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@ Problem formulation




Matrix recovery

Given some measurements for a (structured) matrix X € H', (Hermitian positive
semi-definite), how to recover this unknown matrix?

by = <9k,)_(> + &, k=1,2,....m.
“by”: observed data (with / without noise) “&”: additive noise

@ Possible? — Yes, with the low-rank structure.

e Entries = basis coefficients: {e,-ejT [1<i<m,1<j<m}
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Correlation matrix recovery

A low-rank correlation matrix X € Sh:
symmetric positive semidefinite and diag(X) = e.

Observations (with / without noise):
bk - <®k7)?> +£k7 k = 17"'7m'

How to recover the unknown correlation matrix X?
@ All diagonal entries are fixed.

@ Some off-diagonal entries may also be fixed, [e.g., the correlations among
pegged currencies].

o Entries = basis coefficients {e;e! |1 < ign}U{\/%(e,-ejT—kejeiT)H <i<j<n}.
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Density matrix recovery

A low-rank density matrix X € H". with n = 2":
Hermitian positive semidefinite and Tr(X) = 1.
Observations — Pauli measurements:
(O, X) = Re(Tr(O4X)), k=1,...,m,

where Oy € Pauli basis {0y, @ -+ ® 75, | (s1,--+,5) € {0,1,2,3}} with

0o om=( o) = (B )= %)

How to recover the unknown density matrix X?
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Observation model

In this talk, we consider the problem of low-rank structured PSD matrix recovery
with noise. The observation model takes the following form

by =(0,X)+ &, k=1,....,m.
Define A(X) := ((61,X), - ,(@m,X))T € R™. Then, we have that
b=AX)+¢.

o LetX e ’H'jr be the unknown low-rank structured true matrix.

@ There exists a constant § > 0, || A(X) — b|| < 6.
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The rank minimization estimator

The rank minimization estimator:

X € argmin {rank(X) L AX) — b < 5}
QN

where 2 is a closed convex set characterizing the structure of X.

@ This is the best possible estimator. But it is very challenging to get the
global solution due to the nonconvexity and discontinuity of the rank
function.
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The nuclear norm technique

The nuclear norm technique has gained success in many applications:
n

rank(X) = | X][«:= Zai(x),
i=1
where o1(X) > - -+ > 0,(X) denote all the singular values of X.

Nuclear norm — convex envelope of the rank function over the unit ball of the

spectral norm.
[xl/a

rank(x)

X
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Nuclear norm estimator

Nuclear norm estimator:

X € argmin {||XH* L AX) — b < 5}
QN

o Extra biased (for large singular values).

o It may fail when certain rows and/or columns are heavily sampled
(Salakhutdinov and Srebro, 2010).

o It may not be rank consistent for general sampling even for the
low-dimensional case (Bach, 2008).

e For correlation and density matrices, || X||. = constant = the nuclear
norm technique’s power is limited.
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Q Multi-stage convex relaxation approach
@ Exact penalty for the equivalent MPSDEC
@ A unified framework for multi-stage convex relaxation
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Equivalent MPSDEC

Let C(J) be the family of closed convex functions ¢ : J — R with J D [0, 1] and
° #(0) =0, 0<r :=argming., (t) and [¢" (0)] < +oo0.

Rank minimization estimator is equivalent to the following mathematical
program with the PSD equilibrium constraint (MPSDEC)

xedhin . (I, 2(W))
st [JAX) —b|| <68 (1)
(W,X)=0,X>0,0<W=1

@ & — the Lowner operator associated to ¢ € C(J)
@ The bilinear constraint (W, X) = 0 is the trouble maker.
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Exact penalty for MPSDEC

To deal with (W, X) = 0 efficiently, we consider the penalized version

Xegzr,lvivnewg’ O(W)) + p(W,X)
s.t. |JAX) —b|| <0 o

X=0,0=<W=I

@ The cost function of (2) has a desired structure though it is nonconvex

@ The penalty problem (2) is exact in the following sense

Theorem

There exists p > 0 such that when p > p, the set of global optimal solutions of
the penalty problem (2) coincides with that of the MPSDEC.
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Multi-stage convex relaxation approach

(S0) Select a function ¢ € C(J). Let WO := I and set k := 1. Choose pg > 0.

(S1) Solve the following weighted trace-norm minimization problem

x* € argmin {(Wk—l,x> LA — b < 5}.
XeQNH™

(S2) By the information of || X¥|| select a suitable p; = & px_1 with & > 1.

(S3) Solve the following minimization problem

Wk € arg min {<1, (W) + pk<W,Xk>}.
0=W=I

(S4) Setk :=k+ 1, and go to (S.1).
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Multi-stage convex relaxation (Examples) E{“%NUS
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@ The convex relaxation approach is solving (2) in an alternating way.

@ The computational cost is the solution of the weighted trace-norm
minimization problem since if X* = U*Diag(\(X*))(U*)T we have

Wk = U*Diag(wh, ..., wh)(UM)T.

0 if (X% >
1 otherwise

1
Q ¢1(t)=—t :wﬁ.‘:{ Pi

@ ¢() =P —ar = wh=min(2; max(a — pei(XF),0), 1).

_ 1 1 k 1
9¢3(t)—t+t+—6—; :wi—max(m—eﬁ).

9 ¢4(t) =t—1n(t+€)+1n(€) éWmeaX(m—ﬁ,O).
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9 The power of multi-stage convex relaxation approach
@ General error bound
@ Error bound comparison for the first two stages
@ Error bound comparison for the first k stages
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Notation and assumptions

Recall that rank(X) = r. Assume that X = [U}, U,|Diag(\(X))[U1, Ua]¥, where
U, € 0" and U, € O™("=7)_ For any X € H", define

Pr(X) = U,U, X + XU,U, — U,U,XU,T,.

Let @ = A*A. Define the restricted eigenvalues of Q by (Tong Zhang, 2010)

X, Q(X X, Q(X
Iy (k) ;== sup —< Q(2 )>, J_(k):== in —< Q(2 ))
o<rank() <k [IXIE o<rank(X)<k || X|[%
Assumption: There exista ¢ € [0, 1) and an integer s (1 < s < "52) s.t.
I4(s) <14 2¢2s
V_(2r + 2s) r
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General error bound

Theorem

k
Let yx—1 := % If0 < iy < 1, then ||XF — X*||p < E(yk—1) with

2 /
E(t)::\/1+r2ts (2 9+ (2r +5)9 for 1> 0.

1 —ct)Y_(2r+s)

@ =(1) — the error bound for the nuclear norm estimator.

105, (143)

o Ife<1— \/?( = then we have the following inequality
3 103,
=(1) = V6,9, (3r)6 - VT + 63,6 _ 36V1+ 83,

(1= 0-G3r) T (1=0)(1=03) "1 —g;,(1 + B

The last term is the bound given by Mohan and Fazel (2010).
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Error bounds in the first two stages

o(r) ifre0,1],

. Define
+o00 otherwise.

Let ¢)* be the conjugate function of ¢ (7) := {
a0 = (%), (0), @ = () (= prrsr(X1)) and by = (), (—prAn(XD)).

Theorem

Suppose that \.(X) = B|| X' — X||r for some B > 2. If the parameter py is chosen

Y bi+% 15
such that py € (0, )\L&Ol))) and M < 1, then
r+1 a1—7 \[

< =(1). 3)
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Reduction ratio given by different ¢

Table: The ratio of the error bounds given by different ¢ for the first two stages

Pl g | ratio 0 0.1 0.3 0.5 0.9
61 | (e s—m) | 30 | 20 | 0.945 0926 0877 0801 0.362
b2 | (5 xigey) | 40 | 205 [ 0945 0927 0879 0.803 0365
6 | (e ) | 50 EE((V;)) 0.972 0.963 0.937 0.894 0.544
b1 | (sdem o) | 50| 205 [ 0961 0948 0912 0.854 0453
0a | (e x22) | 6.0 [ 210 10993 0991 0984 0972 0.829
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Guaranteed error bound reduction (Cont.) 95

Let by := (") [ = peO(X™) = (i) s @k 2= (7). (=BG

Z=0-1) for k> 1 and ) = 1.

(Fk—1)

Theorem

Suppose that \,(X) = BE(1) for some [3 > 2. If the parameter p; is chosen such

bi+ s
that p € (0 fzrl() )) and :}1{% < 1, and the parameters oy, are chosen
a

B—V2
such that oy, € [1 “8" 2;], then for all k > 2 we have Vi1 < Yk—1 < Yk—2 and
1X* = X|| < E(ve—1) < E(Fi—1) < E(k—2)- “4)
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Reduction ratio of the error bounds

Table: The ratio of the error bounds obtained with ¢, for the first five stages

o ratio 0 01 03 05 09
E(v1)/2(1) | 0952 0936 0.893 0.824 0.398
2(72)/2(1) | 0918 0879 0.760 0.574 0.093
br | (25, 2%) | E(3)/2(1) | 0.900 0844 0.678 0468 0.084
S(y)/=(1) | 0.892 0.828 0.648 0448 0.084
S(vs)/=(1) | 0.889 0.821 0.640 0445 0.084
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© Numerical results




The performance with a high sample ratio
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The performance with a low sample ratio
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Low-rank correlation matrix recovery

Table: Performance for the correlation matrix recovery problems with n = 1000

r Zi; st(%) One-stage Two-stage Final result

relerr(rank) time | relerr(rank) time | k£  relerr(rank) time

0 1.60 | 8.19e-1(1000) 53.7 | 2.42e-1(19) 803 | 5 2.00e-1(5) 1656

0 2.40 2.11e-1(998) 822 | 1.13e-1(5) 405 | 4 1.13e-1(5) 929

5 0 3.99 9.97e-2(999) 107 | 7.09e-2(5) 669 | 4 7.06e-2(5) 1207
100 1.60 7.94e-1(991)  58.0 | 2.26e-1(18) 788 | 5  1.88e-1(5) 1609

100 2.40 2.08e-1(977) 92.8 | 1.11e-1(5) 415 | 4 1.11e-1(5) 846
100 3.99 1.00e-1(703) 147 | 7.10e-2(6) 674 | 5 7.07e-2(5) 1309

0 3.59 | 6.54e-1(1000) 44.7 | 1.79-1(21) 320 | 5 1.71e-1(10) 761

0 5.38 | 1.56e-1(1000) 61.0 | 1.02e-1(10) 391 | 4  1.02e-1(10) 665

10 0 8.96 | 8.98e-2(1000) 75.8 | 7.14e-2(10) 283 | 4  7.25e-2(10) 801
100 3.59 | 6.29e-1(1000) 46.6 | 1.69e-1(17) 267 | 5 1.65e-1(10) 705

100 5.38 | 1.48e-1(1000) 62.7 | 9.97e-2(10) 400 | 4 9.95e-2(10) 644

100 8.97 8.91e-2(991) 823 | 7.09e-2(10) 290 | 4  7.22e-2(10) 787
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Low-rank density matrix recovery

Table: Performance for the low-rank density matrix recovery problems

r| n | st(%) One-stage Two-stage Final result
relerr(rank)  time | relerr(rank) time
2’ 3.0 3.37e-1(31) 27.0 | 1.38e-1(3) 188
20 3.0 248e-1(31) 26.5 | 1.3le-1(3) 138
2° 3.0 1.69e-1(31) 25.0 | 1.17e-1(3) 129

relerr(rank)  time
1.05e-1(3) 486
1.04e-1(3) 317
9.83e-2(3) 572

3 2101 2.0 | 1.3le-1(41) 281 | 9.31e-23) 780 7.26e-2(3) 1626
2101 2,00 | 1.53e-1(41) 243 | 1.07e-1(3) 935 8.38e-2(3) 1630
201 25 | 1.05e-1(40) 340 | 7.97e2(3) 761 6.24e-2(3) 1276
2’ | 5.00 | 2.68e-1(42) 29.1 | 1.39e-1(5) 190 1.08e-1(5) 400
s 2° | 400 | 4.8le-1(43) 22.6 | 1.65e-1(5) 449 1.37e-1(5) 1227

[T R Y I NG N N NN I

2° | 3.00 | 5.56e-1(43) 17.4 | 2.92e-1(17) 220 2.21e-1(5) 1014
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Low-rank covariance matrix recovery

Table: Performance for the low-rank covariance matrix recovery with n = 1000

r nfixed st(%) One-stage Two-stage Final result
relerr(rank)  time | relerr(rank) time | k  relerr(rank) time
(200, 0) 3.58 | 4.56e-1(58) 239 | 2.11e-1(10) 358 | 4 2.11e-1(10) 578
10 (0,200) 3.58 | 4.57e-1(59) 188 | 2.15e-1(10) 301 | 4 2.14e-1(10) 630
(200,200) | 3.58 | 4.23e-1(57) 218 | 2.16e-1(10) 349 | 4  2.16e-1(10) 580
(200,0) 7.16 | 1.37e-1(52) 170 | 9.83e-2(10) 317 | 4  9.69e-2(10) 444
(0,200) 7.16 | 1.41e-1(49) 66.3 | 1.00e-1(10) 211 | 4  9.84e-2(10) 329
(200,200) | 7.16 | 1.37e-1(53) 164 | 9.72e-2(10) 304 | 4  9.62e-2(10) 463
(200, 0) 7.52 | 3.35e-1(86) 137 | 1.91e-1(20) 207 | 4 1.90e-1(20) 346
(0,200) 7.52 | 3.42e-1(88) 78.6 | 1.93e-1(20) 149 | 4  1.92e-1(20) 322
20 (200,200) | 7.52 | 3.30e-1(87) 167 | 1.88e-1(20) 269 | 4  1.88e-1(20) 415
(200,0) 11.3 | 1.63e-1(79) 74.8 | 1.18e-1(20) 201 | 4 1.17e-1(20) 270
(0,200) 11.3 | 1.63e-1(78) 61.4 | 1.18e-1(20) 173 | 4  1.14e-1(20) 261
(200,200) | 11.3 | 1.63e-1(80) 68.7 | 1.16e-1(20) 196 | 4  1.15e-1(20) 294
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Conclusion

@ We proposed a multi-stage convex relaxation approach for the rank
minimization problem by solving the exact penalty problem of its equivalent
MPSDEC in an alternating way.

@ Under a weaker condition than the RIP, we established a tighter error bound
for the optimal solution of each subproblem to the global optimal solution of
the original problem, and provided a quantitative analysis for the decrease of
the error bound.

@ The two-stage convex relaxation can improve the error bound given by the
trace norm relaxation method at least 30% for those not nice problems.

@ The general case can be done by using the theory on spectral operators of
matrices.

/ Defeng Sun /NUS



	Problem formulation
	Multi-stage convex relaxation approach
	Exact penalty for the equivalent MPSDEC
	A unified framework for multi-stage convex relaxation

	The power of multi-stage convex relaxation approach
	General error bound
	Error bound comparison for the first two stages
	Error bound comparison for the first k stages

	Numerical results
	Conclusion

