mk�,
where M̃k = PTMkP . For any H ∈� n, we have

J#�Mk��H� = lim
K↓0

#�Mk+ KH�−#�Mk�

K

= P




L−1�D�LD+�H̃AA� �D�−1D+H̃A=

�H̃A=�
T D+�D�−1 lim

K↓0

�
�
�=�
+
�M̃k

==+ KH̃==�−��
�=�
+
�M̃k

==�

K


PT

= P


 L−1�D�LD+�H̃AA� �D�−1D+H̃A=

�H̃A=�
T D+�D�−1 L−1�M̃k

==�� �=�+
L�

�
�=�
+

�M̃k
==�
�H̃==�


PT �

where H̃ = PTHP . Define

Ak ≡ A+P
[
0 0

0 M̃k
==

]
PT

and Ãk ≡ PT AkP . We have

Ãk =
[
D 0

0 M̃k
==

]
�

which is nonsingular. It is easy to see that

�Ak�� n+ = P

[ �D� 0

0 �M̃k
==�� �=�+

]
PT and �� n+�A

k�= P

[
D+ 0

0 �
�
�=�
+
�M̃k

==�

]
PT �

The nonsingularity of Ãk implies the nonsingularity of Ak. Thus, �� n+ is differentiable at
Ak and

Zk ≡ J�� n+�A
k��H�= L−1�Ak ��n+

L��n+ �A
k��H��

which implies that

�Ak�� n+Z
k+Zk�Ak�� n+ =�� n+�A

k�H +H�� n+�A
k��

Therefore,

PT �Ak�� n+PZ̃
k+ Z̃kP T �Ak�� n+P = PT�� n+�A

k�PH̃ + H̃PT�� n+�A
k�P�

where Z̃k ≡ PT ZkP and H̃ ≡ PTHP . Hence,
 �D�Z̃k

AA+ Z̃k
AA�D� �D�Z̃k

A=+ Z̃k
A=�M̃k

==�� �=�+
�M̃k

==�� �=�+ Z̃
k
=A+ Z̃k

=A�D� �M̃k
==�� �=�+ Z̃

k
==+ Z̃k

==�M̃k
==�� �=�+




=
[

D+H̃
k
AA+ H̃k

AAD+ D+H̃
k
A=+ H̃k

A=M̃
k
==

�
�
�=�
+
�M̃k

==�H̃
k
=A+ H̃k

=AD+ �
�
�=�
+
�M̃k

==�H̃
k
==+ H̃k

==��
�=�
+
�M̃k

==�

]
�
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which implies

Z̃k
AA = L−1�D�LD+�H̃

k
AA�� Z̃k

== = L−1�M̃k
==�� �=�+

L�
�
�=�
+

�M̃k
==�
�H̃k

==��

and

lim
k→�

�Z̃k
A=−�D�−1D+H̃k

A=�= 0�

Consequently, V �H� = limk→�J�� n+�A
k��H�, which implies V ∈ �B�� n+�A�. Hence (20)

follows.
Let # be F-differentiable at E ∈� n. Let ZTEZ =QMQT be the orthogonal decomposi-

tion of ZTEZ, where Q ∈ ��=�×�=� is an orthogonal matrix of eigenvectors of ZTEZ and M
is the diagonal matrix of eigenvalues Ni of the same matrix; for any H ∈� n,

J#�E��H�= P




WT
; HW; U;> �WT

; HW> WT
; HZ

WT
> HW; � �U;>�

T 0 0

ZTHW; 0 G


PT �

where with Y ≡ ZTHZ,

G≡Q

[
QT

;′YQ;′ I;′> ′ �QT
;′YQ> ′

QT
> ′YQ;′ �IT

;′> ′ 0

]
QT ∈ ��=�×�=��

;′ ≡ �i ∈ = � Ni > 0� and > ′ ≡ �i ∈ = � Ni < 0� are disjoint subsets of = whose union is = and

Iij ≡
Ni

Ni+�Nj �
� �i� j� ∈ ;′ ×> ′�

Based on such an F-derivative, it follows that for any element V in �B#�0�, there exists a
sequence �Ek�⊂� n converging to the zero matrix such that # is F-differentiable at every
Ek and for any H ∈ � n, V �H� is the limit of the sequence �J#�Ek��H��. Without loss
of generality, we may assume that there exists a partition of = = ;′ ∪> ′ into two disjoint
subsets ;′ and > ′ such that

;′ ≡ �i ∈ = � Nki �ZT EkZ� > 0� and > ′ ≡ �i ∈ = � Nki �ZT EkZ� < 0�

for all k, that the sequence �Qk� ⊂ ��=�×�=� of orthogonal matrices in the decomposition
ZTEkZ = �Qk�T MkQk converges to the identity matrix of order �=�, and that the sequence
�Ik

ij �, where

Ik
ij ≡

Ni�Z
T EkZ�

Ni�Z
T EkZ�+�Nj�ZT EkZ�� � �i� j� ∈ ;′ ×> ′

converges to some scalar I�ij in the interval �0�1� for all �i� j� ∈ ;′ ×> ′. From this descrip-
tion, the desired formula for V �H� follows easily. The last assertion about the membership
of V �H� in the linear subspace �> ′�A��

n
+� is obvious. �

Remark. By distinguishing the zero and nonzero entries in the matrix I;′> ′ , it is possible
to show that the range of V belongs to a certain linear subspace of �> ′�A��

n
+�. We omit

such fine details.
Combining Proposition 7, Lemma 11, and the discussion at the end of the last section,

we immediately obtain the following result, which does not require further proof.

Proposition 12. Let F � � n→� n be continuously differentiable. For any A ∈� n,

�BF
nor
� n+�A�≡ �B�F

nor
� n+�

′�A� ·��0�= �JF ��� n+�A��− I�� �B�� n+�A�+ I �
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4.2. The Lorentz cone. We next consider the Lorentz cone, also known as the second-
order cone (SOC):

�n ≡ {�x� t� ∈ �n×� �
√
xT x ≤ t

}
�

The Euclidean projection ��n �x� t� of a vector �x� t� ∈�n+1 is the unique minimizer of the
following convex program in the variable �y� K� ∈ �n+1:

minimize �y−x�T �y−x�+ �K− t�2�
subject to

√
yT y ≤ K�

(22)

By a direct calculation, it is not difficult to show that

��n �x� t�≡




1
2

(
1+ t

�x�2

)
�x��x�2� if �t�< �x�2

�x� t� if �x�2 ≤ t

0 if �x�2 ≤−t�
Recently, the strong semismoothness of this projector is established in Chen et al. (2003).
In what follows, we show that the directional derivative �′�n ��x� t�� �dx�dt�� along the
direction �dx�dt� ∈�n+1 can again be interpreted as a certain skewed projection of �dx�dt�
onto the critical cone of �n at �x� t�. There are two cases for which this interpretation
is known to be true: One is the classic case where the base point �x� t� belongs to the
cone �n (see Zarantonello 1971), and the other case is when the first n-components of the
projected vector ��n �x� t� are not all zero (see Shapiro 1988, Pang and Ralph 1996). We
write �x̄� t̄� ∈ �n+1 for the projection ��n �x� t� and 	�x� t� for the critical cone

	��x� t���n�≡ 
 ��x̄� t̄���n�∩ �x̄−x� t̄− t�⊥ �
Also define the symmetric positive definite matrix A�x� t�∈��n+1�×�n+1� to be I if t≤−�x�2
and

A�x� t�=


(
1+ <

�x̄�
)
I − <

�x̄�
x̄x̄T

x̄T x̄
0

0 1




otherwise, where <≡max�0� 1
2 ��x�2− t��.

Proposition 13. For any �x� t� and �dx�dt� in �n+1, �′�n ��x� t�� �dx�dt�� is the
unique minimizer of the convex program in the variable �y� K�:

minimize
1
2

[
y

K

]T
A�x� t�

[
y

K

]
−
[
y

K

]T [dx
dt

]
�

subject to �y� K� ∈	�x� t��

(23)

Proof. If �x� t� ∈ �n, then A�x� t� is the identity matrix. This case is due to Zaran-
tonello (1971). If �x� t� �∈�n and x̄ �= 0, then the square root function

√
yT y is continuously

differentiable at y = x̄. In this case, < is the unique Karush-Kuhn-Tucker multiplier of the
single constraint in the projection program (22) and the matrix A�x� t� = I +<H 2g�x̄� t̄�,
where g�y� K�≡√yT y− K is the convex function that defines the Lorentz cone, which can
be written as �n = ��y� K� ∈ �n+1 � g�y� K� ≤ 0�. The result is proved by Shapiro (1988).
Finally, if �x� t� �∈�n and x̄ = 0, then �x� t� must belong to −�n. In this case, by making
use of the fact that

�′�n ��x� t�� �dx�dt��= �dx�dt�−�′�−�n���x� t�� �dx�dt��
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and the proof for the first case, we have

�′�n ��x� t�� �dx�dt��= �dx�dt�−�	��x�t��−�n���dx�dt���

where

	��x� t��−�n�≡ 
 ���−�n���x� t���−�n�∩ [��−�n���x� t��− �dx�dt�
]⊥
�

Because 
 ��0�0���n�=�n, we have

	��x� t���n�=
{
��0�0�� if �x�<−t�
�;�x��x�� � ;≥ 0� if − t = �x��

and

	��x� t��−�n�=
{�n+1 if �x�<−t�
��y� K� ∈ �n+1 � yT x+ K�x� ≤ 0� if − t = �x��

Hence, after direct calculations, for �x� t� �∈�n and x̄ = 0, we have

�′�n ��x� t�� �dx�dt��=�	��x�t���n���dx�dt���

Thus the claim also holds in this remaining case. �

Letting

[
d̂x

d̂t

]
≡ A�x� t�−1

[
dx

dt

]
�

we see that the program (23) is equivalent to

minimize
1
2

[
y− d̂x
K− d̂t

]T
A�x� t�

[
y− d̂x
K− d̂t

]
�

subject to �y� K� ∈	�x� t��

which shows that �′�n ��x� t�� �dx�dt�� is the projection of �d̂x� d̂t� onto the critical cone
	�x� t� under the matrix norm induced by the symmetric positive definite matrix A�x� t�.
Thus unlike the previous case of the cone � n, where only the direction is linearly trans-
formed, the directional derivative of the projector onto the Lorentz cone involves both a
linear transformation of the direction and a norm change in defining the projection onto the
critical cone.
The proof of Proposition 13 enables us to establish the following technical result analo-

gous to Lemma 11.

Lemma 14. Let �x� t� ∈ �n+1 be given. Let # ≡ �′�n ��x� t�� ·�. It holds that
�B��n �x� t�= �B#�0�.

Proof. There are several cases that we can dispense of easily. These are (i) �t�< �x�2;
(ii) t > �x�2, (iii) −t > �x�2, and (iv) �x� t� = �0�0�. In the first three cases, ��n is a
continuously differentiable function in a neighborhood of �x� t�; thus the equality between
the two B-subdifferentials is immediate. In the fourth case, # =�Kn and the desired equality
is obvious. There are two remaining cases: (a) t=�x�2 > 0 and (b) −t=�x�2 > 0. Because
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the proofs of these two cases are similar, we prove only case (a). In this case, for �x′� t′�
sufficiently close to �x� t�, we have

��n �x′� t′�≡



1
2

(
1+ t′

�x′�2

)
�x′��x′�2� if �t′�< �x′�2

�x′� t′� if �x′�2 ≤ t′�

Thus, for �h� K� ∈ �n×�,

#�h� K�=







Kx

2�x� +h−
xxT

2�x�2 h
xT h

2�x� +
K

2


 if



tK < xT h

or

tK = xT h and �K�< �h�2
[
h

K

]
if



tK > xT h

or

tK = xT h and �K� ≥ �h�2�
Obviously,

�B#�0�⊆


I�



I − xxT

2�x�2
x

2�x�
xT

2�x�
1
2




= �B��n �x� t��

Next, we prove the reverse inclusion: �B#�0�⊇ �B��n �x� t�. Let hk≡ x and Kk≡ �1+1/k�t.
Then tKk > xT hk. Hence, limk→�J#�hk� Kk� = I . Similarly, we can construct a sequence
��h̃k� K̃k�� also converging to �x� t� such that

lim
k→�

J#�h̃k� K̃k�=



I − xxT

2�x�2
x

2�x�
xT

2�x�
1
2


 �

Thus, in this case �B#�0�= �B��n �x� t�. �

Let Anor
	�x�t� denote the normal map of the pair �	�x� t��A�x� t��; i.e., for all �z� K�∈�n+1,

Anor
	�x�t��z� K�= A�x� t��	�x�t��z� K�+ �z� K�−�	�x�t��z� K��

We then have

�′�n ��x� t�� �dx�dt��≡�	�x�t� � �Anor
	�x�t��

−1�dx�dt��

Because the matrix A�x� t� is positive definite, Anor
	�x�t� is a globally Lipschitz homeomor-

phism from �n+1 onto itself; moreover, its inverse is given by

�Anor
	�x�t��

−1 = �I −A�x� t���A�x�t�

	�x�t�+ I�
where �

A�x�t�

	�x�t� is the operator that maps �dx�dt� ∈ �n+1 onto the unique solution of the
convex program (23); see Pang and Ralph (1996).

5. CPs on two self-dual cones. In this section, we investigate the application of
Theorem 6 to CPs on the cone of symmetric positive semidefinite matrices and on the
Lorentz cone. As in the last section, we first deal with the former problem and then with the
latter problem in the subsequent subsection. Because the treatments of these two problems
are rather similar, we omit some final details for the Lorentz CP.
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5.1. CPs in SDP matrices. The linear complementarity problem in symmetric positive
semidefinite matrices, abbreviated as SDLCP, was introduced by Kojima et al. (1997) and
further studied in Kojima et al. (1999a, b), where interior-point methods for solving this
problem were investigated. Analytic properties of the SDLCP are derived by Gowda and
Parthasarathy (2000) and Gowda and Song (2000). The nonlinear extension of the SDLCP
is considered by Monteiro and Pang (1998, 1999), who treat the problem as a constrained
equation. Computational methods for solving the semidefinite complementarity problem
(SDCP) can be found in Chen et al. (2003), Chen and Tseng (2003), and Tseng (1998).
Shapiro (1997) studied first- and second-order perturbation analysis of nonlinear semidefi-
nite optimization problems.
The SDCP can be identified as a special VI �K�F �, where the set K is the cone of sym-

metric positive semidefinite matrices and the inner product is the Frobenius inner product.
We formally define this problem as follows. Let F � X ∈ � n %→ F �X� ∈ � n be a mapping
from � n into itself. The SDCP is to find a matrix X satisfying

� n
+ � X ⊥ F �X� ∈� n

+�(24)

Let X∗ be a solution of (24) and define Z∗ ≡ X∗ − F �X∗�. We have �� n+�Z
∗� = X∗. We

assume that F is continuously differentiable in an open neighborhood of X∗; it follows that
the normal map of the problem (24):

Fnor
� n+�Z�≡ F ��� n+�Z��+Z−�� n+�Z�� Z ∈� n

+

is semismooth near Z∗. Let Z∗ ≡ P:PT be the orthogonal decomposition of Z∗. Using the
same notation as in §4.1, we define

�Z∗�H�= P




WT
; HW; U;> �WT

; HW> WT
; HZ

WT
> HW; �UT

;> WT
> HW> WT

> HZ

ZTHW; ZTHW> ZTHZ


PT �

We then have �′� n+�Z
∗�H� = �	�Z∗�� n+���Z∗�H��. Note that the critical cone 	�Z∗�� n

+�
coincides with the critical cone of � n

+ at the solution X∗ of the CP (24); i.e.,

	�Z∗�� n
+�= 
 �X∗�� n

+�∩F �X∗�⊥�

Writing 	 ≡	�Z∗�� n
+� and S ≡�Z∗�H�, we have

�Fnor
� n+�

′�Z∗�H� = JF �X∗��	�S�+H −�	�S�

= JF �X∗��	�S�+ �H −S�+S−�	�S��

furthermore,

H −S = P




0 Ũ;> �WT
; HW> 0

WT
> HW; � Ũ T

;> 0 0

0 0 0


PT �

where

ũij ≡ 1−uij =
�<j �

�<i�+ �<j �
� �i� j� ∈ ;×>�
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Recalling that

�	�S�= P




WT
; HW; U;> �WT

; HW> WT
; HZ

WT
> HW; � �U;>�

T 0 0

ZTHW; 0 �
�
�=�
+
�ZTHZ�


PT �

we may construct a linear transformation �Z∗ � �
n → � n that maps �	�S� onto H − S.

Specifically, for a matrix

C ≡


C;; C;> C;=

C>; C>> C>=

C=; C=> C==


 ∈� n�

let

�Z∗�PCP
T �≡ P




0 Q;> �C;> 0

C>; �QT
;> 0 0

0 0 0


PT �

where

Rij ≡
ũij

uij
= �<j �

<i
� �i� j� ∈ ;×>�

we then have �Z∗��	�S��=H −S. Hence
�Fnor

� n+�
′�Z∗�H�= �JF �X∗�+�Z∗���	�S��+S−�	�S��

Consequently, letting Gnor
	 denote the normal map of the CP,

	 � S∗ ⊥ −Q+ �JF �X∗�+�Z∗��S
∗� ∈	∗�(25)

we may conclude that

�Fnor
� n+�

′�Z∗� ·�=Gnor
	 ��Z∗�(26)

in other words, �Fnor
� n+�

′�Z∗�H�=Q if and only if with S∗ =�	�S� being a solution of the
CP (25),

H = ��Z∗�
−1�S�= ��Z∗�

−1�S∗ +Q− �JF �X∗�+�Z∗��S
∗����

Based on the above derivation, we obtain the following result that connects the globally
Lipschitz homeomorphism of the directional derivative �Fnor

� n+�
′�Z∗� ·� with the solution of

the SDLCP (25). Part of the significance of this result is that the latter CP depends only on
the given solution X∗ of the original SDCP (24) and is independent of the linear operator
�Z∗ that is used in the above derivation and the proof below.

Lemma 15. The directional derivative �Fnor
� n+�

′�Z∗� ·� is a globally Lipschitz homeomor-
phism if and only if for every Q ∈ � n, the SDLCP (25) has a unique solution S∗�Q� that
is Lipschitz continuous in Q.

Proof. Because �Z∗ is a nonsingular linear transformation, it follows that �Fnor
� n+�

′�Z∗� ·�
is a globally Lipschitz homeomorphism if and only if Gnor

	 = �Fnor
� n+�

′�Z∗� ·�� ��Z∗�
−1 is so.

In turn, from VI/CP theory, we know that the normal map Gnor
	 is a globally Lipschitz

homeomorphism if and only if the claimed unique and Lipschitz solvability of the CP (25)
is valid. �
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The following result gives a further application of the formula (26).

Lemma 16. The following three statements are equivalent.
(a) The directional derivative �Fnor

� n+�
′�Z∗� ·� has the origin as the unique zero.

(b) The normal map Gnor
	 has the origin as the unique zero.

(c) The SDLCP (25) with Q = 0 has zero as the unique solution.
Moreover, if any one of these statements holds, then ind��Fnor

� n+�
′�Z∗� ·��0�= ind�Gnor

	 �0�.

Proof. The proof of the equivalence of statements (a), (b), and (c) is similar to the
proof of Lemma 15. We prove the index equality. Assume any one of the three statements
(a), (b), and (c). By the homotopy invariance of the degree, it suffices to show that for every
t ∈ �0�1�,

Gnor
	 � �t�Z∗ + �1− t�I��H�= 0⇒H = 0�(27)

Clearly,

�t�Z∗ + �1− t���H�= P




WT
; HW; U t

;> �WT
; HW> WT

; HZ

WT
> HW; � �U t

;>�
T W T

> HW> WT
> HZ

ZTHW; ZTHW> ZTHZ


PT �

where U t
;> is the matrix whose entries are given by

utij ≡ tuij + �1− t�=
<i+ �1− t��<j �

<i+�<j �
� �i� j� ∈ ;×>�

Because each utij is positive, it can be proved that t�Z∗ + �1− t�I is a nonsingular transfor-
mation on � n; see the proof for t = 1 at the end of §4.1. By (b), the implication (27) holds
readily. �

For a nonsingular linear transformation from � n into itself, the sign of the determinant of
this transformation is equal to the index of the transformation at the origin. This extended
notion of the determinant is used in the theorem below, which provides several necessary
and sufficient conditions for a solution of the SDCP (24) to be strongly stable/regular. Its
proof follows easily from Lemmas 15 and 16 and Theorems 3 and 6.

Theorem 17. Let F � � n→ � n be continuously differentiable in a neighborhood of a
solution X∗ of the SDCP (24). The following three statements are equivalent.
(a) X∗ is strongly stable/regular;
(b) for every Q ∈� n, the SDLCP (25) has a unique solution that is Lipschitz continuous

in Q;
(c) for every V ∈ �B�� n+�Z

∗�, sgn det��JF �X∗�+�Z∗��V + I−V �= ind�Gnor
	 �0�=±1.

Calculation of directional derivatives. We may apply Corollary 8 to a parametric CP
in SPSD matrices:

� n
+ � X ⊥ F �X�p� ∈� n

+�(28)

where F � � n×�m→ � n is a given mapping. In what follows, we show how to calculate
the directional derivative of an implicit solution function of the above problem at a base
parameter vector p∗ ∈ �m. For this purpose, let X∗ be a strongly stable solution of the
above problem at p∗. Assume that F is continuously differentiable in a neighborhood of the
pair �X∗� p∗�. It follows that there exist open neighborhoods � ⊆ � n

+ of X∗ and  ⊆ �m

of p∗ and a locally Lipschitz continuous function X� → � such that for every p ∈ ,
X�p� is the unique matrix in � that solves (28); moreover, the implicit solution function



60 J-S. PANG, D. SUN, AND J. SUN

X is semismooth at p∗. We wish to compute X ′�p∗�dp� for dp ∈ �m. For each p ∈ , let
Z�p�≡ X�p�−F �X�p��p�. We have X�p�=�� n+�Z�p�� and

F ��� n+�Z�p���p�+Z�p�−�� n+�Z�p��= 0�

Taking the directional derivative of the above normal equation at p∗ along the direction dp
and writing dZ ≡ Z′�p∗�dp�, we obtain

JxF �X
∗� p∗��′� n+�Z

∗�dZ�+ JpF �X∗� p∗�dp+dZ−�′� n+�Z
∗�dZ�= 0�

Note that X ′�p∗�dp�=�′� n+�Z
∗�dZ�. By the previous derivation, we deduce that X ′�p∗�dp�

is the unique solution S∗ of the CP:

	 � S∗ ⊥ JpF �X
∗� p∗�dp+ �JxF �X∗� p∗�+�Z∗��S

∗� ∈	∗�

where 	 ≡ 
 �X∗�� n
+�∩ F �X∗� p∗�⊥ is the critical cone of the CP �� n

+� F �·� p∗�� at the
solution X∗.

5.2. The Lorentz CP. Given a function F � �n+1→�n+1, we call the complementarity
problem (Chen et al. 2003, Fukushima et al. 2002),

�n � �x� t�⊥ F �x� t� ∈�n

the Lorentz CP. Because �n is self-dual, this CP is equivalent to the VI ��n� F �. Assume
that F is continuously differentiable in an open neighborhood of a solution �x∗� t∗� of the
Lorentz CP. It follows that the normal map

Fnor
�n �z� K�≡ F ���n �z� K��+ �z� K�−��n �z� K�� �z� K� ∈ �n+1

is semismooth near �z∗� K∗�≡ �x∗� t∗�−F �x∗� t∗�. Using the notation in §4.2, let

(
d̂z� d̂K

)≡ (Anor
	�z∗�K∗�

)−1
�dz�dK��

we have

�dz�dK�= A�z∗� K∗��	�z∗�K∗��d̂z� d̂K�+
(
d̂z� d̂K

)−�	�z∗�K∗��d̂z� d̂K��

Consequently,

�Fnor
�n �

′��z∗� K∗�� �dz�dK��
= JF �x∗� t∗��

′
�n ��z

∗� K∗�� �dz�dK��+ �dz�dK�−�′�n ��z
∗� K∗�� �dz�dK��

= JF �x∗� t∗��	�z�K∗��d̂z� d̂K�+ �dz�dK�−�	�z∗�K∗��d̂z� d̂K�

=G�	�z∗�K∗��d̂z� d̂K�+
(
d̂z� d̂K

)−�	�z∗�K∗��d̂z� d̂K��

where G ≡ JF �x∗� t∗�+A�z∗� K∗�− I . Hence if we let Gnor
	 be the normal map of the pair

�	�z∗� K∗��G�, it follows that

Fnor
�n =Gnor

	 �
(
Anor

	�z∗�K∗�
)−1

�
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From this point on, the analysis of the Lorentz CP is very similar to that of the SDCP. The
details are not repeated.

6. Conclusion. In this paper, we have established a complete inverse function theorem
for semismooth equations and deduced from the theorem an implicit function theorem
for such equations that depend on a parameter. We have shown how the inverse/implicit
function theorem can be used to obtain necessary and sufficient conditions for the strong
stability/regularity of solutions to CPs on the cone of SPSD matrices and on the Lorentz
cone. We have further shown how the directional derivatives of a strongly stable parametric
solution can be calculated by differentiating the parametric equation. Our development relies
on certain directional derivative formulas for the projections on the cone of SPSD matrices
and on the Lorentz cone.
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