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Abstract

A kind of practical extragradient method for finding saddle points of general convex pro-
gramming by combining Korpelevich’s extragradient concept and the method of inexact line
searches is proposed. It is proved that the algorithm has global convergence property when the
goal function and the constraint functions are continuously differentiable. Moreover, a sufficient
and necessary condition on the existence of saddle point is obtained.
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1 Introduction

Consider the following general convex programming problem:

min {f(x) |x ∈ X, gi(x) ≤ 0, 1 ≤ i ≤ m} , (CP)

where x ∈ Rn, X ⊂ Rn is a nonempty closed convex set, and the objective function f : Rn → R
as well as the constraint functions gi : Rn → R, i = 1, . . . ,m, are all convex and continuously
differentiable.

For convenience, let

G(x) = (g1(x), . . . , gm(x))T , D =
{
(x, y)|x ∈ X, y ∈ Rm

+

}
.

Define the Lagrangian function of problem (CP) over the domain D as:

L(x, y) = f(x) + ⟨G(x), y⟩.

If there exists (x̄, ȳ) ∈ D such that

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ), ∀(x, y) ∈ D.

Then (x̄, ȳ) ∈ D is called a saddle point of L(x, y) over D, and the set of all such saddle points is
denoted by D∗. According to the Kuhn–Tucker theory [4] of convex programming, if (x∗, y∗) ∈ D
is a saddle point of L(x, y), then x∗ is an optimal solution to problem (CP). If the saddle point set
D∗ is nonempty (which may or may not be the case), then solving problem (CP) is equivalent to
finding a saddle point of L(x, y) over D.

∗This is an English translation of a paper originally published in Journal of Qufu Normal University, 19(4):10–17,
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Definition 1.1. Define the operator

T (x, y) = (∂xL(x, y), −∂yL(x, y)) ,

where ∂xL(x, y) and ∂yL(x, y) denote the partial derivatives of the Lagrangian L(x, y) with respect
to x and y, respectively. Under the assumption that f(x) and gi(x) for 1 ≤ i ≤ m are continuously
differentiable, the mapping T (·) is continuous on D. By the Kuhn–Tucker theorem [4], if T (·) is
continuous, then u∗ = (x∗, y∗) ∈ D is a saddle point of L(x, y) over D if and only if ⟨T (u∗), u−u∗⟩ ≥
0, ∀u = (x, y) ∈ D, which is known as the variational inequality problem (VIP). In this way,
finding a saddle point of L(x, y) over D is transformed into solving a variational inequality problem
(VIP).

Since f(x) and gi(x) are convex and continuously differentiable for all i = 1, . . . ,m, it follows
that

⟨T (u2)− T (u1), u2 − u1⟩ ≥ 0, ∀u1, u2 ∈ D. (1.1)

In particular, we have
⟨T (u), u− u∗⟩ ≥ 0, ∀u ∈ D, (1.2)

where u∗ is a saddle point of L(x, y) over D.

Recently, He and He [6] proposed a class of algorithms for computing saddle points in convex
programming problems in a formal framework. However, so far these methods have only been ap-
plied to quadratic programming or linear programming cases. Previously, the Soviet mathematician
Korpelevich [8] proposed the extragradient method using an extrapolation technique to find saddle
points. Assuming that T (·) is Lipschitz continuous on D and that D∗ ̸= ∅, Korpelevich proved the
global convergence of the extragradient method. However, the Lipschitz continuity condition is too
strong and often hard to satisfy in practice. Even if T (·) is Lipschitz continuous on D, finding a
saddle point u∗ is not always easy. For more discussion on this, see Polak [9]. Furthermore, no
verifiable necessary and sufficient condition concerning the existence of saddle point is established
in [8].

The main goal of this paper is to remove the Lipschitz continuity requirement on T (·) imposed
in [8] by incorporating inexact techniques to propose a practical iterative method for computing
saddle points, along with a verifiable sufficient and necessary condition for their existence during
the algorithmic process.

2 Preliminaries and Several Lemmas

Let Q ⊂ Rn+m be an arbitrary nonempty closed and convex set. The projection of z onto Q,
denoted by PQ(z), is defined as:

PQ(z) = argmin
ν∈Q

{∥ν − z∥} , (2.1)

where z ∈ Rn+m and ∥ · ∥ denotes the L2-norm. When Q has a relatively simple structure, for
instance Q = Rn+m

+ , computing PQ(z) is straightforward. Since Q is nonempty closed and convex,
PQ(z) is well-defined and single-valued.

We define the variational inequality problem VIP(T,Q) as follows: find z∗ ∈ Q such that

⟨T (z∗), z − z∗⟩ ≥ 0, ∀z ∈ Q. (2.2)

Accordingly, the solution set of VIP(T,Q) is denoted by:

Q∗ = {z∗ | (2.2) holds} . (2.3)
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Lemma 2.1. Let PQ be the projection operator onto a nonempty, closed and convex set Q ⊂ Rm+n.
Then the following properties hold:

(i) ∥PQ(v)− z∥2 ≤ ∥v − z∥2 − ∥PQ(v)− v∥2, ∀z ∈ Q, v ∈ Rm+n;

(ii) ∥PQ(u)− PQ(v)∥ ≤ ∥u− v∥, ∀u, v ∈ Rm+n.

Lemma 2.1 is easy to prove; see Zarantonello (1971, [10]) or Dunn (1981, [2]). Define

uQ(α) := PQ(u− αT (u)), (2.4)

and for simplicity we shall use u(α) in place of uQ(α) when no confusion arises. The definition of
Q can be inferred from context.

The following result was initially proven by Gafni and Bertsekas (1984, [5]), with a simpler
proof subsequently developed by Calamai and Moré (1987, [1]).

Lemma 2.2 ([5],[1]). Let PQ be the projection operator onto a nonempty, closed and convex set
Q ⊂ Rn+m. Given u ∈ Rn+m and d ∈ Rn+m, define the function ψ by

ψ(α) =
∥PQ(u+ αd)− u∥

α
, α > 0. (2.5)

Then ψ(α) is non-increasing in α; that is, if 0 < α1 ≤ α2, then ψ(α1) ≥ ψ(α2).

Lemma 2.3 ([3]). Let PQ be the projection operator onto a closed convex set Q ⊂ Rn+m. Then
z∗ ∈ Q is a solution of the variational inequality problem VIP(T,Q) if and only if

z∗ = PQ (z∗ − αT (z∗)) , for some or any α > 0. (2.6)

Lemma 2.4. Suppose that T (·) is continuous on Q, and PQ is the projection onto Q. Given a
constant η ∈ (0, 1), if u ∈ Q \Q∗, then there exists a positive constant δ > 0 such that

η∥u(α)− u∥2 ≥ α2∥T (u(α))− T (u)∥2, ∀α ∈ (0, δ]. (2.7)

Proof. By Lemma 2.3, since u /∈ Q∗, it follows that ∥u(1)− u∥ > 0. Then by Lemma 2.2, we have

∥u(α)− u∥
α

≥ ∥u(1)− u∥ > 0, ∀α ∈ (0, 1]. (2.8)

Since T (·) is continuous on Q, and by Lemma 2.1 (ii), we have

∥u(α)− u∥ = ∥PQ(u− αT (u))− PQ(u)∥ ≤ α∥T (u)∥.

Hence u(α) → u as α→ 0, and therefore,

∥T (u(α))− T (u)∥ → 0, as α→ 0. (2.9)

Combining (2.8) and (2.9), we conclude that there exists a constant δ > 0 such that

η · ∥u(α)− u∥2

α2
≥ ∥T (u(α))− T (u)∥2, ∀α ∈ (0, δ],

which is equivalent to (2.7).

Lemma 2.5 ([7]). Let Q ⊂ Rn+m be a nonempty compact and convex set. Let PQ denote the
projection operator onto Q, and suppose that T (·) is continuous on Q. Then the solution set of the
variational inequality problem VIP(T,Q), denoted by Q∗, is nonempty, i.e.,

Q∗ ̸= ∅.
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3 Algorithm

We now introduce the following algorithm, Projected Extragradient Method (PEGM).

Algorithm 1 Projected Extragradient Method (PEGM)

Input: Constants s ∈ (0,+∞), β ∈ (0, 1), η ∈ (0, 1).

1: Choose arbitrary initial point u0 ∈ D.
2: for k = 0, 1, 2, . . ., while uk /∈ D∗ do
3: (i) Choose the smallest nonnegative integer mk such that

η∥u(αk)− uk∥2 ≥ α2
k∥T (u(αk))− T (uk)∥2, (3.1)

where αk = βmks, u(αk) is defined by equation (2.4) and here Q = D.
4: (ii) Update

ūk = PD(u
k − αkT (u

k)) and uk+1 = PD(u
k − αkT (ū

k)). (3.2)

5: end for

Remarks on the Algorithm

(i) In practical computations, the following stopping criterion can be used:

∥uk(s)− uk∥2

s2
≤ ε2,

where ε > 0 is a prescribed accuracy.

(ii) By Lemma 2.4, the condition in (3.1) of the algorithm is always satisfiable. In particular, as
long as uk /∈ D∗, the integer mk must be finite.

(iii) If T (·) is Lipschitz continuous on D with Lipschitz constant L, then it is easy to verify that

αk ≥ min

{
β
√
η

L
, s

}
.

(iv) In practice, the constant s may be replaced by a sequence {sk}. As long as {sk} is bounded
and bounded below by a positive number, the convergence properties of the algorithm are
preserved.

4 Convergence Properties of the Algorithm

Theorem 4.1. Suppose that T (·) is continuous on D, and the saddle point set D∗ ̸= ∅. Then,
for any sequence {uk} generated by (3.1) and (3.2), there exists a subsequence {uk} such that
uk → ū ∈ D∗ as k → ∞.

Proof. Let arbitrary u∗ ∈ D∗. From inequality (i) in Lemma 2.1, we have:

∥uk+1 − u∗∥2 ≤ ∥uk − αkT (ū
k)− u∗∥2 − ∥uk − αkT (ū

k)− uk+1∥2

= ∥uk − u∗∥2 − ∥uk − uk+1∥2 + 2αk⟨T (ūk), u∗ − uk+1⟩
= ∥uk − u∗∥2 − ∥uk − uk+1∥2 + 2αk⟨T (ūk), u∗ − ūk⟩+ 2αk⟨T (ūk), ūk − uk+1⟩
≤ ∥uk − u∗∥2 − ∥uk − uk+1∥2 + 2αk⟨T (ūk), ūk − uk+1⟩.

(4.1)
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The last inequality uses the result of inequality (1.2). On the other hand, we have

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − ∥uk − ūk∥2 − ∥ūk − uk+1∥2

− 2⟨uk − ūk, ūk − uk+1⟩+ 2αk⟨T (ūk), ūk − uk+1⟩
= ∥uk − u∗∥2 − ∥uk − ūk∥2 − ∥ūk − uk+1∥2

+ 2⟨uk − αkT (ū
k)− ūk, uk+1 − ūk⟩.

(4.2)

Estimate the last term in (4.2). From Lemma 2.1 (i), we have

⟨uk − αkT (u
k)− ūk, uk+1 − ūk⟩ ≤ 0.

In fact, in Lemma 2.1, let v = uk−αkT (u
k), z = uk+1, and recall that ūk = PD(v). Substituting

into the inequality yields:

2⟨uk − αkT (ū
k)− ūk, uk+1 − ūk⟩

= 2⟨uk − αkT (u
k)− ūk, uk+1 − ūk⟩+ 2αk⟨T (uk)− T (ūk), uk+1 − ūk⟩

≤ 2αk⟨T (uk)− T (ūk), uk+1 − ūk⟩
≤ α2

k∥T (uk)− T (ūk)∥2 + ∥uk+1 − ūk∥2.

(4.3)

The last inequality in (4.3) comes from using the Cauchy–Schwarz inequality, and combining
(3.1), (4.2), and (4.3), we obtain:

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − ∥uk − ūk∥2 − ∥ūk − uk+1∥2

+ η∥uk − ūk∥2 + ∥uk+1 − ūk∥2

= ∥uk − u∗∥2 − (1− η)∥uk − ūk∥2.
(4.4)

From (4.4), it follows that the sequence {∥uk − u∗∥} is non-increasing, and hence

∥uk − ūk∥ → 0 as k → ∞. (4.5)

Since {uk} is bounded, there exists a subsequence {uki} and a point ū ∈ D such that

uki → ū, as ki → ∞. (4.6)

Since {αki} is also bounded, we may assume (without loss of generality, taking a subsequence
if necessary) that

αki → α0 as ki → ∞.

To complete the proof, we now proceed by contradiction. Assume that ū /∈ D∗. Then by
Lemma 2.3 (i), there exists a positive constant δ1 > 0 such that

∥PD (ū− sT (ū))− ū∥2

s2
≥ δ1. (4.7)

Since uki → ū, it follows that there exists an integer k1 such that for all ki ≥ k1, we have∥∥∥∥∥PD

(
uki − sT (uki)

)
− uki

s2

∥∥∥∥∥
2

≥ δ1
2
, (4.8)
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Using Lemma 2.2, we obtain

1

α2
ki

∥∥∥ūki − uki
∥∥∥2 ≥ 1

s2

∥∥∥PD

(
uki − sT (uki)

)
− uki

∥∥∥2 . (4.9)

On the other hand, due to the continuity of T (·), there exists δ ∈ (0, s) such that

∥T (ū(α))− T (ū)∥2 ≤ δ1
4
η, ∀α ∈ [0, δ]. (4.10)

Since uki → ū and T (·) is continuous on D, there exists an integer k2 such that for all ki ≥ k2,

∥T (uki(α))− T (uki)∥2 ≤ δ1
2
η, ∀α ∈ [0, δ]. (4.11)

Otherwise, there would exist a subsequence {ji} ⊂ {ki} and corresponding {αji} ⊂ [0, δ] such
that

∥T (uji(αji))− T (uji)∥2 > δ1
2
η. (4.12)

Without loss of generality, we may assume there exists ᾱ such that αji → ᾱ ∈ [0, δ]. Taking the
limit in (4.12) on both sides gives

∥T (ū(ᾱ))− T (ū)∥2 ≥ δ1
2
η,

which contradicts (4.10). Therefore, (4.11) holds. Taking k = max{k1, k2}, from (4.8), (4.9), and
(4.11), when ki ≥ k we have

∥uki(α)− uki∥2

α2
≥ 1

η
∥T (uki(α))− T (uki)∥2, ∀α ∈ [0, δ]. (4.13)

Hence for all ki ≥ k, since αki ≥ βδ, it follows that α0 > 0. Because ||uki − ūki || → 0 when
ki → ∞, we obtain

ū = lim
i→∞

ūki .

Since ūki = PD(u
ki − αkiT (u

ki)), taking limits on both sides gives

ū = PD(ū− α0T (ū)). (4.14)

It follows from Lemma 2.3 that ū ∈ D∗, which contradicts the assumption ū /∈ D∗. Hence we
have shown ū ∈ D∗.

Since {∥uk − ū∥} is a monotone decreasing sequence and converges to ū, the full sequence {uk}
also converges to ū. This completes the proof of Theorem 4.1.

Remark 4.1. When D is replaced by a general nonempty closed convex set, the conclusion of
Theorem 4.1 remains valid.

Theorem 4.1 proves the global convergence of the PEGM algorithm under the assumption
D∗ ̸= ∅. The following result identifies a necessary and sufficient condition for the existence of a
solution point, based on the algorithm’s iteration behavior.

Theorem 4.2. Suppose that T (·) is monotone and continuous on D, and let PD denote the pro-
jection onto D. Then D∗ ̸= ∅ if and only if for some or any sequence {uk} generated by (3.1) and
(3.2), the sequence {uk} is bounded.
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Proof. (Necessity). By Theorem 4.1, if D∗ ̸= ∅, then the sequence {uk} generated by (3.1) and
(3.2) converges. Hence, it is bounded.

(Sufficiency). Assume that for some sequence {uk} generated by (3.1) and (3.2), there exists
a constant r1 ∈ (0,+∞) such that

∥uk∥ ≤ r1, ∀k.

By the definition of {ūk} and the continuity of T (·), there exist constants r2, r3 ∈ (0,+∞) such
that

∥ūk∥ ≤ r2, ∀k; s∥T (uk)∥ ≤ r3, s∥T (ūk)∥ ≤ r3.

Let r = max{r1, r2, r3}. Then, by Lemma 2.1 (ii), we have

∥PD(u
k − αT (uk))∥ ≤ 2r, ∀α ∈ [0, s].

∥PD(u
k − αT (ūk))∥ ≤ 2r, ∀α ∈ [0, s].

(4.15)

Let ν be an arbitrary point in D, define

Y =
{
z ∈ Rn+m | ∥z∥∞ ≤ 2r + ∥ν∥∞

}
∩D,

where ∥ · ∥∞ is the L∞ − norm. By the definition of Y and (4.15), it follows that

PD(u
k − αT (uk)) ∈ Y, PD(u

k − αT (ūk)) ∈ Y, ∀α ∈ [0, s]. (4.16)

From the definition of projection and the relationship (4.16), we have:

PY (u
k − αT (uk)) = PD(u

k − αT (uk)),

PY (u
k − αT (ūk)) = PD(u

k − αT (ūk)), ∀α ∈ [0, s].
(4.17)

By the PEGM algorithm and (4.17), we have:

ūk = PY (u
k − αT (uk)), uk+1 = PY (u

k − αT (ūk)). (4.18)

That is, the sequence {uk} can be regarded as generated by PEGM for the variational inequality
problem VIP(T, Y ). Since Y is a nonempty compact convex set, Lemma 2.5 implies that the solution
set Y ∗ of VIP(T, Y ) is not empty. By Theorem 4.1 and Remark 4.1, there exists z∗ ∈ Y ∗ such that

uk → z∗, as k → ∞.

Since ν ∈ Y , it follows that ⟨T (z∗), ν − z∗⟩ ≥ 0. As z∗ is a limit point of the sequence {uk}, it
is uniquely determined. Because ν is an arbitrary point in D, we have

⟨T (z∗), z − z∗⟩ ≥ 0, ∀z ∈ D. (4.19)

This shows that z∗ is a solution of the variational inequality problem VIP(T,D), hence D∗ ̸= ∅.

Corollary 4.1. Assume the conditions of Theorem 4.2 hold. If the point sequence {uk} generated
by (3.1) and (3.2) is bounded, then there exists u∗ ∈ D∗ such that uk → u∗ as k → +∞.

By combining Theorems 4.1 and 4.2, we obtain the necessary and sufficient conditions for the
nonemptiness of the saddle point set (that is, the set of saddle points of the Lagrange function
L(x, y) over D) of the original problem.
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Corollary 4.2. Suppose that T (·) is continuous on D. Then the saddle point set D∗ of the convex
programming problem (CP) is empty if and only if some or any sequence {uk} generated by (3.1)
and (3.2) is unbounded.

The above conclusion shows that when the saddle point set is nonempty, our algorithm can
approximate a saddle point, yielding an approximate solution to problem (CP). Conversely, when
the saddle point set is empty, the algorithm provides a natural stopping criterion. In practice, we
may predefine a large threshold E, and terminate the algorithm when ∥uk∥ ≥ E.
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