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Abstract We introduce a partial proximal point algorithm for solving nuclear norm
regularized and semidefinite matrix least squares problems with linear equality con-
straints. For the inner subproblems, we show that the positive definiteness of the
generalized Hessian of the objective function for the inner subproblems is equiv-
alent to the constraint nondegeneracy of the corresponding primal problem, which
is a key property for applying a semismooth Newton-CG method to solve the inner
subproblems efficiently. Numerical experiments on large scale matrix least squares
problems arising from low rank matrix approximation, as well as regularized kernel
estimation and Euclidean distance matrix completion problems in molecular con-
formation, show that our algorithm is efficient and robust.

1 Introduction

Let ℜp×q be the space of all p×q matrices equipped with the standard trace inner
product 〈X ,Y 〉 = Tr(XTY ) and its induced Frobenius norm ‖ · ‖. Without loss of
generality, we assume p≤ q throughout this paper. For a given X ∈ℜp×q, its nuclear
norm ‖X‖∗ is defined as the sum of all its singular values and its operator norm ‖X‖2
is the largest singular value. Let S n be the space of all n×n symmetric matrices and
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S n
+ be the cone of symmetric positive semidefinite matrices. We use the notation

X � 0 to denote that X is a symmetric positive semidefinite matrix.
In this paper, we consider the following nuclear norm regularized matrix least

squares problem with linear equality constraints:

min
X∈ℜp×q

{1
2
‖A (X)−b‖2 +ρ‖X‖∗+ 〈C,X〉 : B(X) = d

}
, (1)

where A : ℜp×q→ℜm and B : ℜp×q→ℜs are given linear maps, C ∈ℜp×q,b ∈
ℜm,d ∈ℜs, and ρ is a given positive parameter. Note that the nuclear norm has been
a very popular regularizer which favors a low rank solution of (1) [4, 9, 10, 24]. The
problem (1) arises in many applications when one needs to find a low rank approx-
imation of a given matrix while preserving certain desired structures. In many data
analysis problems, the collected empirical data, which are usually messy and in-
complete, typically do not have the specified structure or the desired low rank. It
is important to find the nearest low rank approximation of the given matrix while
maintaining the underlying structure of the original system. For example, in statis-
tics, the regression matrix for the multiple regression model with a constant term
has a column of all ones, and this column should not be perturbed during the low
rank approximation.

When C = 0 and either A or B is absent in (1), the problem (1) includes the
well studied matrix completion problem if either B or A is the projection onto
the set of observed matrix entries. We should mention that many specialized first-
order algorithms have been designed for various variants of the matrix completion
problem; see for example [3, 22, 29, 19]. But as far as we are aware of, no papers
have specifically discussed the nuclear norm regularized matrix least squares prob-
lem with additional structural constraints. The problem can of course be solved by
several general first-order methods such as [6, 7, 8, 12, 13]. However, our numerical
experiments show that these first-order methods may not achieve a satisfactory level
of accuracy within a reasonable time.

In this paper, we design a partial proximal point algorithm (PPA) proposed by
Ha [16] for solving (1), in which only some of the variables appear in the quadratic
proximal term. Given a sequence of parameters σk such that

0 < σk ↑ σ∞ ≤+∞, (2)

and an initial point X0 ∈ℜp×q, the partial PPA for solving (1) generates a sequence
{(uk,Xk)} ⊆ℜm×ℜp×q via the following scheme:

(uk+1,Xk+1)≈ argmin
{

fρ(u,X)+
1

2σk
‖X−Xk‖2 : A (X)+u = b, B(X) = d

}
,

(3)

where fρ(u,X) :=
1
2
‖u‖2 +ρ‖X‖∗+ 〈C,X〉. A key issue in the partial PPA which

we must address is how to solve the partially regularized problem (3) efficiently. In
our algorithm, we solve (3) via its dual, which is an unconstrained concave max-
imization problem whose objective function is continuously differentiable but not
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twice continuously differentiable. Because of the latter property, standard Newton’s
method cannot be used to solve the inner subproblem. However, we can show that
the objective function is strongly semismooth due to the strong semismoothness
of the soft thresholding operator [18, Theorem 2.1]. Thus we can apply the semis-
mooth Newton method of Qi and Sun [23] to solve the inner subproblem. Recently
Zhao, Sun and Toh [32] proposed a Newton-CG augmented Lagrangian (SDPNAL)
method for solving SDP problems, in which the inner subproblems are solved by
using an inexact semismooth Newton-CG method. Their numerical results on a va-
riety of large scale SDP problems demonstrated that the SDPNAL method is very
efficient. This strongly motivated us to use a semismooth Newton-CG (SSNCG)
method to solve the inner subproblems for achieving fast convergence. For our case,
the global and fast local convergence of the SSNCG method is established under a
constraint nondegeneracy condition, together with the strong semismoothness prop-
erty of the soft thresholding operator.

The partial PPA which we will develop for solving (1) can easily be modified to
solve the following semidefinite matrix least squares problem:

min
X∈S n

{1
2
‖A (X)−b‖2 + 〈C, X〉 : B(X) = d, X � 0

}
, (4)

where A : S n→ℜm and B : S n→ℜs are given linear maps, b∈ℜm,d ∈ℜs, and
C ∈S n. Thus in this paper, we also design a partial PPA to solve (4).

For the partial PPA (with SSNCG method for solving the inner subproblems)
we have designed and implemented numerical experiments on large scale matrix
least squares problems arising from low rank matrix approximation, as well as reg-
ularized kernel estimation and Euclidean distance matrix completion problems in
molecular conformation, show that our algorithm is efficient and robust.

The remaining parts of this paper are organized as follows. In section 2, we
present some preliminaries about semismooth functions. In section 3, we describe
how to use the partial PPA to solve (1) and introduce a SSNCG method for solving
the inner subproblems. The convergence analysis of our proposed algorithm is also
established. In section 4, we briefly explain how the SSNCG partial PPA for solving
(1) can be modified to solve (4). In section 5, we report the numerical performance
of our algorithm for solving the various classes of problems mentioned in the last
paragraph. We conclude the paper in section 6.

2 Preliminaries

In this section, we give a brief introduction on some basic concepts such as the B-
subdifferential and Clarke’s generalized Jacobian of the soft-thresholding operator.
These concepts and properties will be critical for us to develop a SSNCG method
for solving the inner subproblems in our partial PPA.

Let F : ℜm −→ℜl be a locally Lipschitz function. By Rademacher’s theorem, F
is Fréchet differentiable almost everywhere. Let DF denote the set of points where
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F is differentiable. The B-subdifferential of F at x ∈ℜm is defined by

∂BF(x) := {V : V = lim
k→∞

F ′(xk), xk −→ x, xk ∈ DF},

where F ′(x) denotes the Jacobian of F at x ∈ DF . Then Clarke’s [5] generalized
Jacobian of F at x ∈ ℜm is defined as the convex hull of ∂BF(x), i.e., ∂F(x) =
conv{∂BF(x)}.

Let Y ∈ℜp×q admit the following singular value decomposition (SVD):

Y =U [Σ 0]V T , (5)

where U ∈ ℜp×p and V ∈ ℜq×q are orthogonal matrices, Σ = Diag(σ1, · · · ,σp) is
the diagonal matrix of singular values of Y , with σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0. Define
gρ : ℜ→ℜ by

gρ(t) := (t−ρ)+− (−t−ρ)+. (6)

For each parameter ρ > 0, the soft-thresholding operator Dρ : ℜp×q → ℜp×q is
defined by

Dρ(Y ) =U [Σρ 0]V T , (7)

where Σρ = Diag(gρ(σ1), . . . ,gρ(σp)). From [18, Thorem 2.1], we know that Dρ(·)
is strongly semismooth everywhere in ℜp×q. Decompose V ∈ ℜq×q into the form
V = [V1 V2], where V1 ∈ Rq×p and V2 ∈ ℜq×(q−p). Let the orthogonal matrix Q ∈
ℜ(p+q)×(p+q) be defined by

Q :=
1√
2

[
U U 0
V1 −V1

√
2V2

]
, (8)

and Ξ : ℜp×q→S p+q be defined by

Ξ(Y ) :=
[

0 Y
Y T 0

]
, Y ∈ℜ

p×q . (9)

Then, by [14, Section 8.6], we know that the symmetric matrix Ξ(Y ) has the fol-
lowing spectral decomposition:

Ξ(Y ) = Q

Σ 0 0
0 −Σ 0
0 0 0

QT , (10)

i.e., the eigenvalues of Ξ(Y ) are ±σi, i = 1, . . . , p, and 0 of multiplicity q− p. For
any W = PDiag(λ1, · · · ,λp+q)PT ∈S p+q, define Gρ : S p+q→S p+q by

Gρ(W ) := PDiag(gρ(λ1), · · · ,gρ(λp+q))PT = (W −ρI)+− (−W −ρI)+ ,

where (·)+ denotes the projection onto the cone of positive semidefinite matrices.
By direct calculations, we have
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Ψ(Y ) := Gρ(Ξ(Y )) = Q

Σρ 0 0
0 −Σρ 0
0 0 0

QT =

[
0 Dρ(Y )

Dρ(Y )T 0

]
. (11)

Note that (11) provides an easy way for us to calculate the derivative (if it exists)
of Dρ at Y , as we shall see in Proposition 1. For later discussion, we define the
following three index sets:

α := {1, . . . , p}, γ := {p+1, . . . ,2p}, β := {2p+1, . . . , p+q}. (12)

For any λ = (λ1, . . . ,λp+q)
T ∈ ℜp+q and λi 6= ±ρ, i = 1, . . . , p+ q, we denote by

Ω the (p+ q)× (p+ q) first divided difference symmetric matrix of gρ(·) at λ [2]
whose (i, j)th entry is given by

Ωi j =


gρ(λi)−gρ(λ j)

λi−λ j
if λi 6= λ j,

g′ρ(λi) if λi = λ j.

Proposition 1. Let Y ∈ℜp×q admit the SVD in (5). If σi 6= ρ, i= 1, . . . , p, then Dρ(·)
is differentiable at Y , and for any H ∈ℜp×q, we have

D′ρ(Y )H =U
[(

Ωαα ◦
(H1 +HT

1
2

)
+Ωαγ ◦

(H1−HT
1

2

))
V T

1 +
(
Ωαβ ◦H2

)
V T

2

]
,

(13)
where H1 =UT HV1 and H2 =UT HV2.

Proof. For any λ = (λ1, . . . ,λp+q)
T ∈ ℜp+q, let λi = σi for i ∈ α , λi = −σi−p for

i ∈ γ , and λi = 0 for i ∈ β . Since σi 6= ρ, i = 1, . . . , p, from (10) and (11) we can
obtain the first divided difference matrix for gρ(·) at λ :

Ω =

Ωαα Ωαγ Ωαβ

Ω T
αγ Ωγγ Ωγβ

Ω T
αβ

Ω T
γβ

Ωββ

 . (14)

Since gρ(·) is an odd function, we have the following results:

Ωγγ = Ωαα , Ωαγ = Ω
T
αγ , Ωγβ = Ωαβ , Ωββ = 0.

Now, by a result of Löwner [20], we have from (11) that for any H ∈ℜp×q,

Ψ
′(Y )H = G′ρ(Ξ(Y ))Ξ(H) = Q

[
Ω ◦ (QT

Ξ(H)Q)
]
QT .

Since

QT
Ξ(H)Q =

1
2

H1 +HT
1 HT

1 −H1
√

2H2

H1−HT
1 −(H1 +HT

1 )
√

2H2√
2HT

2

√
2HT

2 0

 , (15)
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by simple algebraic calculations, we have that

Ψ
′(Y )H = Q

[
Ω ◦ (QT

Ξ(H)Q)
]
QT =

[
0 M12

MT
12 0

]
, (16)

where M12 =U
[(

Ωαα ◦
(

H1+HT
1

2

)
+Ωαγ ◦

(
H1−HT

1
2

))
V T

1 +
(
Ωαβ ◦H2

)
V T

2

]
. Since

Ψ
′(Y )H =

[
0 D′ρ(Y )H

(D′ρ(Y )H)T 0

]
,

we have from (16) that D′ρ(Y )H = M12

Next, we give a characterization of the generalized Jacobian of Dρ(·), which was
presented in [31, Lemma 2.3.6 and Proposition 2.3.7]. For any λ =(λ1, . . . ,λp+q)

T ∈
ℜp+q, let λi = σi for i ∈ α , λi = −σi−p for i ∈ γ , and λi = 0 for i ∈ β . For each
threshold parameter ρ > 0, we decompose the index set α into the following three
subindex sets:

α1 := {i |σi(Y )> ρ}, α2 := {i |σi(Y ) = ρ}, α3 := {i |σi(Y )< ρ}. (17)

Let Γ denote the following (p+q)× (p+q) symmetric matrix

Γ =

Γαα Γαγ Γαβ

Γ T
αγ Γγγ Γγβ

Γ T
αβ

Γ T
γβ

Γββ

 , (18)

whose (i, j)th entry is given by

Γi j =


gρ(λi)−gρ(λ j)

λi−λ j
if λi 6= λ j,

1 ifλi = λ j and |λi|> ρ,
∈ ∂gρ(λi) = [0,1] if λi = λ j and |λi|= ρ,
0 if λi = λ j and |λi|< ρ.

(19)

Proposition 2. Let Y ∈ℜp×q admit the SVD in (5). Then, for any V ∈ ∂BΨ(Y ) and
any H ∈ℜp×q, we have

V (H) = Q(Γ ◦ (QT
Ξ(H)Q))QT . (20)

Moreover, for any W ∈ ∂BDρ(Y ), we have

W (H) =U
[(

Γαα ◦
(H1 +HT

1
2

)
+Γαγ ◦

(H1−HT
1

2

))
V T

1 +
(
Γαβ ◦H2

)
V T

2

]
,

(21)
where H1 =UT HV1, H2 =UT HV2, and
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Γαα =

τα1α1 τα1α2 τα1α3

τT
α1α2

να2α2 0
τT

α1α3
0 0

 ,

τi j = 1, for i ∈ α1, j ∈ α1∪α2,

τi j =
σi−ρ

σi−σ j
, for i ∈ α1, j ∈ α3,

νi j = ν ji ∈ [0,1], for i, j ∈ α2,

(22)

Γαγ =

ωα1α1 ωα1α2 ωα1α3

ωT
α1α2

0 0
ωT

α1α3
0 0

 , ωi j :=
(σi−ρ)++(σ j−ρ)+

σi +σ j
, for i ∈ α1, j ∈ α,

(23)

Γαβ =

(
µ

α1β̄

0

)
, β̄ = β−2p= {1, . . . ,q− p}, µi j =

σi−ρ

σi
, for i∈α1, j∈ β̄ . (24)

Proof. See [31, Lemma 2.3.6 and Proposition 2.3.7].

Let the operator W 0 : ℜp×q→ℜp×q be defined by

W 0(H) =U
[(

Γ
0

αα ◦
(H1 +HT

1
2

)
+Γαγ ◦

(H1−HT
1

2

))
V T

1 +
(
Γαβ ◦H2

)
V T

2

]
,

(25)
where Γ 0

αα is of the form (22) with (Γ 0
αα)α2α2 = 0. Then we have that W 0 is an

element in ∂BDρ(Y ).

3 A partial proximal point algorithm for matrix least squares
problems

In this section, we will show how to use the partial proximal point algorithm (PPA)
to solve the problem (1).

It is easy to see that (1) can be rewritten as follows:

min
u∈ℜm,X∈ℜp×q

{
fρ(u,X) :=

1
2
‖u‖2 +ρ‖X‖∗+ 〈C,X〉 : A (X)+u = b,B(X) = d

}
.

(26)
Note that the objective function fρ(u,X) is strongly convex in u for all X ∈ ℜp×q.
Let l(u,X ;ζ ,ξ ) : ℜm×ℜp×q×ℜm×ℜs→ℜ be the Lagrangian function for (26):

l(u,X ;ζ ,ξ ) := fρ(u,X)+ 〈ζ ,b−A (X)−u〉+ 〈ξ ,d−B(X)〉. (27)

Then the essential objective function in (26) is

f (u,X) := sup
ζ∈ℜm, ξ∈ℜs

l(u,X ;ζ ,ξ ) =

{
fρ(u,X) if (u,X) ∈FP,
+∞ if (u,X) /∈FP,

(28)

where FP = {(u,X) ∈ ℜm×ℜp×q | A (X)+ u = b,B(X) = d} is the feasible set
of (26). The dual problem of (26) is given by:
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max
{

gρ(ζ ,ξ ) : A ∗(ζ )+B∗(ξ )+Z =C, ‖Z‖2 ≤ ρ, ζ ∈ℜ
m, ξ ∈ℜ

s, Z ∈ℜ
p×q
}
,

(29)
where gρ(ζ ,ξ ) := − 1

2‖ζ‖
2 + 〈b,ζ 〉+ 〈d,ξ 〉. Since f (u,X) is strongly convex in u

for all X ∈ ℜp×q, we apply the partial PPA proposed by Ha [16] to the maximal
monotone operator T f = ∂ f , in which only the variable X appears in the quadratic
proximal term. Let Π : ℜm×ℜp×q → ℜm×ℜp×q be the orthogonal projector of
ℜm×ℜp×q onto {0}×ℜp×q, i.e., Π(u,X) = (0,X) and Pσ := (Π +σT f )

−1Π for
a given positive parameter σ . From [18, Proposition 3.1], we know that the operator
Pσ is single-valued. Given a starting point (u0,X0) ∈ ℜm×ℜp×q, the partial PPA
for solving problem (26) can be expressed as follows:

(uk+1,Xk+1) ≈ Pσk(u
k,Xk) := argmin

u∈ℜm,X∈ℜp×q

{
f (u,X)+

1
2σk
‖X−Xk‖2

}
, (30)

where the sequence {σk} satisfies (2). Note that for the standard PPA, the map Π in
Pσ is replaced by the identity map.

Next we compute the partial quadratic regularization of f in (30), which plays
a key role in the study of the partial PPA for solving (26). For a given parameter
σ > 0, the partial quadratic regularization of f in (28) associated with σ is given by

Fσ (X) = min
u∈ℜm,Y∈ℜp×q

{
f (u,Y )+

1
2σ
‖Y −X‖2

}
. (31)

From [18, Section 3], we have that

Fσ (X) = sup
ζ∈ℜm, ξ∈ℜs

θσ (ζ ,ξ ;X),

where

θσ (ζ ,ξ ;X) :=−1
2
‖ζ‖2 + 〈b,ζ 〉+ 〈d,ξ 〉+ 1

2σ
‖X‖2− 1

2σ
‖Dρσ (W (ζ ,ξ ;X))‖2

(32)
and W (ζ ,ξ ;X) = X −σ(C−A ∗ζ −B∗ξ ). By the saddle point theorem [25, The-
orem 28.3], we have that for any

(ζ (X),ξ (X)) ∈ argsup
ζ∈ℜm, ξ∈ℜs

θσ (ζ ,ξ ;X),

the point (ζ (X),Dρσ (W (ζ (X),ξ (X);X))) is the unique solution to (31).
Now we formally present the partial PPA for solving (26).
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Algorithm 1. Given a tolerance ε > 0, (u0,X0) ∈ ℜm×ℜp×q, σ0 > 0. Set k = 0.
Iterate:

Step 1. Compute an approximate maximizer

(ζ k+1,ξ k+1) ≈ argsup
ζ∈ℜm,ξ∈ℜs

θσk(ζ ,ξ ;Xk), (33)

where θσk(ζ ,ξ ;Xk) is defined in (32).
Step 2. Compute W k+1 :=W (ζ k+1,ξ k+1;Xk). Set

uk+1 = ζ
k+1, Xk+1 = Dρσk(W

k+1), Zk+1 =
1
σk

(Dρσk(W
k+1)−W k+1).

Step 3. If ‖(Xk−Xk+1)/σk‖ ≤ ε; stop; else; update σk; end.

Suppose that (ζ̄ (Xk), ξ̄ (Xk)) is an optimal solution of the inner subproblem (33) for
each Xk. In order to terminate (33) in the above partial PPA, we introduce the fol-
lowing stopping criteria:

supθk(ζ ,ξ )−θk(ζ
k+1,ξ k+1)≤

ε2
k

4σk
, (34a)

‖ζ k+1− ζ̄ (Xk)‖2 ≤ 1
2

ε
2
k , εk > 0,

∞

∑
k=0

εk < ∞, (34b)

supθk(ζ ,ξ )−θk(ζ
k+1,ξ k+1)≤

δ 2
k

2σk
‖Xk+1−Xk‖2, (34c)

‖ζ k+1− ζ̄ (Xk)‖2 ≤ δ
2
k ‖ζ k+1−ζ

k‖2, δk > 0,
∞

∑
k=0

δk < ∞, (34d)

‖∇θk(ζ
k+1,ξ k+1)‖ ≤

δ
′
k

σk
‖Xk+1−Xk‖, 0≤ δ

′
k→ 0. (34e)

In [18], it has been shown that under mild assumptions, the sequence {(uk,Xk)}
generated by the partial PPA under criterion (34a) and (34b) converges to an optimal
solution (ū,X) of (26), and {(ζ k,ξ k)} is asymptotically maximizing for problem
(29). If, in addition, (34c) and (34d) are also satisfied and T −1

f is Lipschitz contin-
uous at the origin, then {(uk,Xk)} locally converges to the unique optimal solution
(ū,X) of (26) at least at a linear rate which tends to zero as σk→+∞. For details on
the convergence analysis, we refer the reader to [18, Theorem 3.1 & Theorem 3.2].
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3.1 A semismooth Newton-CG method for solving unconstrained
inner subproblems

In this subsection, we introduce a semismooth Newton-CG (SSNCG) method for
solving the unconstrained inner subproblem (33), which is the most expensive step
in each PPA iteration. For later convenience, we let

Â =

(
A

B

)
, b̂ = (b;d) ∈ℜ

m+s, T =

[
Im 0
0 0

]
∈ℜ

(m+s)×(m+s), y = (ζ ;ξ ) ∈ℜ
m+s.

(35)
For the convergence analysis, we assume that the following Slater condition holds:{

B : ℜ
p×q→ℜ

s is onto,
∃X0 ∈ℜp×q such that B(X0) = d. (36)

In our proposed partial PPA, for some fixed X ∈ℜp×q and σ > 0, we need to solve
an inner subproblem of the following form:

min
y∈ℜm+s

{
ϕ(y) :=

1
2
〈y, Ty〉+ 1

2σ
‖Dρσ (W (y;X))‖2−〈b̂, y〉

}
, (37)

where W (y;X) = X −σ(C− Â ∗y) and Â ∗ = (A ∗, B∗) is the adjoint of Â . The
optimality condition for (37) is given by

∇ϕ(y) = Ty+ Â Dρσ (W (y;X))− b̂ = 0. (38)

Since the soft-thresholding operator Dρσ (·) is Lipschitz continuous with modulus
1 [19, 18], the mapping ∇ϕ(y) is Lipschitz continuous on ℜm+s. Thus for any y ∈
ℜm+s, the generalized Hessian of ϕ(y) is well defined and it is given by

∂
2
ϕ(y) := ∂ (∇ϕ)(y), (39)

where ∂ (∇ϕ)(y) is the Clarke’s generalized Jacobian of ∇ϕ at y [5]. However, it is
hard to express ∂ 2ϕ(y) exactly, so we define the following alternative for ∂ 2ϕ(y),

∂̂
2
ϕ(y) := T +σÂ ∂Dρσ (W (y;X))Â ∗. (40)

From [5, p.75], we have for any h ∈ℜm+s,

∂
2
ϕ(y)h⊆ ∂̂

2
ϕ(y)h, (41)

which implies that if all elements in ∂̂ 2ϕ(y) are positive definite, so are those in
∂ 2ϕ(y).

Since the soft-thresholding operator Dρσ (·) is strongly semismooth, ∇ϕ(·) is also
strongly semismooth. We can solve the nonlinear equation (38) by using a SSNCG
method for which the direction r at an iterate y is computed from the following
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linear system of equations:

(T +σÂ W Â ∗)︸ ︷︷ ︸
V

r = −∇ϕ(y), (42)

where W is any element in ∂Dρσ (W (y;X)). Note that if s = 0, i.e., the constraint
BX = d is absent, then V is always positive definite due to the fact that all the
elements in ∂Dρσ (·) are positive semidefinite [18, Proposition 2.1] and T = Im.

Define the operator W 0
y : ℜp×q→ℜp×q as in (25). To implement the above SS-

NCG method, we need to choose an explicit element W in ∂Dρσ (W (y;X)), which
we take to be W 0

y . With this specific choice, then the coefficient matrix in (42) is
given by

V 0
y = T +σÂ W 0

y Â ∗ ∈ ∂̂
2
ϕ(y). (43)

Next, we shall study a certain constraint nondegeneracy condition and its con-
nection to the positive definiteness of Vy ∈ ∂̂ 2ϕ(y). Suppose that the Slater condi-
tion (36) holds and y = (ζ ;ξ ) ∈ ℜm+s is the optimal solution to problem (37). Let
W (y;X) = X−σ(C− Â ∗y) and X = Dρσ (W (y;X)). Let W (y;X) admit the SVD as
in (5). For the given threshold value ρσ , we decompose the index set α = {1, . . . , p}
into the following three subindex sets:

α1 := {i |σi(W )> ρσ}, α2 := {i |σi(W ) = ρσ}, α3 := {i |σi(W )< ρσ}.

The constraint nondegeneracy condition is said to hold at X [18] if

B(T (X)) = ℜ
s, (44)

where the subspace T (X) of ℜp×q is defined as

T (X) :=
{

H ∈ℜ
p×q | [Uα2 Uα3 ]

T H[Vα2 Vα3 V2] = 0
}
, (45)

and its orthogonal complement is given by

T ⊥(X) =
{

H ∈ℜ
p×q |UT

α1
H = 0, HVα1 = 0

}
. (46)

The following lemma will be needed to analyze the connection between the con-
straint nondegeneracy condition at X and the positive definiteness of the elements
of ∂̂ 2ϕ(y).

Lemma 1. Let W (y;X) admit the SVD as in (5). For any W ∈ ∂Dρσ (W (y;X)) and
H ∈ℜp×q such that W H = 0, it holds that

H ∈T ⊥(X). (47)

Proof. Let W ∈ ∂Dρσ (W (y;X)) and H ∈ ℜp×q be such that W H = 0. Then we
have
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0 = 〈H, W H〉= 1
2
〈Ξ(H), Ξ(W H)〉= 1

2
〈Ξ(H), Q(Γ ◦ (QT

Ξ(H)Q))QT 〉

=
1
2
〈QT

Ξ(H)Q, Γ ◦ (QT
Ξ(H)Q)〉= 1

2
〈H̃, Γ ◦ H̃〉,

where Γ ∈S p+q is defined as in (18) and H̃ = QT Ξ(H)Q. Let H1 =UT HV1,H2 =
UT HV2,Hs

1 = (H1 +HT
1 )/2 and Ha

1 = (H1−HT
1 )/2. From (15) and (21), we have

0 =
1
2
〈H̃, Γ ◦ H̃〉= ∑

i∈α

∑
j∈α

Γi j(Hs
1)

2
i j + ∑

i∈α

∑
j∈γ

Γi j(Ha
1 )

2
i j + ∑

i∈α

∑
j∈β

Γi j(H2)
2
i j.

Since Γi j ∈ [0,1] for all i, j = 1, . . . , p+q, it follows that

∑
i∈α

∑
j∈α

Γi j(Hs
1)

2
i j = 0, ∑

i∈α

∑
j∈γ

Γi j(Ha
1 )

2
i j = 0, ∑

i∈α

∑
j∈β

Γi j(H2)
2
i j = 0.

Then from (22), (23) and (24), we have that

(Hs
1)α1α = 0, (Hs

1)αα1 = 0, (Ha
1 )α1α = 0, (Ha

1 )αα1 = 0, (H2)α1β̄
= 0,

where β̄ = {1, . . . ,q− p}. Since H1 = Hs
1 + Ha

1 , we have that (H1)α1α = 0 and
(H1)αα1 = 0. From H1 = [Uα1 Uα2 Uα3 ]

T H[Vα1 Vα2 Vα3 ] and H2 = [Uα1 Uα2 Uα3 ]
T HV2,

we obtain that

UT
α1

HV1 = 0, UT
α1

HV2 = 0, UT HVα1 = 0.

Since both U and V = [V1 V2] are orthogonal matrices, we have UT
α1

H = 0,HVα1 = 0,
which means that H ∈T ⊥(X).

Proposition 3. Suppose that the Slater condition (36) is satisfied. Let y be the opti-
mal solution to problem (37), W (y;X) = X −σ(C− Â ∗y) admit the SVD as in (5),
and X = Dρσ (W (y;X)). Then the following conditions are equivalent:

(a) The constraint nondegeneracy condition (44) holds at X.
(b) Every Vy ∈ ∂̂ 2ϕ(y) is symmetric and positive definite.
(c) V 0

y ∈ ∂̂ 2ϕ(y) is symmetric and positive definite.

Proof. “(a)⇒ (b)”. Let Vy be an arbitrary element in ∂̂ 2ϕ(y). Then there exists an
element Wy ∈ ∂Dρσ (W (y;X)) such that

Vy = T +σÂ WyÂ
∗ = T +σ

[
AWyA ∗ AWyB∗

BWyA ∗ BWyB∗

]
. (48)

Since Wy is self-adjoint and positive semidefinite [18, Proposition 2.1], we have
that Vy is self-adjoint and positive semidefinite. From (48) we obtain that Vy is
positive definite if only if BWyB∗ is positive definite. Hence, it it enough to show
the positive definiteness of BWyB∗. Let h ∈ ℜs be such that BWyB∗h = 0. Then
we have
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0 = 〈h, BWy B∗h〉= 〈B∗h, Wy B∗h〉 ≥ 〈Wy B∗h, Wy B∗h〉,

where the last inequality follows from [18, Proposition 2.1], which implies that
Wy (B∗h) = 0. From Lemma 1, we have B∗h ∈ T (X)⊥. Since the constraint non-
degeneracy condition holds at X , there exists a Y ∈T (X) such that BY = h. Then,
we have

〈h, h〉= 〈h, BY 〉= 〈B∗h, Y 〉= 0.

Thus h = 0, which implies that BWyB∗ is positive definite. Hence, Vy is positive
definite.

“(b)⇒ (c)”. This is obviously true since V 0
y ∈ ∂̂ 2ϕ(y).

“(c)⇒ (a)”. Suppose that the constraint nondegeneracy condition (44) does not
hold at X . Then there exists a non-zero h ∈ [BT (X)]⊥. And we have

0 = 〈h, BY 〉= 〈H, Y 〉 ∀ Y ∈T (X),

where H = B∗h, which implies that H ∈ T (X)⊥. From (46), we have UT
α1

H = 0
and HVα1 = 0. Then it follows that

UT
α1

HV =UT
α1

H[V1 V2] = 0 and UT HVα1 = 0. (49)

Let H1 =UT HV1 and H2 =UT HV2. We have from (49) that

(H1)α1α = 0, (H1)αα1 = 0, and (H2)α1β̄
= 0,

where β̄ = {1, . . . ,q− p}, from which we can further have that

(Hs
1)α1α = 0, (Hs

1)αα1 = 0, (Ha
1 )α1α = 0, and (Ha

1 )αα1 = 0,

where Hs
1 = (H1 +HT

1 )/2 and Ha
1 = (H1−HT

1 )/2. Then we have

Γ
0

αα ◦ (Hs
1) = 0, Γαγ ◦ (Ha

1 ) = 0, and Γαβ ◦H2 = 0.

From the definition of W 0
y in (25), it follows that W 0

y (H) = 0, and hence

〈h, BW 0
y B∗h〉= 〈H, W 0

y (H)〉= 0. (50)

Since V 0
y is positive definite, it follows from (48) that BW 0

y B∗ is also positive
definite. Then (50) implies that h = 0, which contradicts the assumption that h 6= 0.
Hence, we have that (a) holds.

Now we present the steps of the SSNCG algorithm for solving (37).
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Algorithm 2: A semismooth Newton-CG method

Given y0 ∈ℜm+s, η ∈ (0,1), τ ∈ (0,1], τ1,τ2 ∈ (0,1), and c ∈ (0,1/2), δ ∈ (0,1).
Set t = 0. Iterate:

Step 1. Compute ηt := min{η ,‖∇ϕ(yt)‖1+τ}. Apply the CG method to find an
approximation solution rt to

(Vt + εt I) r =−∇ϕ(yt), (51)

where Vt ∈ ∂̂ 2ϕ(yt) is defined in (43) and εt = min{τ2,τ1‖∇ϕ(yt)‖}, so that rt

satisfies the following condition:

‖(Vt + εt I)rt +∇ϕ(yt)‖ ≤ ηt . (52)

Step 2. Set αt = δ mt , where mt is the first nonnegative integer m for which

ϕ(yt +δ
mrt) ≤ ϕ(yt)+ cδ

m〈rt , ∇ϕ(yt)〉.

Step 3. Set yt+1 = yt +αtrt .

In Algorithm 2, since Vt is always positive semidefinite, the matrix Vt + εt I is pos-
itive definite as long as ∇ϕ(yt) 6= 0. From [32, Lemma 3.1], we know that the gen-
erated search direction rt is always a descent direction.

To analyze the global convergence of Algorithm 2, we assume that ∇ϕ(yt) 6= 0
for any t ≥ 0. The global convergence and the rate of local convergence of Algorithm
2 can be derived similarly as in [32].

Theorem 1. Suppose that the Slater condition (36) holds. Then Algorithm 2 is well
defined and any accumulation point y of {yt} generated by Algorithm 2 is an optimal
solution to the inner subproblem (37).

Proof. See [32, Theorem 3.4].

Theorem 2. Suppose that the Slater condition (36) holds. Let y be an accumula-
tion point of the infinite sequence {yt} generated by Algorithm 2 for solving the
inner subproblem (37). Suppose also that at each step t ≥ 0, the inexact direction
rt satisfies the accuracy condition in (52). Assume that the constraint nondegen-
eracy condition (44) holds at X := Dρσ (W (y;X)). Then the whole sequence {yt}
converges to y and

‖yt+1− y‖= O(‖yt − y‖1+τ). (53)

Proof. See [32, Theorem 3.5].
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4 Semidefinite matrix least squares problems

In this section, we show that the partial PPA developed for solving (26) can easily
be adapted for solving the semidefinite matrix least squares problem (4). It is easy
to see that (4) can be rewritten as follows:

min
u∈ℜm,X∈S n

{1
2
‖u‖2 + 〈C, X〉 : A (X)+u = b, B(X) = d, X � 0

}
. (54)

The dual problem of (54) is given by:

max
ζ∈ℜm,ξ∈ℜs,Z∈S n

{
− 1

2
‖ζ‖2+ 〈b, ζ 〉+ 〈d, ξ 〉 : A ∗(ζ )+B∗(ξ )+Z = C, Z � 0

}
.

(55)
For some fixed X ∈S n and σ > 0, the partial quadratic regularization of problem
(54) is given by:

min
u∈ℜm,Y∈S n

{1
2
‖u‖2+〈C, Y 〉+ 1

2σ
‖Y −X‖2 : A (Y )+u = b, B(Y ) = d, Y � 0

}
,

(56)
and the Lagrangian dual problem of (56) is given by

max
ζ∈ℜm,ξ∈ℜs

θσ (ζ ,ξ ;X) := inf
u∈ℜm,Y�0

Lσ (u,Y ;ζ ,ξ ,X) , (57)

where

Lσ (u,Y ;ζ ,ξ ,X) =
1
2
‖u‖2 + 〈C, Y 〉+ 1

2σ
‖Y −X‖2 + 〈ζ , b−A (Y )−u〉+ 〈ξ , d−B(Y )〉

=
1
2
‖u‖2−〈ζ ,u〉+ 〈b,ζ 〉+ 〈d,ξ 〉+ 1

2σ
‖Y −W (ζ ,ξ ;X)‖2 +

1
2σ

(‖X‖2−‖W (ζ ,ξ ;X)‖2),

where W (ζ ,ξ ;X) = X−σ(C−A ∗ζ −B∗ξ ). By minimizing Lσ (u,Y ;ζ ,ξ ,X) over
Y � 0, we have

θσ (ζ ,ξ ;X) =−1
2
‖ζ‖2 + 〈b,ζ 〉+ 〈d,ξ 〉+ 1

2σ
‖X‖2− 1

2σ
‖ΠS n

+
(W (ζ ,ξ ;X))‖2,

(58)
where ΠS n

+
(·) is the metric projector of S n onto S n

+. The problem (57) is an un-
constrained continuously differentiable convex optimization problem, and it can be
efficiently solved by the SSNCG method developed in [32]. The SSNCG method for
solving (57) is analogous to Algorithm 2 where for some fixed X ∈S n and σ > 0,
the function ϕ is now given by

ϕ(y) =
1
2
〈y, Ty〉+ 1

2σ
‖ΠS n

+
(W (y;X))‖2−〈b̂, y〉

and the operator Vt in (51) is replaced by
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Vt = T +σÂ Π
′
S n

+
(W (yt ;X))Â ∗, (59)

where Π ′S n
+
(W (yt ;X)) denotes an element of ∂ΠS n

+
(W (yt ;X)).

The fast local convergence of the SSNCG method for solving (57) can be es-
tablished in a similar fashion as Theorem 2 where the positive definiteness of the
element Vy defined in (59) at the optimal solution y is again equivalent to a con-
straint nondegeneracy condition similar to (44) at X := ΠS n

+
(W (y;X)).

5 Numerical Results

In this section, we report some numerical results to demonstrate the efficiency of our
SSNCG partial PPA. We implemented our algorithm in MATLAB 2012a (version
7.14), and the numerical experiments are run in MATLAB under a Windows 7 64-bit
system on an Intel Xeon 4 Cores 3.20GHz CPU with 12GB memory.

In our numerical implementation, we use the alternating direction method of mul-
tipliers (ADMM) [8] to generate a reasonably good starting point for our SSNCG
partial PPA. The augmented Lagrangian function for (29) corresponding to the lin-
ear equality constraints is defined as:

Lσ (y,Z;X) =−1
2
〈y,Ty〉+ 〈b̂,y〉+ 〈X ,C− Â ∗y−Z〉− σ

2
‖C− Â ∗y−Z‖2,

where X ∈ℜp×q and σ > 0. Given a starting point (X0; y0; Z0), the ADMM gener-
ates new iterates by the following procedure:

yk+1 := argmaxy∈ℜm+s Lσ (y,Zk;Xk), (60)

Zk+1 := argmax‖Z‖2≤ρ Lσ (yk+1,Z;Xk) =
1
σ
(Dρσ (W k+1)−W k+1), (61)

Xk+1 := Dρσ (W k+1), (62)

where W k+1 = Xk−σ(C− Â ∗yk+1). Note that the iterate yk+1 in (60) can be com-
puted by solving the following linear system of equations:

(T +σÂ Â ∗)y = b̂− Â (Xk)+σÂ (C−Zk).

We measure the infeasibilities and optimality for the primal problem (26) and the
dual problem (29) as follows:

RP =
‖b̂− (ζ ;0)− Â (X)‖

1+‖b̂‖
, RD =

‖C− Â ∗y−Z‖
1+‖Â ∗‖

, relgap=
fρ(ζ ,X)−gρ(ζ ,ξ )

1+ | fρ(ζ ,X)|+ |gρ(ζ ,ξ )|
,

where y = (ζ ;ξ ),Z = (Dρσ (W )−W )/σ with W = X −σ(C− Â ∗y), and fρ(ζ ,X)
and gρ(ζ ,ξ ) are the objective functions of the primal and dual problems, respec-
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tively. The infeasibility of the condition ‖Z‖2 ≤ ρ is not checked since it is satisfied
up to machine precision throughout the algorithm. In our numerical experiments,
we stop the partial PPA when

max{RP,RD} ≤ Tol, (63)

where Tol is a pre-specified accuracy tolerance. We choose the initial σ0 = 1 and
update it as σk+1 = min(2σk,108) if Rk+1

D /Rk
D > 0.5; otherwise σk+1 = σk. Unless

otherwise specified, we set the parameter ρ in (1) to be ρ = 10−3‖A ∗b‖2 and Tol=
10−6 as the default.

In solving the subproblem (37), the SSNCG algorithm is stopped when RP =
‖∇ϕ(y)‖/(1+ ‖b̂‖) ≤ 0.2RD or the number of Newton iterations exceeds 50. We
cap the number of CG steps for solving each Newton system of linear equations at
600 and stop the CG solver when ‖(V + εI)r+∇ϕ(y)‖ ≤min(0.05,0.1‖∇ϕ(y)‖).

The reason we used the ADMM instead of other first order methods to generate
a starting point is based on our belief and experience that the ADMM is perhaps the
most efficient first order method for solving the problems which we are interested in.
Since this belief may be challenged without strong numerical evidence to support it,
as suggested by one of the referees, we also tested the primal-dual splitting method
by Condat [7] for solving (1). To apply Condat’s method in [7], we rewrite (1) in the
following form:

min
X

F(X)+G(X)+H(B(X)), (64)

where F(X) = 1
2‖A (X)−b‖2+〈C,X〉with ∇F(X) =A ∗(A (X)−b)+C, G(X) =

ρ‖X‖∗, and H(·) is the indicator function over the singleton set {d}. Note that the
optimality condition for (64) is given by:

find (X ,y) such that
(

0
0

)
∈
(

∇F(X)+∂G(X)+B∗y
−B(X)+∂H∗(y)

)
(65)

where H∗ is the conjugate function of H with H∗(y) = 〈d, y〉. Let LF be a Lips-
chitz constant for ∇F , which in our case can be set to LF = λmax(A ∗A ). Given
parameters λ > 0,β > 0 such that λ−1 ≥ LF/2+βλmax(BB∗), a sequence of pos-
itive numbers {µk}, and a starting point (X0,y0)∈ℜp×q×ℜs, Condat’s primal-dual
splitting method generates new iterates as follows:

X̃k+1 = proxλG(X
k−λ∇F(Xk)−λB∗(yk)) = Dρλ (W

k), (66)

ỹk+1 = proxβH∗(y
k +βB(2X̃k+1−Xk)) = yk +β (B(2X̃k+1−Xk)−d), (67)

(Xk+1,yk+1) = µk(X̃k+1, ỹk+1)+(1−µk)(Xk,yk), (68)

where W k = Xk − λ∇F(Xk)− λB∗(yk) and proxλG denotes the proximal point
mapping associated with λG defined by proxλG(X)= argminY∈ℜp×qλG(Y )+ 1

2‖Y−
X‖2. We can estimate how close the iterate (X̃k+1, ỹk+1) is to optimality by noting
that dist(0,−B(X̃k+1)+∂H∗(ỹk+1)) = ‖d−B(X̃k+1)‖, and
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dist(0,∇F(X̃k+1)+∂G(X̃k+1)+B∗ỹk+1)≤‖ 1
λ
(W k−X̃k+1)+B∗ỹk+1+∇F(X̃k+1)‖,

based on the fact that W k − X̃k+1 ∈ ∂ (λG)(X̃k+1). By letting Zk+1 = 1
λ
(X̃k+1 −

W k),uk+1 = ζ k+1 = b−A (X̃k+1) and ξ k+1 =−ỹk+1, then

‖[A X̃k+1 +uk+1−b;d−B(X̃k+1)]‖= ‖d−B(X̃k+1)‖

‖ 1
λ
(W k− X̃k+1)+B∗ỹk+1 +∇F(X̃k+1)‖= ‖C− (A ∗ζ k+1 +B∗ξ k+1 +Zk+1)‖,

which correspond to the residuals of the primal and dual equality constraints in (26)
and (29), respectively. Therefore, we can stop the primal-dual splitting method when
(63) is satisfied. In our numerical experiments, we also stop the method when the
number of iterations exceeds 2000.

5.1 Example 1

We consider the low rank matrix approximation problem in which certain specified
entries of the matrix are fixed. In [15], Golub, Hoffman and Stewart derived an ex-
plicit formula for finding the nearest lower-rank approximation of the target matrix
while certain specified columns of the matrix are fixed. In our numerical experi-
ments, we assume that only partial information of the original matrix is available
and the specified fixed entries can be in any random position of the original matrix.
For each triplet (p,q,r), we first generate a random matrix M ∈ ℜp×q by setting
M = M1MT

2 where M1 ∈ ℜp×r, M2 ∈ ℜq×r have i.i.d. Gaussian entries. Then we
sample a subset E of m entries of M uniformly at random, and generate a random
matrix NE ∈ ℜp×q with sparsity pattern E and i.i.d Gaussian entries. Then we as-
sume that the observed data is given by M̃E = ME + τNE ‖ME ‖/‖NE ‖, where τ is
the noise factor. The minimization problem which we solve can be stated as follows:

min
X∈ℜp×q

{1
2
‖XE − M̃E ‖2

F +ρ‖X‖∗ : Xit , jt = Mit , jt ,1≤ t ≤ k
}
, (69)

where (i1, j1), . . . ,(ik, jk) are distinct pairs. In our numerical experiments, we set k =
d10−3 pqe, which is the number of prescribed entries selected uniformly at random,
and the noise level τ = 0, 0.1.

For each triplet (p,q,r),m and τ , we generate 5 random instances. In Table 1, we
report the average number of the following quantities: number of sampled entries
(m); number of outer iterations (it); total number of inner iterations (itsub); number
of CG steps taken to solve each linear system in (51) (cg); infeasibilities (Rp,RD);
relative duality gap (relgap); relative mean square error MSE := ‖X −M‖/‖M‖;
numerical rank of X (#sv); and the CPU time taken. Here we report the numerical
rank of X defined as follows:

#sv(X) := max{k : σk(X)≥max{10−8,τ}σ1(X)}. (70)
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p/q/τ r m; m/dr it.|itsub|cg Rp | RD | relgap MSE #sv time
1000/1000 /0.0 10 199104; 10 10.2 | 30.4 | 18.8 2.20e-7 | 8.05e-7 | -1.57e-4 1.32e-3 10 1:41

50 487314; 5 10.0 | 16.0 | 15.3 1.26e-7 | 7.07e-7 | -3.94e-5 1.64e-3 50 1:04
100 949927; 5 9.0 | 10.2 | 12.4 1.23e-7 | 4.38e-7 | -8.96e-6 1.48e-3100 43

1500/1500 /0.0 10 299272; 10 13.0 | 32.4 | 16.9 1.95e-7 | 1.92e-7 | -1.70e-5 1.30e-3 10 5:33
50 738078; 5 11.0 | 18.8 | 15.2 1.38e-7 | 6.46e-7 | -3.54e-5 1.68e-3 50 3:45

100 1449450; 5 10.0 | 15.2 | 18.7 1.27e-7 | 3.42e-7 | -1.07e-5 1.60e-3100 3:43
1000/1000 /0.1 10 199104; 10 20.0 | 46.4 | 10.5 4.97e-7 | 7.95e-7 | -8.79e-5 7.75e-2 10 2:11

50 487314; 5 23.0 | 44.4 | 11.0 1.67e-7 | 5.18e-7 | -9.04e-6 9.64e-2 50 2:42
100 949927; 5 21.0 | 25.2 | 9.7 3.68e-7 | 6.09e-7 | -3.01e-7 9.66e-2100 1:54

1500/1500 /0.1 10 299272; 10 21.4 | 48.6 | 10.7 1.17e-7 | 8.67e-7 | -1.46e-4 7.50e-2 10 7:09
50 738078; 5 22.8 | 44.8 | 11.7 1.59e-7 | 7.07e-7 | -2.20e-5 9.72e-2 50 8:09

100 1449450; 5 23.0 | 39.4 | 11.4 7.33e-7 | 6.63e-7 | -2.95e-6 9.62e-2100 7:57
100/10000 /0.0 10 504310; 5 14.2 | 23.4 | 13.4 5.73e-7 | 5.39e-7 | -2.07e-5 1.66e-3 10 38
100/50000 /0.0 10 2504270; 5 14.4 | 21.6 | 16.3 4.05e-7 | 6.44e-7 | -2.58e-5 1.67e-3 10 4:10
100/100000 /0.0 10 5004144; 5 14.4 | 22.4 | 18.4 2.70e-7 | 4.68e-7 | -1.95e-5 1.67e-3 10 9:09
100/10000 /0.1 10 504310; 5 22.0 | 34.2 | 5.7 3.26e-7 | 6.49e-7 | -4.07e-5 8.95e-2 10 31
100/50000 /0.1 10 2504270; 5 22.2 | 33.0 | 5.7 2.73e-7 | 7.22e-7 | -4.57e-5 8.94e-2 10 3:29
100/100000 /0.1 10 5004144; 5 21.8 | 31.0 | 5.9 5.31e-7 | 7.04e-7 | -4.49e-5 8.93e-2 10 6:47
200/10000 /0.0 10 510046; 5 13.4 | 31.4 | 18.6 4.66e-7 | 2.24e-7 | -1.79e-5 1.76e-3 10 2:23
200/50000 /0.0 10 2509504; 5 13.6 | 31.2 | 22.3 4.23e-7 | 2.11e-7 | -1.63e-5 1.78e-3 10 14:43
200/100000 /0.0 10 5010168; 5 13.8 | 29.2 | 22.8 2.30e-7 | 5.18e-7 | -1.73e-5 1.78e-3 10 28:45
500/10000 /0.0 10 524511; 5 16.8 | 50.4 | 28.3 3.40e-7 | 2.75e-7 | -2.00e-5 1.78e-3 10 17:21
200/10000 /0.1 10 510046; 5 19.0 | 36.0 | 7.6 5.40e-7 | 9.12e-7 | -1.15e-4 8.78e-2 10 1:37
200/50000 /0.1 10 2509504; 5 19.0 | 34.0 | 8.0 4.68e-7 | 9.24e-7 | -1.17e-4 8.67e-2 10 9:29
200/100000 /0.1 10 5010168; 5 19.6 | 35.4 | 8.1 3.46e-7 | 7.85e-7 | -9.87e-5 8.65e-2 10 20:25
500/10000 /0.1 10 524511; 5 24.6 | 51.6 | 11.5 2.91e-7 | 7.56e-7 | -1.62e-4 9.34e-2 10 11:44

Table 1 Numerical performance of the partial PPA on (69). In the table, dr = r(p+ q− r) is the
degree of freedom in an p×q matrix of rank r.

In this example, we compare the performance of the SSNCG partial PPA with the
ADMM method [8] which is applied to the dual problem (29) and the primal-dual
splitting method [7]. We use the same stopping criterion (63) for ADMM. Table 2
reports the average results of ADMM for each instance of 5 runs. We may observe
from the tables that our algorithm is overall more efficient than ADMM for solving
(69). For the problem where p is moderate but q is large, e.g., p = 100, q = 100000
and τ = 0, it takes the partial PPA less than half of the time needed by ADMM to
achieve the tolerance of 10−6 while the MSE is reasonably small. Table 3 reports the
average results of the primal-dual splitting method for each instance of 5 runs. We
set the parameters λ = 1.5 and β = 1/6 after some tuning for good performance.
The parameter µk is set to be 1 for all k as this choice gives the best performance.
We can observe from the tables that the primal-dual splitting method is much slower
than ADMM for solving (69). For p = q = 1500,τ = 0 and r = 10, the primal-
dual splitting method cannot achieve the tolerance of 10−6 within one hour and the
obtained solution is of very high rank with relatively large MSE.
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p/q/τ r m; m/dr it. Rp | RD | relgap MSE #sv time
1000/1000 /0.0 10 199104; 10 360.6 9.91e-7 | 2.36e-7 | 1.03e-5 1.32e-3 10 4:01

50 487314; 5 184.6 9.75e-7 | 3.24e-7 | 3.06e-6 1.64e-3 50 2:29
100 949927; 5 147.8 9.68e-7 | 3.05e-7 | 1.57e-6 1.48e-3 100 2:24

1500/1500 /0.0 10 299272; 10 464.2 9.92e-7 | 2.59e-7 | 1.31e-5 1.30e-3 10 16:11
50 738078; 5 330.2 9.63e-7 | 4.69e-7 | 8.56e-6 1.68e-3 50 12:43

100 1449450; 5 169.8 9.83e-7 | 4.19e-7 | 1.88e-6 1.60e-3 100 7:22
1000/1000 /0.1 10 199104; 10 183.6 9.85e-7 | 5.94e-7 | -5.02e-5 7.75e-2 10 2:02

50 487314; 5 99.0 9.17e-7 | 5.87e-7 | -1.79e-6 9.64e-2 50 1:22
100 949927; 5 72.4 9.79e-7 | 4.98e-7 | 1.22e-7 9.66e-2 100 1:15

1500/1500 /0.1 10 299272; 10 198.6 9.69e-7 | 1.77e-7 | -1.93e-5 7.50e-2 10 6:56
50 738078; 5 93.0 9.61e-7 | 2.34e-7 | -2.88e-6 9.72e-2 50 3:38

100 1449450; 5 74.0 9.47e-7 | 4.36e-7 | -2.11e-7 9.62e-2 100 3:20
100/10000 /0.0 10 504310; 5 276.6 9.78e-7 | 3.48e-7 | 4.31e-6 1.66e-3 10 1:48
100/100000 /0.0 10 5004144; 5 254.6 9.85e-7 | 3.30e-7 | 3.90e-6 1.67e-3 10 24:04
500/10000 /0.0 10 524511; 5 679.2 9.91e-7 | 2.90e-7 | 1.20e-5 1.78e-3 10 26:16
100/10000 /0.1 10 504310; 5 66.2 9.58e-7 | 5.27e-7 | -1.71e-5 8.95e-2 10 27
100/100000 /0.1 10 5004144; 5 63.4 9.41e-7 | 4.28e-7 | -1.34e-5 8.93e-2 10 6:05
500/10000 /0.1 10 524511; 5 329.2 9.91e-7 | 3.62e-7 | -5.33e-5 9.33e-2 10 13:08

Table 2 Numerical performance of the ADMM method on (69).

p/q/τ r m; m/dr it. Rp | RD | relgap MSE #sv time
1000/1000 /0.0 10 199104; 10 2000.0 2.10e-5 | 7.09e-5 | -2.31e-3 2.57e-3 11 19:11

50 487314; 5 806.4 9.83e-7 | 5.30e-8 | -1.19e-7 1.64e-3 50 8:03
1500/1500 /0.0 10 299272; 10 2000.0 1.73e-5 | 1.79e-3 | -5.26e-1 1.81e-1 302 1:04:46

50 738078; 5 1379.6 9.83e-7 | 6.92e-8 | -2.55e-7 1.68e-3 50 45:24
1000/1000 /0.1 10 199104; 10 2000.0 9.54e-6 | 3.64e-4 | -7.78e-2 8.76e-2 10 19:09

50 487314; 5 2000.0 2.19e-8 | 1.44e-6 | -2.79e-5 9.64e-2 50 20:01
1500/1500 /0.1 10 299272; 10 2000.0 1.28e-5 | 1.41e-3 | -3.71e-1 2.34e-1 10 1:04:47

50 738078; 5 2000.0 1.38e-6 | 1.19e-4 | -5.97e-3 9.84e-2 50 1:05:26
100/10000 /0.0 10 504310; 5 1292.8 9.93e-7 | 2.27e-8 | -1.82e-8 1.66e-3 10 4:03
100/100000 /0.0 10 5004144; 5 1328.2 9.99e-7 | 2.34e-8 | -1.71e-8 1.67e-3 10 1:21:59
100/10000 /0.1 10 504310; 5 1706.4 2.37e-8 | 9.98e-7 | -4.91e-5 8.95e-2 10 5:29
100/100000 /0.1 10 5004144; 5 1711.0 2.49e-8 | 9.96e-7 | -4.94e-5 8.93e-2 10 1:46:43

Table 3 Numerical performance of the primal-dual splitting method on (69).

5.2 Example 2

In the Euclidean metric embedding problem, we are given an incomplete, possibly
noisy, dissimilarity matrix B ∈S n with Diag(B) = 0 and sparsity pattern specified
by the set of indices E = {(i, j) | Bi j 6= 0,1 ≤ i < j ≤ n}. The goal is to find an
Euclidean distance matrix (EDM) [1] that is nearest to B. If the measure of nearness
is in the Frobenius norm, then the mathematical formulation of the problem is as
follows:
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min
{1

2 ∑
(i, j)∈E

Wi j(Di j−Bi j)
2 +

ρ

2n
〈E, D〉 : D is an EDM

}
, (71)

where Wi j > 0,(i, j) ∈ E , are given weights, E ∈S n is the matrix of all ones and
ρ > 0 is a regularization parameter. Here we add the term ρ

2n 〈E, D〉 to encourage
a sparse solution. Recall that a standard characterization [1] of an EDM D is that
D = Diag(X)eT + eDiag(X)T − 2X for some X � 0 with Xe = 0, where e ∈ ℜn is
the vector of all ones. Thus the problem (71) can be rewritten as:

min
{1

2 ∑
(i, j)∈E

Wi j(〈Ai j, X〉−Bi j)
2 +ρ〈I, X〉 : 〈E, X〉= 0, X � 0

}
, (72)

where Ai j = (ei− e j)(ei− e j)
T and ei is the i-th standard unit vector in ℜn. Note

that under the condition X � 0, the constraint Xe = 0 is equivalent to 〈E, X〉= 0. It
is interesting to note that desiring sparsity in the EDM D leads to the regularization
term ρ〈I, X〉, which is a proxy for desiring a low-rank X .

Let m = |E |. The linear maps A : S n→ℜm and B : S n→ℜ for the problem
(72) are given as follows:

(A (X))(i, j) = 〈
√

Wi jAi j, X〉, ∀ (i, j) ∈ E , B(X) = 〈E, X〉.

Note that the components of a vector in ℜm are enumerated based on the elements
in E . And the operator Vt in (59) is given as follows:

Vt = σ

( 1
σ

T +

[
A
B

]
Π
′
S n

+
(W (yt ;X)) [A ∗ B∗]

)
. (73)

For the EDM problem (72), the condition number of Vt can be quite large and it is
important to find a good preconditioner for Vt so that the CG method can have a rea-
sonable convergence speed when solving the linear system of equations associated
with Vt . Let A,B and S be the matrix representations of A ,B and Π ′S n

+
(W (yt ;X))

with respect to the standard basis of S n and ℜm, respectively. Let h ∈ ℜn(n+1)/2

and Γ = {(i, j) |1 ≤ i ≤ j ≤ n}. Suppose Diag(h) is a positive definite diagonal
approximation of S. (In our implementation, we choose h to be the approximate
diagonal of Π ′S n

+
(W (yt ;X)) considered in [28].) Let H ∈ S n be the matrix such

that Hi j = H ji = h(i, j) for all (i, j) ∈Γ . We consider the following approximation of
1
σ
Vt :

M =

[
M q
qT α

]
, (74)

where q = A (H) ∈ℜm, α = 〈E, H〉, and

M =
1
σ

Im +ADiag(h)AT ∈ℜ
m×m. (75)
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Note that the rows and columns of M are enumerated based on the elements of E .
We have that

M(i, j),(s,t) =


0 if i 6= s, j 6= t,√

Wi jWst Hss if i = s, j 6= t,√
Wi jWst Htt if i 6= s, j = t,

1/σ +
√

Wi jWst(Hss +Htt +2Hst) if i = s, j = t.

Let h̄(i, j) =Wi jHi j for all (i, j)∈ E . Then we know that M has the following structure

M = D+ JJT , (76)

where D = 1
σ

Im +2Diag(h̄), and J ∈ℜm×n is the weighted arc-node incidence ma-
trix for which the entry at the (s, t)-th row and k-th column is given by

J(s,t),k =


√

WstHss if k = s,
√

WstHtt if k = t,
0 otherwise.

To use M as a preconditioner for Vt , we need the inverse of M , which is given in
the following expression:

M−1 =

[
S−1 −α−1S−1q

−α−1qT S−1 α−1 +α−2qT S−1q

]
, (77)

where

S = M−α
−1qqT = D+[J, q]︸ ︷︷ ︸

Ĵ

[
In 0
0 −α−1

][
JT

qT

]
.

By using the Sherman-Morrison-Woodbury formula [14], we have that

S−1 = D−1−D−1Ĵ(Λ + ĴT D−1Ĵ)−1ĴT D−1, (78)

where Λ = [In,0; 0,−α]. Here we assume that Λ + ĴT D−1Ĵ is nonsingular; other-
wise we may consider the following block diagonal approximation of 1

σ
Vt :

M d =

[
M 0
0 α

]
, (79)

where the inverse of M can also be computed via the Sherman-Morrison-Woodbury
formula.

The Euclidean metric problem arises in many applications. For the regularized
kernel estimation (RKE) problem in statistics [21], we are given a set of n objects
and dissimilarity measures di j for certain object pairs (i, j) ∈ E . The goal is to es-
timate a positive semidefinite kernel matrix X ∈ S n

+ such that the fitted squared
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Fig. 1 A 3D representation of the sequence space for 630 proteins.

problem n m+ s ρ it.|itsub|cg Rp | RD | relgap #sv time
RKE630-M 630 198136 5.07e-1 6 | 36| 10.3 2.67e-7 | 2.26e-8 | -1.54e-6 388 36
PDB25-M 1898 1646031 1.84e+0 23 | 68 | 22.3 1.89e-7 | 6.28e-7 | -1.31e-6 1371 23:43
PDB25 1898 1646031 1.84e+0 23 | 80 | 76.7 9.60e-7 | 6.32e-7 | -1.21e-6 1371 59:56

Table 4 Numerical results on the RKE problem arising from protein clustering.

distances induced by X between the objects satisfy the following condition:

Xii +X j j−2Xi j = 〈Ai j, X〉 ≈ d2
i j ∀ (i, j) ∈ E .

Formally, one version of the RKE problem proposed in [21] is the SDP problem
(72).

In our numerical experiments, the data di j are normalized to be in the interval
[0, 1], and E = {(i, j) : 1 ≤ i < j ≤ 630}. We set Wi j = 1 for all (i, j) ∈ E . In [21],
due to the prohibitive computational load encountered by the standard interior-point
solver (such as SDPT3 or SeDuMi) used to solve (72), a subset of 280 globin pro-
teins were selected from the entire set of 630 proteins for the numerical results
reported in [21]. For each of the selected proteins, 55 dissimilarities were randomly
selected out of the total of 279. Here we are able to consider the entire set of 630
proteins and the dissimilarities among all the pairs of proteins.

As mentioned in [21], the RKE methodology can provide an efficient way to rep-
resent each protein sequence by a feature vector in an appropriate coordinate system
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using the pairwise dissimilarity between protein sequences. Specifically, we project
the computed solution X onto a 3D space corresponding to the largest three eigen-
values. Figure 1 displays a 3D representation of the sequence space for 630 proteins.
There are at least 4 classes visually identifiable in the data set of 630 proteins, which
is consistent with the observations in [21]. The numerical results for solving (72) are
reported in Table 4, where #sv is the number of positive eigenvalues of X . For the
computed solution X , we have 〈X , E〉= 4.46×10−13 and 〈X , I〉= 1.85×102.

We also conducted numerical experiments on a much larger protein data set to
evaluate the performance of our algorithm. We used the PDB SELECT 25 data set
[17], a representative subset of the Protein Data Bank database, which contains 1898
protein chains. The numerical results for the PDB SELECT 25 data set are reported
in Table 4. For the computed solution X , we have 〈X , E〉 = −1.94× 10−14 and
〈X , I〉= 8.76×102. To appreciate the usefulness of the preconditioner M , we also
report the numerical results for the PDB25 problem without using the preconditioner
M in the last row of Table 4. We can observe that the CG solver without using the
preconditioner M requires substantially more CG steps for computing the inexact
Newton direction from the linear system (51).

5.3 Example 3: Molecular conformation problems

The molecular conformation problem for a molecule with n atoms is the problem
of determining the positions x1, . . . ,xn of the atoms, given estimated inter-atomic
distances di j between some pairs of atoms. The estimated distances could be in-
formation derived from covalent bond lengths or measured from nuclear magnetic
resonance (NMR) experiments. Let E be the set of pairs of indices (i, j) (i < j) for
which estimates on the distances ‖xi− x j‖ are available. The molecular conforma-
tion problem can mathematically be formulated as follows:

min
{1

2 ∑
(i, j)∈E

Wi j(‖xi− x j‖2−d2
i j)

2− ρ

2n

n

∑
i, j=1
‖xi− x j‖2 |

n

∑
i=1

xi = 0
}
, (80)

where W ∈ S n is a weight matrix with positive entries. The second term in the
objective function is added to maximize the pairwise separations between the atoms.
The equality constraint in (80) is included to set the center of mass of the molecule at
the origin. The inclusion of weights is useful for differentiating data that are derived
from different sources, and hence of different reliability. For example, distance data
which are derived from covalent bond lengths are usually much more accurate than
data which are derived from the NMR experiments.

Let X = [x1, . . . ,xn] ∈ ℜ3×n and Ai j = ei jeT
i j, where ei j = ei− e j. Then we have

xi− x j = Xei j and hence ‖xi− x j‖2 = 〈XT X , Ai j〉. Let Y = XT X . The constraint
∑

n
i=1 xi = 0 can equivalently be replaced by 〈E, Y 〉 = 0. Note that under the latter

constraint, it is easy to see that ∑
n
i, j=1 ‖xi− x j‖2 = 2n〈I, Y 〉. By relaxing the non-

convex constraint Y = XT X to Y � 0 in (80), we get the following SDP problem:
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min
{1

2 ∑
(i, j)∈E

Wi j(〈Ai j, Y 〉−d2
i j)

2−ρ〈I, Y 〉 | 〈E, Y 〉= 0,Y � 0
}
. (81)

Observe that under the constraints 〈E, Y 〉= 0 and Y � 0, we have 〈I, Y 〉= 1
2n 〈E, D〉,

where D = Diag(Y )eT + eDiag(Y )T − 2Y and e ∈ ℜn is a vector of all ones. Thus
(81) seeks an Euclidean distance matrix D which is encouraged to have as many
nonzero entries as possible. Note that in the maximum variance unfolding problem
[30], one also consider a problem that has exactly the same form as (81).

In this example, we focus on molecular conformation problems with noisy and
sparse distance data. In our numerical experiments, we set Wi j = 1/d2

i j for all
(i, j) ∈ E and ρ = 8× 10−4‖A ∗b‖2. For each molecule, we generated the partial
inter-atomic distance matrix as follows. If the distance between two atoms is less
than 6Å (1Å = 10−8cm), which is nearly the maximal distance that the NMR exper-
iment can measure between two atoms, the distance is chosen; otherwise no distance
information about the pair is known. Since not all the distances below 6Å are known
from NMR experiments, we randomly choose 30% of all the distance below 6Å in
our experiment. For realistic molecular conformation problems, in which the exact
distances are not known and only the lower bounds di j and upper bounds d̄i j on dis-
tances are provided, we use the mean di j = (d̄i j +di j)/2 as the estimated distances.
After selecting 30% of inter-atomic distances, we add certain amount of normal
noise or uniform noise to the distances to generate the lower and upper bounds.
Suppose that d̂i j is the exact distance between atom i and atom j, we set

di j = max(1,(1−|ε i j|)d̂i j), d̄i j = (1+ |ε̄i j|)d̂i j.

Let τ be a given noise level. In the normal noise model, ε i j, ε̄i j ∼N (0,πτ2/2) are
independent normal random variables. In the uniform noise model, ε i j, ε̄i j are inde-
pendent uniform random variables in the interval [0,2τ]. We said that the distances
are corrupted by 20% noise if τ = 0.2.

Molecule n;m+ s it.| itsub | cg Rp | RD | relgap RMSD time
1GM2 166; 1119 23 | 81 | 58.3 3.02e-7 | 7.46e-7 | -4.92e-4 1.15 7
1PBM 388; 3145 29 | 113 | 89.5 6.25e-7 | 5.93e-7 | -2.55e-4 1.20 52
1PTQ 402; 2182 28 | 108 | 155.8 1.04e-7 | 3.42e-7 | -1.84e-4 1.51 1:24
1CTF 487; 2630 28 | 135 | 182.8 3.11e-7 | 3.65e-7 | -2.88e-4 1.99 2:49
1AU6 506; 4767 24 | 105 | 168.7 2.88e-7 | 6.88e-7 | -1.02e-3 0.96 2:24
1HOE 558; 3083 26 | 125 | 176.5 9.73e-7 | 6.70e-7 | -4.01e-4 1.20 3:34
1PHT 814; 5239 31 | 169 | 204.8 2.90e-7 | 9.36e-7 | -5.21e-4 2.65 13:05
1POA 914; 5045 31 | 192 | 224.4 3.29e-7 | 4.08e-7 | -4.41e-4 2.57 20:40
1AX8 1003; 5563 30 | 184 | 207.3 2.67e-7 | 7.67e-7 | -6.70e-4 2.05 22:49

Table 5 Numerical results on molecular conformation problems with 30% distances ≤ 6Å, which
are corrupted by 20% normal noise.
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Molecule n;m+ s it.| itsub | cg Rp | RD | relgap RMSD time
1GM2 166; 1119 24 | 88 | 63.3 2.14e-7 | 5.19e-7 | -1.51e-4 0.91 8
1PBM 388; 3145 24 | 105 | 106.6 1.33e-7 | 8.78e-7 | -3.13e-4 1.02 57
1PTQ 402; 2182 26 | 112 | 145.1 1.03e-7 | 8.20e-7 | -4.32e-4 1.31 1:22
1CTF 487; 2630 28 | 131 | 179.2 3.37e-7 | 3.18e-7 | -2.38e-4 1.73 2:43
1AU6 506; 4767 24 | 131 | 162.7 3.32e-7 | 5.27e-7 | -5.14e-4 0.79 2:54
1HOE 558; 3083 26 | 124 | 184.6 9.59e-8 | 6.92e-7 | -3.94e-4 1.15 3:43
1PHT 814; 5239 31 | 180 | 205.8 6.22e-7 | 5.13e-7 | -2.37e-4 2.47 13:57
1POA 914; 5045 30 | 185 | 209.5 6.80e-7 | 8.48e-7 | -8.18e-4 2.25 18:43
1AX8 1003; 5563 30 | 175 | 214.4 6.99e-7 | 6.65e-7 | -5.07e-4 1.84 22:13

Table 6 Numerical results on molecular conformation problems with 30% distances ≤ 6Å, which
are corrupted by 20% uniform noise.

In Table 5 and Table 6, we report the numerical results on molecular conforma-
tion problems under the normal noise model and uniform noise model, respectively,
where the root mean square deviation (RMSD) is used to measure the accuracy of
the estimated positions. The RMSD is defined by the following formula:

RMSD :=
1√
n

( n

∑
i=1
‖xi− x̂i‖2

)1/2
, (82)

where xi is the estimated position and x̂i is the actual position. We can observe from
the tables that the estimated atomic positions via a simple projection of Y onto the
3-dimensional space are fairly accurate with RMSD≈ 2Å.

6 Conclusion

In this paper, we introduced a partial PPA for solving nuclear norm regularized and
semidefinite matrix least squares problems with linear equality constraints. The in-
ner subproblems are solved inexactly by a semismooth Newton-CG method, whose
convergence analysis is established under a constraint nondegeneracy condition, to-
gether with the strong semi-smoothness property of the soft-thresholding operator
and the metric projector ΠS n

+
. Numerical experiments conducted on nuclear norm

regularized matrix least squares problems, regularized kernel estimation problems
and molecular conformation problems demonstrated that our algorithm is efficient
and robust. In [11], the graph visualization problem with applications in social net-
work data analysis can be modeled as an optimization problem which is analogous
to (80). It will be very interesting to investigate how to adapt our SSNCG partial
PPA algorithm to solve large scale social network graph visualization problems.
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