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Abstract. We show that a locally Lipschitz homeomorphism function is semismooth at a given point if and
only if its inverse function is semismooth at its image point. We present a sufficient condition for the semi-
smoothness of solutions to generalized equations over cone reducible (nonpolyhedral) convex sets. We prove
that the semismoothness of solutions to the Moreau-Yosida regularization of a lower semicontinuous proper
convex function is implied by the semismoothness of the metric projector over the epigraph of the convex
function.

Key words. Semismooth – Generalized Equations – Moreau-Yosida Regularization

1. Introduction

Strong regularity for generalized equations introduced by Robinson [39] and strong sta-
bility for the Karush-Kuhn-Tucker (KKT) systems of nonlinear optimization problems
introduced by Kojima [17] are two important concepts in perturbation analysis of opti-
mization problems. The monograph [1] by Bonnans and Shapiro provided an excellent
survey on this. Strong stability and strong regularity are intimately related to inverse and
implicit function theorems for nonsmooth equations. Clarke [5] established an implicit
function theorem for a locally Lipschitz continuous function under the nonsingularity
assumption on the generalized Jacobian matrices. For a locally Lipschitz function �,
Kummer [20, 21] obtained a complete characterization of a locally Lipschitz homeomor-
phism in terms of the set of strict derivatives D∗�(x)(u)(see its definition in Section 2)
and applied the results to nonsmooth parametric optimization. Furthermore, the inverse
function theorem established by Kummer [20] was the first necessary and sufficient
condition result for locally Lipschitz functions.

In [28], Mifflin introduced an important subclass of Lipschitz functions – semi-
smooth functions. The concept of semismoothness was then employed to analyze the

F. Meng: School of Mathematics, University of Southampton, Highfield, Southampton SO17 1BJ,
United Kingdom. e-mail: f.meng@soton.ac.uk

D. Sun: Department of Mathematics, National University of Singapore, Singapore 117543, Republic of
Singapore. e-mail: matsundf@nus.edu.sg

G. Zhao: Department of Mathematics, National University of Singapore, Singapore 117543, Republic of
Singapore. e-mail: matzgy@nus.edu.sg

Mathematics Subject Classification (1991): 90C30, 90C31, 90C45, 49J52

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 595 842 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



562 F. Meng et al.

convergence of bundle type methods [25, 29, 43] for nondifferentiable optimization
problems. In particular, the convergence of the nonsmooth approach for solving opti-
mization problems with equilibrium constraints relies on the semismoothness [33]. In
order to study the superlinear convergence of Newton’s method for solving nondiffer-
entiable equations, Qi and Sun [38] extended the definition of semismoothness to vector
valued functions. After the work of Qi and Sun [38], semismoothness was extensively
used to establish superlinear/quadratic convergence of Newton’s methods for solving the
complementarity problem and variational inequalities [9], the convex best interpolation
problem [6, 7], and the inverse eigenvalue problem [49], to name only a few.

The importance of the concept of semismoothness in the convergence analysis of var-
ious methods (first order or second order) motivates us to investigate the semismoothness
of solutions to parameterized generalized equations over (nonpolyhedral) convex sets
and the semismoothness of solutions to the Moreau-Yosida regularization of a lower
semicontinuous proper convex function. The study on these two seemingly different
topics is connected by establishing a semismooth homeomorphism theorem for locally
Lipschitz functions.

Let X, Y , and U be finite dimensional vector spaces each equipped with a scalar
product denoted by 〈·, ·〉. Let ‖ ·‖ be the norm induced by 〈·, ·〉. We use Z to represent an
arbitrary vector space from vector spaces X, Y, and U. Suppose that F : X ×U → X is
a single valued continuously differentiable mapping and G : X×U → Y is a single val-
ued twice continuously differentiable mapping. We denote by JxG(x, u) : X × U → Y

the derivative mapping of G with respect to x ∈ X. Let JxG(x, u)∗ : Y × U → X be
the adjoint of the derivative mapping JxG(x, u) and let K ⊆ Y be a closed convex set.
The parameterized generalized equation, considered in Shapiro [46], is to find x ∈ X

such that

F(x, u) + JxG(x, u)∗λ = 0 , λ ∈ NK(G(x, u)) , (1)

where for any closed convex set D ⊆ Z, ND(z) denotes the normal cone of D at z:

ND(z) =
{

{d ∈ Z | 〈d, c − z〉 ≤ 0 ∀ c ∈ D} if z ∈ D ,

∅ if z /∈ D .

It is noted that if the mapping F(x, u) is the derivative of a real valued function f :
X×U → � with respect to x, i.e., F(x, u) = Jxf (x, u), then under some standard con-
straint qualifications (see, e.g., [40]), (1) turns to be the first order necessary optimality
conditions of the following parameterized optimization problem

min f (x, u)

s.t. G(x, u) ∈ K ,

x ∈ X .

(2)

For any closed convex set D of the vector space Z and z ∈ Z, let �D(z) denote the
metric projection of z onto D, i.e.,

�D(z) := argmin

{
1

2
‖d − z‖2 | d ∈ D

}
.
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It is well known [53] that the metric projector �D(·) is contractive, i.e., for any two
vectors z1, z2 ∈ Z,

‖�D(z1) − �D(z2)‖ ≤ ‖z1 − z2‖ .

Then, according to Eaves [8], problem (1) is equivalent to the following parameterized
nonsmooth equation

H(x, λ, u) :=
[

F(x, u) + JxG(x, u)∗λ

G(x, u) − �K [G(x, u) + λ]

]
= 0 . (3)

For u ∈ U , let (x(u), λ(u)) (if exists) solve (3), i.e., H(x(u), λ(u), u) = 0. Shapiro
[46] studied some perturbed properties including the Lipschitz continuity of (x(·), λ(·))
at a given point u0 ∈ U . In this paper, we shall further study the semismoothness of
(x(·), λ(·)) at u0.

In this paper, we also investigate another related yet quite different problem, that
is, the Moreau-Yosida regularization of a lower semicontinuous proper convex function
f : X → � ∪ {+∞}. Let ε be a positive number. The Moreau-Yosida regularization of
f [31, 52] is defined by

f̂ε(u) := min
{
f (x) + ε

2 〈u − x, u − x〉} ,

s.t. x ∈ X .
(4)

It is well known that f̂ε is continuously differentiable on X and for any u ∈ X,

∇f̂ε(u) = ε(u − x(u)),

where x(u) denotes the unique optimal solution of (4). It is also known that x(·) is glob-
ally Lipschitz continuous, which implies that ∇f̂ε is globally Lipschitz continuous [42,
p.546]. Here, we are interested in the semismoothness of x(·) at a given point u0 ∈ X,
which is a key condition for the superlinear convergence of an approximate Newton’s
method designed in Fukushima and Qi [12] for solving nonsmooth convex optimization
problems.

The organization of this paper is as follows. In section 2, we discuss the semismooth-
ness of locally Lipschitz homeomorphism functions. In particular, based on Kummer’s
inverse function theorem for locally Lipschitz functions [20], we show that a locally
Lipschitz homeomorphism function is G-semismooth at a given point if and only if its
inverse function is G-semismooth at its image point. In Section 3, we study the semi-
smoothness of solutions to parameterized generalized equations. A sufficient condition
is presented for the semismoothness of solutions to parameterized equations over cone
reducible (nonpolyhedral) convex sets. In section 4, we reduce the semismoothness of
solutions to the Moreau-Yosida regularization of a convex function to the semismooth-
ness of the metric projector over the epigraph of the convex function. We make final
conclusions in Section 5.
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2. Semismoothness of Locally Lipschitz Homeomorphism Functions

Let X and Y be finite dimensional vector spaces. Let O be an open set in X and � : O ⊆
X → Y be a locally Lipschitz continuous function on the open set O. By Rademacher’s
theorem, � is almost everywhere F(réchet)-differentiable in O. We denote by D� the
set of points in O where � is F-differentiable. Let J�(x), which is a linear mapping
from X to Y , denote the derivative of � at x ∈ O if � is F(réchet)-differentiable at x,
and J�(x)∗ : Y → X the adjoint of J�(x). Then, the B-subdifferential of � at x ∈ O,
denoted by ∂B�(x), is the set of V such that

V = lim
k→∞

J�(xk) ,

where {xk} ∈ D� is a sequence converging to x. The Clarke’s generalized Jacobian of
� at x is the convex hull of ∂B�(x) (see [5]), i.e.,

∂�(x) = conv{∂B�(x)} .

For x ∈ O and u ∈ X, the strict derivative D∗�(x)(u) of � at x in the direction u

consists of all points y ∈ Y which is the limit of a sequence

yk := (�(xk + tku) − �(xk))/tk, xk → x, tk ↓ 0.

The set D∗�(x)(u) was first studied by Thibault [50, 51] (with a different notation) in
order to extend Clarke’s calculus to functions in abstract spaces. Kummer [20] called
it “Thibault’s directional derivative” and used it to get a complete characterization of a
Lipschitz homeomorphism function (see Definition 1). Since then the strict derivative
has been studied in Rockafellar and Wets [42, Ch.9] and Levy [26, 27] for both single
valued functions and multifunctions.

It is known that D∗�(x)(u) is related to Clarke’s generalized Jacobian ∂� and the
B-subdifferential ∂B� in the following way [20]:

∂B�(x)u ⊆ D∗�(x)(u) ⊆ ∂�(x)u , ∀ u ∈ X . (5)

In [20], Kummer gave a piecewise linear mapping to show that D∗�(x)(u) ⊂ ∂�(x)u

but D∗�(x)(u) �= ∂�(x)u.

Definition 1. A function � : O ⊆ X → X is said to be a locally Lipschitz homeo-
morphism near x ∈ O if there exists an open neighborhood N ⊆ O of x such that the
restricted map � |N : N → �(N ) is Lipschitz continuous and bijective, and its inverse
is also Lipschitz continuous.

The following inverse function theorem is obtained by Kummer [20].

Theorem 1. Suppose that � : O ⊆ X → X is locally Lipschitz near x ∈ O. Then �

is locally Lipschitz homeomorphism near x if and only if the following nonsingularity
condition holds:

∀ u ∈ X, 0 ∈ D∗�(x)(u) �⇒ u = 0 .
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The purpose of this section is to show that if � : O ⊆ X → X is locally Lipschitz
homeomorphism near x ∈ O, then � is semismooth at x if and only if �−1, the local
inverse mapping of � near x, is semismooth at �(x).

Semismoothness was originally introduced by Mifflin [28] for functionals. For study-
ing the superlinear convergence of Newton’s method for solving nonsmooth equations,
Qi and Sun [38] extended the definition of semismoothness to vector valued functions.
There are several equivalent ways for defining the semismoothness. Here we use the
following definition.

Definition 2. Let � : O ⊆ X → Y be a locally Lipschitz continuous function on the
open set O. We say that � is semismooth at a point x ∈ O if

(i) � is directionally differentiable at x; and
(ii) for any �x → 0 and V ∈ ∂�(x + �x),

�(x + �x) − �(x) − V (�x) = o(||�x||) . (6)

In the above definition on semismoothness, part (i) and part (ii) do not imply each
other. To see that (i) does not imply (ii), one may consider the example given in [28]:
�(x) = x2 sin(1/x) if 0 �= x ∈ � and �(x) = 0 if x = 0. On the other hand, Shap-
iro [45] constructed a one dimensional example to show that (ii) holds while (i) fails to
hold. Condition (6), together with a nonsingularity assumption on ∂� at a solution point,
was used by Kummer [19] to prove the superlinear convergence of Newton’s method for
locally Lipschitz equations. Gowda [13] called a locally Lipschitz continuous function �

“semismooth” at x if (6) holds. To distinguish Gowda’s definition on semismoothness of
� at x, Pang et al. [34] called � to be G-semismooth at x if condition (6) holds. A stron-
ger notion than semismoothness is strong semismoothness. We say that � is strongly
G-semismooth (strongly semismooth) at x, if � is G-semismooth (semismooth) at x

and for any �x → 0 and V ∈ ∂�(x + �x),

�(x + �x) − �(x) − V (�x) = O(||�x||2). (7)

We say that � is G-semismooth (semismooth, strongly G-semismooth, strongly semi-
smooth) on a set D ⊆ O if � is G-semismooth (semismooth, strongly G-semismooth,
strongly semismooth) at every point of D.

In order to show semismoothness, one often finds the following result useful. For a
proof, see [48, Theorem 3.7] and [47, Lemma 2.1].

Lemma 1. Let � : O ⊆ X → Y be locally Lipschitz near x ∈ O. Then � is G-semi-
smooth (strongly G-semismooth) at x if and only if for any �x → 0 and x + �x ∈ D�,

�(x + �x) − �(x) − J�(x + �x)(�x) = o(||�x||) (= O(||�x||2)) . (8)

Lemma 2. Let � : O ⊆ X → X be locally Lipschitz homeomorphism near x0 ∈ O.
Then there exists an open neighborhood N ⊆ O of x0 such that � is F-differentiable at
x ∈ N if and only if �−1, the locally inverse mapping of � near x0, is F-differentiable
at y := �(x); and

(J�(x))−1 = J�−1(y). (9)

Moreover, there exists a positive number µ > 0 such that ||V −1|| ≤ µ, ||W−1|| ≤ µ for
all V ∈ ∂B�(u), W ∈ ∂B�−1(z), u ∈ N , and z ∈ �(N ).
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Proof. By Definition 1, there exist a neighborhood N ⊆ O of x0 and a locally Lipschitz
function �−1 defined on the open neighborhood �(N ) of �(x0) such that �(�−1(z)) =
z and �−1(�(u)) = u for any u ∈ N and z ∈ �(N ). On the other hand, by Theo-
rem 1 and (5), we know that any V ∈ ∂B�(x0) is nonsingular. Hence, by shrinking N
if necessary, we know from [36] that there exists a positive number µ > 0 such that
max{‖V ‖, ||V −1||} ≤ µ for all V ∈ ∂B�(u) and u ∈ N .

Suppose that � is F-differentiable at some point x ∈ N . Then, because J�(x) ∈
∂B�(x), J�(x) is nonsingular. If �−1 is not F-differentiable at y = �(x), then there
exists a sequence {�yk} converging to 0 such that �yk �= 0 and

�k

||�yk|| → α �= 0, (10)

where �k := �−1(y + �yk) − �−1(y) − (J�(x))−1(�yk) and α ∈ X is finite. Then,

�−1(y + �yk) = �−1(y) + (J�(x))−1(�yk) + �k.

Now

�(�−1(y) + (J�(x))−1(�yk) + �k) − �(x)

= �(�−1(y + �yk)) − �(�−1(y)) = y + �yk − y = �yk.

So, we obtain

�(�−1(y) + (J�(x))−1(�yk) + �k) − �(x)

= �(x + (J�(x))−1(�yk) + �k) − �(x) = �yk.

Then, it follows from the F-differentiability of � at x and the local Lipschitz continuity
of �−1 that

J�(x)[(J�(x))−1(�yk) + �k] + o(||�yk||) = �yk.

Thus

�yk + J�(x)(�k) + o(||�yk||) = �yk,

which implies that

J�(x)

(
�k

||�yk||
)

+ o(1) = 0.

Hence, J�(x)(α) = 0. Therefore, α = 0, which contradicts (10). This contradiction
shows that �−1 is F-differentiable at y = �(x) and J�−1(y) = (J�(x))−1.

Similarly, we can show the converse part.
Evidently, ||W−1|| ≤ µ for all W ∈ ∂B�−1(z) and z ∈ �(N ). ��

Theorem 2. Let � : O ⊆ X → X be locally Lipschitz homeomorphism near x0 ∈ O.
Then there exists an open neighborhood N ⊆ O of x0 such that
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(i) � is G-semismooth (strongly G-semismooth) at some point x̄ ∈ N if and only if
�−1, the local inverse mapping of � near x0, is G-semismooth (strongly G-semi-
smooth) at ȳ := �(x̄); and

(ii) � is semismooth (strongly semismooth) at some point x̄ ∈ N if and only if �−1 is
semismooth (strongly semismooth) at ȳ := �(x̄).

Proof. (i) By Lemma 2, there exist an open neighborhood N ⊆ O of x0 and a positive
number µ > 0 such that � is F-differentiable at x ∈ N if and only if �−1 is F-differen-
tiable at �(x) and that ||V −1|| ≤ µ, ||W−1|| ≤ µ for all V ∈ ∂B�(x), W ∈ ∂B�−1(y),
x ∈ N , and y ∈ �(N ). Then, by Lemma 2, for any y ∈ �(N) ∩ D�−1 and y → ȳ we
have

�−1(y) − �−1(ȳ) − J�−1(y)(y − ȳ)

= �−1(�(x)) − x̄ − (J�(x))−1(�(x) − �(x̄))

= x − x̄ − (J�(x))−1(�(x) − �(x̄))

= (J�(x))−1[�(x) − �(x̄) − J�(x)(x − x̄)]

= O(‖�(x) − �(x̄) − J�(x)(x − x̄)‖) , (11)

where x := �−1(y). Hence, Lemma 1, together with (11), shows that �−1 is G-semi-
smooth (strongly G-semismooth) at ȳ if � is G-semismooth (strongly G-semismooth)
at x̄.

By reversing the above arguments, we obtain that � is G-semismooth (strongly
G-semismooth) at x̄ if �−1 is G-semismooth (strongly G-semismooth) at ȳ.

(ii) By [22, Lemma 2], � is directionally differentiable at x̄ if and only �−1 is
directionally differentiable at �(x̄). Therefore, statement (ii) follows by statement (i)
and the definitions of semismoothness and strong semismoothness. ��

Note that in [13], among many other results for inverse and implicit function the-
orems, by assuming that a locally Lipschitz continuous function � : O ⊆ X → X is
semismooth on the open set O, Gowda provided a necessary and sufficient condition
for the existence of a semismooth inverse function of �. Various equivalent forms to
Gowda’s condition were given in [34]. Here, in Theorem 2 we showed that a locally Lips-
chitz homeomorphism � : O ⊆ X → X is semismooth at a point if only if its inverse
mapping is semismooth at its image point. A Lipschitz continuous function which is
semismooth at a certain point may be not semismooth on an neighborhood of this point.
For example, for any closed convex cone D ⊆ X, �D(·) is strongly semismooth at
the origin [35] while we know nothing about the semismoothness of �D(·) at other
points. Another simple example would be a locally Lipschitz function which is strictly
Fréchet differentiable at one point. Then, by [38, Corollary 2.5], the Lipschitz function
is semismooth at this point and there is no guarantee that it is semismooth on an open
neighborhood of this point. So, discussions given in Theorem 2 are necessary if we only
know the semismoothness of � at the point concerned.

In [2, 15], the authors introduced the concept of slant differentiability for designing
superlinearly convergent Newton’s method for nondifferentiable operator equations in
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function spaces. The analysis on the superlinear convergence of Newton’s method for
slantly differentiable equations carried out in [2, 15] can be actually regarded as a spe-
cial case in [19, Proposition 3]. In finite dimensional spaces, if � : O ⊆ X → X is
G-semismooth on an open set N ⊆ O, then G is slantly differentiable on N (cf. [15,
Definition 1]). However, the converse may not be true [2, Remark (6)]. So, it would
be interesting to know if Theorem 2 can be extended from G-semismooth functions to
slantly differentiable functions. The main difficulty lies in the fact that for a locally Lips-
chitz homeomorphism function � : O ⊆ X → X the nonsingularity of the Bouligand
derivative of � at any x0 ∈ O is guaranteed to hold while the nonsingularity of the slant
derivative of � at x0 holds or not remains unknown.

Next, we consider the equation H(x, u) = q, where H : X × Y → X is locally
Lipschitz continuous near (x0, u0) ∈ X × Y with H(x0, u0) = q0. Let us make the
following assumption:

Assumption 1. There exist an open neighborhood N (q0, u0) ⊆ X × Y of (q0, u0) and
a Lipschitz continuous function x(q, u) defined on N (q0, u0) such that
H(x(q, u), u) = q for every (q, u) ∈ N (q0, u0).

Under the above assumption, we have the following result.

Corollary 1. Suppose that Assumption 1 holds. Then, x(·, ·) is G-semismooth (strongly
G-semismooth, semismooth, strongly semismooth) at some point (q, u) ∈ N (q0, u0)

if and only if H is G-semismooth (strongly G-semismooth, semismooth, strongly semi-
smooth) at (x(q, u), u).

Proof. Define the mapping � : X × Y → X × Y in the form of

�(x, u) :=
[

H(x, u)

u

]
.

Then �(x0, u0) =
[
q0
u0

]
. By Assumption 1, � is locally Lipschitz homeomorphism

near (x0, u0) with its inverse mapping �−1 given by

�−1(q, u) :=
[

x(q, u)

u

]
, (q, u) ∈ N (q0, u0) .

Therefore, by Theorem 2, �−1 is G-semismooth (strongly G-semismooth, semismooth,
strongly semismooth) at some point (q, u) ∈ N (q0, u0) if and only if H is G-semi-
smooth (strongly G-semismooth, semismooth, strongly semismooth) at (x(q, u), u).
This completes the proof. ��

In [21], Kummer showed that Assumption 1 is equivalent to the following nonsin-
gularity condition:

∀ d ∈ X, 0 ∈ D∗H(x0, u0)(d, 0) �⇒ d = 0 . (12)

Then, we have the following implicit function theorem, which is a direct consequence
of Corollary 1 and does not need a proof.
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Corollary 2. Suppose that the nonsingularity condition (12) is satisfied. Let q0 = 0.
Then, there exist an open neighborhood N ⊆ Y of u0 and a Lipschitz continuous func-
tion x(·) defined on N such that H(x(u), u) = 0 for every u ∈ N . Moreover, x(·)
is G-semismooth (strongly G-semismooth, semismooth, strongly semismooth) at some
point u ∈ N if H is G-semismooth (strongly G-semismooth, semismooth, strongly semi-
smooth) at (x(u), u).

The first part of Corollary 2 first appeared in [21]. Based on Clarke’s implicit func-
tion theorem [4, 5], a related result to the second part of the above corollary is obtained
in [47, Theorem 2.1] under Clarke’s nonsingularity condition:

∀ d ∈ X, 0 ∈ ∂H(x0, u0)(d, 0) �⇒ d = 0, (13)

which is a more restrictive condition than (12) (cf. [20]).

3. Semismoothness of Solutions to Generalized Equations

Let X, Y, and U be finite dimensional vector spaces. Suppose that F : X × U → X is
continuously differentiable, G : X × U → Y is twice continuously differentiable, and
K ⊆ Y is a closed convex set. Let H : X × Y × U → X × Y be defined by (3). Now,
let us consider the following parameterized generalized equation

(GEu)

H(x, λ, u) =
[

F(x, u) + JxG(x, u)∗λ

G(x, u) − �K [G(x, u) + λ]

]
= 0 . (14)

For a given point u0 ∈ U of the parameter vector, we view the corresponding general-
ized equation (GEu0) as unperturbed, and write (GEu) for the parameterized generalized
equation. Let (x0, λ0) be a solution of (GEu0).

For u ∈ U near u0, let (x(u), λ(u)) (if exists) solve (GEu), i.e., H(x(u), λ(u), u)

= 0. In [46], Shapiro studied some perturbed properties of (x(·), λ(·)) near u0 ∈ U .
In this section, we will investigate its semismoothness at u0. Denote S := {x ∈
X | G(x, u0) ∈ K}. Let TK(y) denote the tangent cone of K at y and lin(C) the lineality
space of the closed convex cone C, i.e., lin(C) = C ∩ (−C). The following definition
of nondegeneracy is taken from [1, 46], which is a basic assumption of this section.

Definition 3. We say that a point x0 ∈ S is nondegenerate, with respect to the mapping
G and the set K , if

JxG(x0, u0)X + lin(TK(y0)) = Y, (15)

where y0 := G(x0, u0).

Under the above nondegeneracy assumption at x0 ∈ S, Shapiro [46] showed that the
multiplier λ satisfying H(x0, λ, u0) = 0 is unique.

By using the cone reducibility notion, Shapiro [46] reduced the discussion on sen-
sitivity analysis of (x(·), λ(·)) to a new problem. In this case, the sensitivity analysis
becomes simpler, at least notationally. In the following analysis, we will adopt this idea.
The concept of cone reducibility below is taken from [1, 46].
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Definition 4. A closed (not necessarily convex) set C ⊆ Y is called cone reducible at
a point y0 ∈ C if there exist a neighborhood V ⊆ Y of y0, a pointed closed convex
cone Q in a finite dimensional space Z and a twice continuously differentiable mapping
	 : V → Z such that: (i) 	(y0) = 0 ∈ Z, (ii) the derivative mapping J	(y0) : Y → Z

is onto, and (iii) C ∩ V = {y ∈ V | 	(y) ∈ Q}. If C is cone reducible at every point
y0 ∈ C (possibly to a different cone Q), then we say that C is cone reducible.

Many interesting sets such as the polyhedral convex set, the second-order cone, and
the cone Sn+ of positive semidefinite n × n symmetric matrices are all cone reducible
[1, 46]. In the subsequent analysis, we assume that the convex set K is cone reducible
at the point y0 := G(x0, u0) to a pointed closed convex cone Q ⊆ Z by a mapping 	.

Define the mapping G(x, u) := 	(G(x, u)). Then, it is known [1, 46] that for all (x, u)

in a neighborhood of (x0, u0), the generalized equations (GEu) can be written in the
following equivalent form

(GEu)

HG(x, µ, u) :=
[

F(x, u) + JxG(x, u)∗µ

G(x, u) − �Q(G(x, u) + µ)

]
= 0 (16)

in the sense that locally, (x(u), λ(u)) is a solution of (GEu) if and only if (x(u), µ(u))

is a solution of (GEu) and

λ(u) = [J	(G(x(u), u))]∗µ(u) . (17)

Moreover, by Definition 4, we can derive that for (x, u) sufficiently close to (x0, u0),
the multiplier µ(u) is defined uniquely by (17). In particular, the unperturbed problem
(GEu0) has solution (x0, µ0) with µ0 being uniquely determined by

λ0 = [J	(G(x0, u0))]
∗µ0 .

Hence, in what follows, we only need to study the semismooth sensitivity of the solution
of (GEu) near u0. By Definition 4, we have G(x0, u0) = 0 with the unique multiplier
µ0.

Theorem 3. Let (x0, µ0) be a solution of (GEu0). Suppose that the convex set K is cone
reducible at the point y0 := G(x0, u0) to a pointed convex closed cone Q ⊆ Z by a
mapping 	. Suppose that the following condition holds:

∀ (�x, �µ)∈X×Z, 0 ∈ D∗HG(x0, µ0, u0)(�x, �µ, 0)�⇒�x =0, �µ=0. (18)

The following statements hold:

(i) there exist an open neighborhood N of u0 and a Lipschitz continuous function
(x(·), µ(·)) defined on N such that HG(x(u), µ(u), u) = 0 for every u ∈ N ;

(ii) if �Q is G-semismooth (semismooth) at G(x0, u0) + µ0, then (x(·), µ(·)) is G-
semismooth (semismooth) at u0; and

(iii) if �Q is strongly G-semismooth (strongly semismooth) at G(x0, u0) + µ0 and the
derivative of F and the second derivative of G are locally Lipschitz continuous near
(x0, u0), then (x(·), µ(·)) is strongly G-semismooth (strongly semismooth) at u0.
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Proof. Statements (i) and (ii) are direct consequences of Corollary 2.
For statement (iii), we observe that HG is strongly G-semismooth (strongly semi-

smooth) at (x0, µ0, u0) if �Q is strongly G-semismooth (strongly semismooth) at
G(x0, u0) + µ0 and the derivative of F and the second derivative of G are locally
Lipschitz continuous near (x0, u0) (cf. [11]). Then, by the same corollary, we get (iii). ��

Condition (18) used in Theorem 3 is mild according to discussions in Section 2, but
may be difficult to verify in general. Next, we will consider a sufficient condition for
guaranteeing (18) to hold. For this purpose, we need the characterizations of Clarke’s
generalized Jacobian of the metric projector �K(·), which is Lipschitz continuous with
Lipschitz constant 1. Define φ : X → R by

φ(y) := 1

2
[〈y, y〉 − 〈y − �K(y), y − �K(y)〉], y ∈ X . (19)

It is known [53] that θ(y) := 1
2 ||y − �K(y)||2, y ∈ X is continuously differentiable

with

∇θ(y) = y − �K(y) , y ∈ X.

Thus, φ is also continuously differentiable with

∇φ(y) = y − (y − �K(y)) = �K(y) , y ∈ X .

Therefore, by mimicking the proof in [32, 3.3.4], we can get the following result. We
omit the details here for brevity.

Lemma 3. Let K ⊆ X be a closed convex set. If �K is F -differentiable at x ∈ X, then
J�K(x) is self-adjoint, i.e.,

J�K(x) = J�K(x)∗. (20)

Proposition 1. Let K ⊆ X be a closed convex set. Then, for any x ∈ X and V ∈
∂�K(x), we have

(i) V is self-adjoint;
(ii) 〈d, V d〉 ≥ 0, ∀ d ∈ X; and

(iii) 〈V d, d − V d〉 ≥ 0, ∀ d ∈ X.

Proof. (i) By Lemma 3 and the definition of ∂B�K(x), any V ∈ ∂B�K(x) is self-adjoint.
This further implies that any V ∈ ∂�K(x) = conv∂B�K(x) is self-adjoint.

(ii) Suppose that �K(·) is F-differentiable at some point x̄ ∈ X. Since �K(·) is
monotone [53], we have

〈�K(x̄ + td) − �K(x̄), td〉 ≥ 0, for all t ≥ 0,

which implies that for all d ∈ X,

〈J�K(x̄)d, d〉 ≥ 0.
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Hence, by the definition of ∂�K(·), for any x ∈ X and V ∈ ∂�K(x),

〈d, V d〉 ≥ 0, ∀d ∈ X .

(iii) First, we consider y ∈ D�K
. By [53], for any d ∈ X and t ≥ 0, we have

〈�K(y + td) − �K(y), td〉 ≥ ||�K(y + td) − �K(y)||2, for all t ≥ 0.

Hence,

〈J�K(y)d, d〉 ≥ 〈J�K(y)d, J�K(y)d〉. (21)

Next, let V ∈ ∂�K(x). Then, by Carathéodory’s theorem, there exist a positive
integer κ > 0, V i ∈ ∂B�K(x), i = 1, 2, . . . , κ such that

V =
κ∑

i=1

λiV
i ,

where λi ≥ 0, i = 1, 2, . . . , κ, and
∑κ

i=1 λi = 1. Let d ∈ X. For each i = 1, . . . , κ

and k = 1, 2, . . . , there exists xik ∈ D�K
such that

||x − xik || ≤ 1/k

and

||J�K(xik ) − V i || ≤ 1/k.

By (21), we have

〈J�K(xik )d, d〉 ≥ 〈J�K(xik )d, J�K(xik )d〉.
Hence,

〈V id, d〉 ≥ 〈V id, V id〉,
and so,

κ∑
i=1

λi〈V id, d〉 ≥
κ∑

i=1

λi〈V id, V id〉. (22)

Define θ(x) := ||x||2, x ∈ X. By the convexity of θ , we have

θ
( κ∑

i=1

λiV
id

)
≤

κ∑
i=1

λiθ(V id) =
κ∑

i=1

λi〈V id, V id〉 =
κ∑

i=1

λi ||V id||2 .

Hence,
κ∑

i=1

λi ||V id||2 ≥
〈 κ∑

i=1

λiV
id,

κ∑
i=1

λiV
id

〉
. (23)

By using (22) and (23), we obtain for all d ∈ X that

〈V d, d〉 ≥ 〈V d, V d〉.
The proof is completed. ��
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Set L0 := {z ∈ X | JxG(x0, u0)z ∈ C�Q(G(x0,u0)+µ0)}, where C�Q(G(x0,u0)+µ0) :=
{V h | V ∈ ∂�Q(G(x0, u0) + µ0), h ∈ Z}. For a general closed convex set K , it is not
clear what L0 looks like. But, if K has special structures, then it is likely to know L0
exactly. For example, ∂�Q, and so L0, has a complete characterization if Q is either a
second order cone or Sn+ [34].

Proposition 2. Suppose that x0 ∈ S is nondegenerate, with respect to the mapping G

and the closed convex set K , and K is cone reducible at the point y0 := G(x0, u0) to a
pointed closed convex cone Q ⊆ Z by a mapping 	. Suppose that

∀ 0 �= �x ∈ L0 �⇒ 〈�x, (JxF (x0, u0) + J 2
xxG(x0, u0)

∗µ0)(�x)〉 > 0 . (24)

Then, the nonsingularity condition (18) in Theorem 3 holds.

Proof. Let (�x, �µ) ∈ X × Z be such that

0 ∈ ∂HG(x0, µ0, u0)(�x, �µ, 0) .

Then, according to the definition ofHG and Clarke [5], there existsV ∈ ∂�Q(G(x0, u0)+
µ0) such that


[JxF (x0, u0) + J 2

xxG(x0, u0)
∗µ0](�x) + JxG(x0, u0)

∗(�µ) = 0,

JxG(x0, u0)(�x) − V [JxG(x0, u0)(�x) + �µ] = 0.

(25)

Let �H := JxG(x0, u0)(�x) + �µ. Then we have

�H − �µ = JxG(x0, u0)(�x) = V (�H).

So,

〈V (�H), �H − V (�H)〉 − 〈V (�H), �µ〉 = 0. (26)

Since, by Proposition 1, the first term on the left hand side of (26) is nonnegative, we
have

〈V (�H), �µ〉 ≥ 0.

It follows from (25) that

〈V (�H), �µ〉 = 〈JxG(x0, u0)(�x), �µ〉
= 〈�x, JxG(x0, u0)

∗(�µ)〉
= −〈�x, [JxF (x0, u0) + J 2

xxG(x0, u0)
∗µ0](�x)〉 .

Thus,

〈�x, [JxF (x0, u0) + J 2
xxG(x0, u0)

∗µ0](�x)〉 ≤ 0.

From the second equation of (25), we know that �x ∈ L0. Then, by condition (24), we
obtain

�x = 0.
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Hence

JxG(x0, u0)
∗(�µ) = 0.

Since Q is a pointed closed convex cone, under the assumptions, from [46] we know
that the mapping JxG(x0, u0) is onto. Thus, �µ = 0. This, together with (5), shows that
the nonsingularity condition (18) in Theorem 3 holds. ��

By using Proposition 2 and Theorem 3, we get the following result:

Corollary 3. Suppose that x0 ∈ S is nondegenerate, with respect to the mapping G

and the closed convex set K , and K is cone reducible at the point y0 := G(x0, u0)

to a pointed closed convex cone Q ⊆ Z by a mapping 	. Then all the conclusions of
Theorem 3 hold if condition (18) in Theorem 3 is replaced by (24).

Let X = Sn and K := Sn+. Let (x0, u0) ∈ X×U be such that G(x0, u0) ∈ K of rank
r . Then, by [1, Example 3.140], one can construct an infinitely many differentiable (even
analytic) reduction mapping from a neighborhood of G(x0, u0) into a linear space Sn−r

with the corresponding cone Q := Sn−r
+ . Since, in this case �Q(·) is strongly semi-

smooth everywhere [48], we can study the semismoothness of (x(·), µ(·)) by Theorem
3 and Corollary 3.

4. The Moreau-Yosida Regularization

Let X be a finite dimensional vector space and f : X → � ∪ {+∞} be a lower semi-
continuous proper convex function. Let ε > 0 be a positive number. Let f̂ε be the
Moreau-Yosida regularization of f defined by (4). For any u ∈ X, let x(u) denote the
unique optimal solution of (4). Define F : X → X by

F(u) := ∇f̂ε(u) = ε(u − x(u)) , u ∈ X. (27)

The function F is globally Lipschitz continuous because x(·) is so [42, p. 546]. How-
ever, F may fail to be semismooth. To see this, let us consider the indicator function
f (x) = δ(x|D) defined as f (x) = 0 if x ∈ D and f (x) = +∞ if x /∈ D, where D ⊂ X

is a nonempty closed convex set. The corresponding Moreau-Yosida regularization of
f can be written as

min
{
δ(x|D) + ε

2
〈u − x, u − x〉 | x ∈ X

}

= min
{ε

2
〈u − x, u − x〉 | x ∈ D

}
.

(28)

Hence,

F(u) = ε(u − �D(u)) , u ∈ X.

Since in general �D(·) is not everywhere directionally differentiable on X, in particular
for D constructed in [18, 44] for instance, it follows that F is not semismooth every-
where. Actually, the same example given in [44] can also be used to show that F fails
to be G-semismooth everywhere on X.
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Regarding the Moreau-Yosida regularization, see [16, 42] for more general proper-
ties and [12, 23, 24, 30, 37] for second order properties. In this section, we will study
the semismoothness of F by virtue of the projection onto the epigraph of f . It is evident
that (4) can be rewritten as

f̂ε(u) = min ε

{
1

ε
f (x) + 1

2
〈u − x, u − x〉

}
s.t. x ∈ X.

(29)

Then, for any u ∈ X, f̂ε(u) is the optimal value of the following parameterized optimi-
zation problem

min ε

{
t̂ + 1

2
〈u − x, u − x〉

}
s.t. εt̂ ≥ f (x),

(x, t̂) ∈ Z,

(30)

where Z := X × �. Let � be the epigraph of f , i.e.,

� := epi(f ) = {(x, t) ∈ X × � | t ≥ f (x)} .

The set � is a closed convex set [41, p.51]. Then, problem (4) can be written in the form of

min

{
1

ε
t + 1

2
〈u − x, u − x〉

}
,

s.t. (x, t) ∈ �,

(31)

which has a unique optimal solution (x(u), t (u)), where t (u) := f (x(u)). In the fol-
lowing, we will investigate the semismoothness of (x(·), t (·)).

Let H : X × � × X → X × � be defined by

H (x, t, u) :=
[

x

t

]
− �� (G(x, t, u)) , (32)

where

G(x, t, u) :=
[

x

t

]
−

[
x − u

1/ε

]
=

[
u

t − 1/ε

]
. (33)

Then, for any u ∈ X, we have

H(x(u), t (u), u) = 0 . (34)

Lemma 4. For any u ∈ X, G(x(u), t (u), u) /∈ �.
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Proof. Suppose on the contrary that for some u ∈ X, G(x(u), t (u), u) ∈ �. Then we
have

��(G(x(u), t (u), u)) = G(x(u), t (u), u) =
[

x(u)

t (u)

]
−

[
x(u) − u

1/ε

]
.

So, it follows from (32) that

H(x(u), t (u), u) =
[

x(u)

t (u)

]
−

[(
x(u)

t (u)

)
−

(
x(u) − u

1/ε

)]

=
[

x(u) − u

1/ε

]
�= 0,

which leads to a contradiction with (34). Hence, we have G(x(u), t (u), u) /∈ �. ��
Lemma 5. Let C be a closed convex set of a finite dimensional space Y and w be a
point in Y with w /∈ C. Let x := �C(w). Let P := {s ∈ Y | 〈s, w − x〉 = α} be the
supporting hyperplane of C at x such that C ⊆ P− := {s ∈ Y | 〈s, w − x〉 ≤ α}, where
α := 〈x, w − x〉. Then for any z /∈ P−, one has ||�C(z) − x|| ≤ ||�P (z) − x||.
Proof. Let y := �C(z). Then, we have

〈z − y, y − c〉 ≥ 0, ∀ c ∈ C ,

which, implies

||z − x||2 = ||z − y||2 + ||y − x||2 + 2〈z − y, y − x〉
≥ ||z − y||2 + ||y − x||2. (35)

Now, since y ∈ C ⊆ P− and z /∈ P−, we have

〈y, w − x〉 ≤ α < 〈z, w − x〉 .

Thus, there exists θ ∈ [0, 1] such that 〈θz+(1−θ)y, w−x〉 = α, i.e., θz+(1−θ)y ∈ P .
Hence,

||z − �P (z)|| ≤ ‖z − [θz + (1 − θ)y]‖ ≤ ‖z − y‖ ,

which, together with (35), implies

||z − y||2 + ||�P (z) − x||2 ≥ ||z − �P (z)||2 + ||�P (z) − x||2
= ||z − x||2 ≥ ||z − y||2 + ||y − x||2.

Hence, the desired result is valid. ��
According to Proposition 1 and Lemma 5, we derive the following result regard-

ing the B-subdifferential of ��. For any z = (x, t) ∈ X × �, let ��(z)x ∈ X and
��(z)t ∈ � be such that ��(z) = (��(z)x, ��(z)t ). Let int(dom(f )) denote the
interior part of the domain of f .
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Proposition 3. Let z′ = (x′, t ′) ∈ X × � be such that z′ /∈ � and ��(z′)x ∈
int(dom(f )). Then, there exists 0 < η < 1 such that for any W ∈ ∂B��(z′),

0 ≤ 〈e, We〉 ≤ η < 1, (36)

where e := (0, 1) ∈ X × �.

Proof. By the assumption that z′ /∈ �, there exists x̄′ ∈ X such that (x̄′, f (x̄′)) =
��(z′). Let z̄′ := (x̄′, f (x̄′)). Because f is locally Lipschitz continuous near x̄′, there
exist a neighborhood N1(x̄

′) of x̄′ and a constant σ > 0 such that

‖ξ‖ ≤ σ < ∞, ∀ ξ ∈ ∂f (x̄), x̄ ∈ N1(x̄
′).

Since �� is globally Lipschitz continuous, there exists a neighborhood N2(z
′) of z′

such that for any z ∈ N2(z
′),

z /∈ � and ��(z)x ∈ N1(x̄
′).

For any W ∈ ∂B��(z′), there exists a sequence, say {zk} ⊂ D�� , satisfying zk → z′
and W = limk→∞ J��(zk). Thus, by (ii) of Proposition 1, to show (36), it only needs
to show that there exists 0 < η < 1 such that

〈e, J��(z)e〉 ≤ η, ∀ z ∈ N2(z
′) ∩ D�� .

Let z ∈ N2(z
′). Then, there exists x̄ ∈ X such that

z̄ :=
[

x̄

f (x̄)

]
= ��(z) .

For any given �t > 0, let z + �z := (x, t + �t). Then, for all �t > 0 sufficiently
small, z + �z /∈ � and there exists x̂t ∈ X such that

ẑt :=
[

x̂t

f (x̂t )

]
= ��(z + �z) .

Hence, for any z ∈ N2(z
′) ∩ D�� ,

〈e, J��(z)e〉 = lim
�t↓0

��(z + �z)t − ��(z)t

�t
= lim

�t↓0

f (x̂t ) − f (x̄)

�t
.

This means that, to show (36), it suffices to show that there exists 0 < η < 1 such that
for all �t > 0 sufficiently small,

|f (x̂t ) − f (x̄)| ≤ η|�t |, ∀ z ∈ N2(z
′) ∩ D��.

Let P := {(s, τ ) ∈ X ×� | 〈(s, τ ), (x − x̄, t − f (x̄))〉 = α} be the supporting plane
P of � at (x̄, f (x̄)) such that

� ⊆ P− := {(s, τ ) ∈ X × � | 〈(s, τ ), (x − x̄, t − f (x̄))〉 ≤ α} ,



578 F. Meng et al.

where α := 〈(x̄, f (x̄)), (x − x̄, t − f (x̄))〉. By shrinking N (z′) if necessary, we may
assume z /∈ P− because z′ /∈ P−. Then, for all �t > 0 sufficiently small, z + �z =
(x, t + �t) /∈ P− and from Lemma 5,

|f (x̂t ) − f (x̄)| ≤ ||(x̂t , f (x̂t )) − (x̄, f (x̄))|| = ‖ẑt − z̄‖ ≤ ||�P (z + �z) − z̄||.
Let θt be the angle between z̄ − z and (z +�z)− z. Since both (z +�z)−�P (z +�z)

and z − z̄ are perpendicular to the hyperplane P , we have for all �t > 0 sufficiently
small that

|f (x̂t ) − f (x̄)| ≤ ‖�P (z + �z) − z̄‖ = ‖(z + �z) − z‖ sin θt = |�t | sin θt .

It remains to estimate the value of sin θt . Since � is the epigraph of f and � ⊆ P−, we
have for all s ∈ X and τ ≥ f (s) that

〈s − x̄, x − x̄〉 + (τ − f (x̄))(t − f (x̄)) ≤ 0 ,

which, implies that t − f (x̄) < 0 and for all s ∈ X,

f (s) − f (x̄) ≥ 〈s − x̄, (x − x̄)/(f (x̄) − t)〉.
Hence, ξ := (x − x̄)/(f (x̄) − t) ∈ ∂f (x̄) and for all �t > 0 sufficiently small,

| cos θt | =
∣∣∣∣ 〈z − z̄, �z〉
‖z − z̄‖‖�z‖

∣∣∣∣ =
∣∣∣∣ 〈(ξ, −1), (0, �t)〉

‖(ξ, −1)‖
∣∣∣∣ = 1√

‖ξ‖2 + 1
.

It follows that for all �t > 0 sufficiently small,

sin θt =
√

1 − cos2 θt = ‖ξ‖√
‖ξ‖2 + 1

.

Hence, for all �t > 0 sufficiently small,

sin θt ≤ σ√
σ 2 + 1

=: η < 1.

This completes the proof. ��
Proposition 4. For u0 ∈ X, let x0 := x(u0) and t0 := f (x(u0)). Suppose that
��(G(x0, t0, u0))x ∈ int(dom(f )). Then, it holds that

∀ hx ∈ X, ht ∈ �, 0 ∈ ∂H(x0, t0, u0)(hx, ht , 0) �⇒ hx = 0, ht = 0. (37)

Proof. Let hx ∈ X and ht ∈ � be such that

0 ∈ ∂H(x0, t0, u0)(hx, ht , 0) .

Let

h :=
[

hx

ht

]
.
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Then, according to the definition of H and [5], there exists W ∈ ∂��(G(x0, t0, u0))

such that

0 =
[

hx

ht

]
− W(0, ht ) = 0. (38)

By Lemma 4, G(x0, t0, u0) /∈ �. So, according to Proposition 3 and noticing that
W is a convex combination of some finitely many elements in ∂B��(G(x0, t0, u0), we
have

0 ≤ 〈e, We〉 ≤ η < 1, (39)

where e and η are defined as in Proposition 3. By (38), we obtain

|ht |2 = 〈(0, ht ), (hx, ht )〉 = 〈(0, ht ), W(0, ht )〉 = |ht |2〈e, We〉 ,

which, together with (39), implies ht = 0. By virtue of (38), hx = 0. Therefore, condi-
tion (37) holds. ��

By (5), Corollary 2, and Proposition 4, we get the following result immediately.

Theorem 4. For u0 ∈ X, let x0 := x(u0) and t0 := f (x(u0)). Then (x(·), t (·)) and
F(·) are G-semismooth (strongly G-semismooth, semismooth, strongly semismooth) at
u0 if ��(G(x0, t0, u0))x ∈ int(dom(f )) and ��(·) is G-semismooth (strongly G-semi-
smooth, semismooth, strongly semismooth) at G(x0, t0, u0).

The significance of Theorem 4 is that it allows us to exploit the rich properties of
the metric projector over closed convex sets (cf. [9, Ch.4]) to study the semismoothness
of solutions to the Moreau-Yosida regularization. The condition ��(G(x0, t0, u0))x ∈
int(dom(f )) in Theorem 4 holds automatically if f is finite valued everywhere.

5. Conclusions

In this paper, we showed that a locally Lipschitz homeomorphism function is G-semi-
smooth (strongly G-semismooth, semismooth, strongly semismooth) at a given point if
and only if its inverse function is G-semismooth (strongly G-semismooth, semismooth,
strongly semismooth) at its image point. We then used this result and its corollaries to
study the semismoothness of solutions to parameterized generalized equations and the
Moreau-Yosida regularization of a convex function.

By analyzing the properties of Clarke’s generalized Jacobian of the metric projector
over closed convex sets, we presented a sufficient condition for the semismoothness of
solutions to parameterized generalized equations over cone reducible (nonpolyhedral)
convex sets. It would be interesting to see results relaxing this sufficient condition. By
a careful study about the structure of Clarke’s generalized Jacobian of the metric pro-
jector over the epigraph of a convex function, we showed that the semismoothness of
solutions to the Moreau-Yosida regularization of a convex function can be obtained via
the semismoothness of the metric projector over the epigraph of the convex function. We
leave the study on the semismoothness of the metric projector over various interesting
closed convex sets such as closed homogeneous cones [3, 10] and the set of correlation
matrices [14] as a future research topic.
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