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1. Introduction Consider the optimization problem

(OP ) min
x∈X

f(x)

s.t. G(x) ∈ K,
(1)

where f : X → < and G : X → Y are twice continuously differentiable functions, X and Y are two
finite dimensional real vector spaces each equipped with a scalar product denoted by 〈·, ·〉 and its induced
norm denoted by ‖ · ‖, and K is a closed convex set in Y . We reserve Z to represent an arbitrary real
vector space with a scalar product 〈·, ·〉. We denote by Jxf(x) and J 2

xxf(x) the derivative and the second
order derivative of f with respect to x ∈ X, respectively. For any given linear operator A, we denote its
adjoint by A∗. The first order optimality condition, namely the Karush-Kuhn-Tucker (KKT) condition,
for (OP ) takes the following form:

JxL(x, µ) = 0 and µ ∈ NK(G(x)), (2)

where the Lagrangian function L : X × Y → < is defined by

L(x, µ) := f(x) + 〈µ,G(x)〉 , (x, µ) ∈ X × Y, (3)

JxL(x, µ) is the derivative of L(x, µ) at (x, µ) with respect to x ∈ X, and NK(y) denotes the normal
cone of K at y in the sense of convex analysis (Rockafellar [35]):

NK(y) =
{
{d ∈ Y : 〈d, z − y〉 ≤ 0 ∀ z ∈ K} if y ∈ K,
∅ if y /∈ K.

For any (x, µ) satisfying (2), we call x a stationary point and (x, µ) a KKT point of (OP ), respectively.

During the last three decades, tremendous progress has been achieved towards sensitivity and stability
analysis of solutions to the optimization problem (OP ) subject to data perturbation (Bonnans and
Shapiro [6], Facchinei and Pang [12], Klatte and Kummer [18], Rockafellar and Wets [36]). When K is a
polyhedral set, the corresponding theory is quite complete. This is especially the case for the conventional
nonlinear programming

(NLP )
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min
x∈X

f(x)

s.t. h(x) = 0,
g(x) ≤ 0,

(4)

where f : X → <, h : X → <m, and g : X → <p are twice continuously differentiable functions.

For the case that K is a general nonpolyhedral set, much less has been known. However, when K is
C2-cone reducible in the sense of Bonnans and Shapiro [6, Definition 3.135], the full picture of sensitivity
and stability of solutions for problem (OP ) is emerging (Bonnans et al. [1, 2], Bonnans and Shapiro
[5, 6]). The class of C2-cone reducible sets is rich. It includes notably the polyhedral set, the second order
cone (ice-cream cone or Lorentz cone), the cone of symmetric positive semidefinite matrices, and their
Cartesian product (Bonnans and Shapiro [6], Shapiro [39]).

Compared to the conventional nonlinear programming (NLP ), the theory for (OP ) with C2-cone
reducible sets is evolving and yet to be completed. Let x̄ be a feasible solution to (OP ). Robinson’s
constraint qualification (CQ) (Robinson [29]) is said to hold at x̄ if

0 ∈ int{G(x̄) + JxG(x̄)X −K}, (5)

where “int” denotes the topological interior part of a given set. If x̄ is a locally optimal solution to
(OP ) and Robinson’s CQ holds at x̄, then there exists a Lagrangian multiplier µ̄ ∈ Y , together with x̄,
satisfying the KKT condition:

JxL(x̄, µ̄) = 0 and µ̄ ∈ NK(G(x̄)). (6)

For any closed (not necessary convex) set D ⊆ Y and y ∈ Y , denote

dist(y, D) := inf{||y − d‖ : d ∈ D}.

For any closed set D ⊆ Y , we write T i
D(y) and TD(y) for the inner tangent cone and the contingent

(Bouligand) cone of D at y, respectively. That is,

T i
D(y) = {d ∈ Y : dist(y + td,D) = o(t) , t ≥ 0}

and
TD(y) = {d ∈ Y : ∃ tk ↓ 0, dist(y + tkd, D) = o(tk)}.

When D is a closed convex set, the inner tangent cone and the contingent cone are equal:

TD(y) = T i
D(y) = {d ∈ Y : dist(y + td,D) = o(t) , t ≥ 0}, y ∈ D

and will be simply called the tangent cone of D at y. Since Y is assumed to be a finite dimensional space
and K is a closed convex set, Robinson’s CQ (5) can be equivalently written as

JxG(x̄)X + TK(G(x̄)) = Y, (7)

which reduces to the well known Mangasarian-Fromovitz constraint qualification (MFCQ) for the con-
ventional nonlinear programming (NLP ) (Mangasarian and Fromovitz [22]):{

Jxhi(x̄), i = 1, . . . ,m, are linearly independent,
∃ d ∈ X : Jxhi(x̄)d = 0 , i = 1, . . . ,m , Jxgj(x̄)d < 0 , j ∈ I(x̄), (8)

where the active set I(x̄) of g(·) at x̄ is defined by

I(x̄) := {j : gj(x̄) = 0 , j = 1, . . . , p}.

For a proof on this equivalence, see Robinson [28, Theorem 3]. A stronger notion than the MFCQ in
(NLP ) is the linear independence constraint qualification (LICQ):

{Jxhi(x̄)}m
i=1 and {Jxgj(x̄)}j∈I(x̄) are linearly independent. (9)

LetM(x̄) denote the set of Lagrangian multipliers satisfying (6). ThenM(x̄) is nonempty and bounded
if and only if Robinson’s CQ holds at x̄ (Bonnans and Shapiro [6, Theorem 3.9 and Proposition 3.17]),
which generalizes an analogous assertion for (NLP ): M(x̄) is nonempty and bounded if and only if the
MFCQ holds x̄ (cf., Gauvin [13]). For (NLP ), the LICQ implies that M(x̄) is a singleton.

In one of his seminal papers, Robinson [30] introduced the important concept of strong regularity for
generalized equations, which include the KKT system (6) as a special case, and defined a strong second
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order sufficient condition for (NLP ). He also showed that the strong second order sufficient condition
and the LICQ imply the strong regularity of the solution to the KKT system (6). Interestingly, the
converse is also true, see Jongen et al. [16], Bonnans and Sulem [7], Dontchev and Rockafellar [10], and
Bonnans and Shapiro [6, Proposition 5.38].

The primary objective of this paper is to build up the connections between the strong second order
sufficient condition and strong regularity for the nonlinear semidefinite programming

(NLSDP ) min
x∈X

f(x)

s.t. h(x) = 0,
g(x) ∈ Sp

+,

(10)

where f : X → <, h : X → <m, and g : X → Sp are twice continuously differentiable, Sp is the linear
space of all p× p real symmetric matrices, and Sp

+ is the cone of all p× p positive semidefinite matrices.
Problem (NLSDP ) is a special case of (OP ) with

G(x) := (h(x), g(x)), x ∈ X, Y := <m × Sp, and K := {0} × Sp
+. (11)

We achieve this objective via the study of the nonsingularity of generalized Jacobian of the system
of nonsmooth equations reformulated from (2). Consequently, we show that if x̄ is a locally optimal
solution to (NLSDP ) and Robinson’s CQ holds at x̄, then the nonsingularity of Clarke’s Jacobian of
the corresponding nonsmooth system is not only sufficient but also necessary for the strong regularity.
Since the nonsingularity of Clarke’s Jacobian is a stronger condition than many other conditions posed
for general nonsmooth equations (Kummer [20], Pang et al. [26]), this actually establishes the equivalence
of many conditions discussed in a wide range of literatures for (NLSDP ).

The organization of this paper is as follows. In Section 2, we study some useful properties of Clarke’s
Jacobian for Lipschitz functions, in particular for the metric projector over Sp

+. We propose a strong
second order sufficient condition for the nonlinear semidefinite programming (NLSDP ) in Section 3.
It is shown that this strong second order sufficient condition and constraint nondegeneracy imply the
nonsingularity of Clarke’s Jacobian of the corresponding nonsmooth system. The promised equivalent
conditions are discussed in Section 4. We conclude this paper by pointing out some possible research
topics in Section 5.

2. Jacobian Properties Let X, Y , and Z be three arbitrary finite dimensional real vector spaces
each equipped with a scalar product 〈·, ·〉 and its induced norm ‖ · ‖. Let O be an open set in Y and Ξ :
O ⊆ Y → Z be a locally Lipschitz continuous function on the open set O. The well known Rademacher’s
theorem (Rockafellar and Wets [36, Section 9.J]) says that Ξ is almost everywhere F(réchet)-differentiable
in O. We denote by OΞ the set of points in O where Ξ is F-differentiable. Then Clarke’s generalized
Jacobian of Ξ at y is well defined (Clarke [9]):

∂Ξ(y) := conv{∂BΞ(y)},

where “conv” denotes the convex hull and

∂BΞ(y) := {V : V = lim
k→∞

JyΞ(yk) , yk → y , yk ∈ OΞ}.

The next lemma is about the generalized Jacobian for composite functions.

Lemma 2.1 Let Ψ : X → Y be a continuously differentiable function on an open neighborhood N̂ of x̄
and Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function on an open set O containing ȳ := Ψ(x̄).
Suppose that Ξ is directionally differentiable at every point in O and that JxΨ(x̄) : X → Y is onto. Then
it holds that

∂BΦ(x̄) = ∂BΞ(ȳ)JxΨ(x̄), (12)

where Φ : N̂ → Z is defined by Φ(x) := Ξ(Ψ(x)), x ∈ N̂ .

Proof. By shrinking N̂ if necessary, we may assume that Ψ(N̂) ⊆ O. Then Φ is Lipschitz continuous
and directionally differentiable on N̂ . By further shrinking N̂ if necessary, we may also assume that for
each x ∈ N̂ , JxΨ(x) is onto.
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We shall first show that Φ is F-differentiable at x ∈ N̂ if and only if Ξ is F-differentiable at Ψ(x),
which ensures that

∂BΦ(x̄) ⊆ ∂BΞ(ȳ)JxΨ(x̄).

Certainly, Φ is F-differentiable at x ∈ N̂ if Ξ is F-differentiable at Ψ(x). Now, suppose that Φ is F-
differentiable at x ∈ N̂ . Then, since Ξ is directionally differentiable at Ψ(x), for any d ∈ X we have

JxΦ(x)d = Ξ′(Ψ(x);JxΨ(x)d),

which implies that for any s, t ∈ < and u, v ∈ X,

Ξ′(Ψ(x); sJxΨ(x)u + tJxΨ(x)v) = Ξ′(Ψ(x);JxΨ(x)(su + tv))

= JxΦ(x)(su + tv)

= sJxΦ(x)u + tJxΦ(x)v

= sΞ′(Ψ(x);JxΨ(x)u) + tΞ′(Ψ(x);JxΨ(x)v).

By the surjectivity of JxΨ(x), we can conclude that Ξ′(Ψ(x); ·) is a linear operator and so Ξ is Gâteau
differentiable at Ψ(x). Since Ξ is assumed to be locally Lipschitz continuous on O, Ξ is F-differentiable
at Ψ(x).

Next, we show that the second half inclusion holds:

∂BΦ(x̄) ⊇ ∂BΞ(ȳ)JxΨ(x̄).

Let W ∈ ∂BΞ(ȳ). Then there exists a sequence {yk} in O converging to ȳ such that Ξ is F-differentiable
at yk and W = limk→∞ JyΞ(yk). By applying the classical Inverse Function Theorem to

Ψ (x̄ + JxΨ(x̄)∗(y − ȳ))−Ψ(x̄) = 0,

we obtain that there exists a sequence {ỹk} in O converging to ȳ such that

Ψ
(
x̄ + JxΨ(x̄)∗(ỹk − ȳ)

)
−Ψ(x̄) = yk −Ψ(x̄)

for all k sufficiently large. Let x̃k := x̄ +JxΨ(x̄)∗(ỹk − ȳ). Then yk = Ψ(x̃k) and Φ is F-differentiable at
x̃k with

JxΦ(x̃k) = JyΞ(yk)JxΨ(x̃k).

By using the fact that ỹk → ȳ implies x̃k → x̄, we know that there exists a V ∈ ∂BΦ(x̄) such that

WJxΨ(x̄) = lim
k→∞

JyΞ(yk) lim
k→∞

JxΨ(x̃k) = lim
k→∞

JxΦ(x̃k) = V ∈ ∂BΦ(x̄).

This completes the proof. �

Let D be a closed convex set in Z. Let ΠD : Z → Z denote the metric projector over D. That is, for
any y ∈ Z, ΠD(Z) is the unique optimal solution to the convex programming problem:

min
1
2
〈z − y, z − y〉

s.t. z ∈ D.
(13)

It is well known (Zarantonello [42]) that the metric projector ΠD(·) is contractive, i.e., for any two vectors
y, z ∈ Z,

‖ΠD(y)−ΠD(z)‖ ≤ ‖y − z‖.
Hence, ΠD(·) is F-differentiable almost everywhere in Z and for any y ∈ Z, ∂ΠD(y) is well defined.

Lemma 2.2 (Meng et al. [23, Proposition 1]) Let D ⊆ Z be a closed convex set. Then, for any y ∈ Z
and V ∈ ∂ΠD(y), it holds that

(a) V is self-adjoint.

(b) 〈d, V d〉 ≥ 0 ∀ d ∈ Z.

(c) 〈V d, d− V d〉 ≥ 0 ∀ d ∈ Z.
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Lemma 2.2 provides general properties about ∂ΠD(·). In our analysis, we need a finer characterization
about Clarke’s Jacobian of ΠSp

+
(·). We write A � 0 and A � 0 to mean that A is a symmetric positive

semidefinite matrix and a symmetric positive definite matrix, respectively. For any two matrices A and
B in Sp, we write

〈A,B〉 := Tr
(
AT B

)
for the Frobenius inner product between A and B, where “Tr” denotes the trace of a matrix. Under the
Frobenius inner product, the projection A+ := ΠSp

+
(A) of a matrix A ∈ Sp onto the cone Sp

+ satisfies the
following complementarity condition:

Sp
+ 3 A+ ⊥ (A+ −A) ∈ Sp

+, (14)

where for any two matrices B and S in Sp, B ⊥ S ⇐⇒ 〈B,S〉 = 0. Let A have the following spectral
decomposition

A = PΛPT , (15)

where Λ is the diagonal matrix of eigenvalues of A and P is a corresponding orthogonal matrix of
orthonormal eigenvectors. Then

A+ = PΛ+PT ,

where Λ+ is the diagonal matrix whose diagonal entries are the nonnegative parts of the respective
diagonal entries of Λ (Higham [15], Tseng [41]). Define three index sets of positive, zero, and negative
eigenvalues of A, respectively, as

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =

 Λα 0 0

0 0 0

0 0 Λγ

 and P = [ Pα Pβ Pγ ]

with Pα ∈ <p×|α|, Pβ ∈ <p×|β|, and Pγ ∈ <p×|γ|. Define the matrix U ∈ Sp with entries

Uij :=
max{λi, 0}+ max{λj , 0}

|λi |+ |λj |
, i, j = 1, . . . , p,

where 0/0 is defined to be 1. Bonnans et al. [1, 2], showed, among many other important things, that
ΠSp

+
is directionally differentiable everywhere in Sp. Sun and Sun [40] showed that ΠSp

+
is a strongly

semismooth matrix-valued function and for any H ∈ Sp, gave an explicit formula for the directional
derivative of Π′Sp

+
(A;H):

Π′Sp
+
(A;H) = P


H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ ΠS|β|+

(H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

PT , (16)

where H̃ := PT HP and ◦ denotes the Hadamard product. Hence, we have

TSp
+
(A+) = {B ∈ Sp : B = Π′Sp

+
(A+;B)} = {B ∈ Sp : PT

ᾱ BPᾱ � 0}, (17)

where ᾱ := {1, . . . , p}\α and Pᾱ := [Pβ Pγ ]. The lineality space of TSp
+
(A+), i.e., the largest linear space

in TSp
+
(A+), denoted by lin

(
TSp

+
(A+)

)
, takes the following form:

lin
(
TSp

+
(A+)

)
= {B ∈ Sp : PT

ᾱ BPᾱ = 0}. (18)

The critical cone of Sp
+ at A ∈ Sp, associated with the complementarity problem (14), is defined as

C(A;Sp
+) := TSp

+
(A+) ∩ (A+ −A)⊥,

which can be completely described:

C(A;Sp
+) =

{
B ∈ Sp : PT

β BPβ � 0, PT
β BPγ = 0, PT

γ BPγ = 0
}

. (19)



6 D. Sun: Nonlinear Semidefinite Programming
Mathematics of Operations Research 31(4), pp. 761–776, c©2006 INFORMS

The affine hull of C(A;Sp
+), which we denote aff(C(A;Sp

+)), can thus be written as

aff
(
C(A;Sp

+)
)

=
{
B ∈ Sp : PT

β BPγ = 0, PT
γ BPγ = 0

}
. (20)

Since 0 ∈ C(A;Sp
+), aff

(
C(A;Sp

+)
)

is the linear space generated by C(A;Sp
+).

We summarize some differential properties of ΠSp
+
(·) in the following proposition. For details, see Pang

et al. [26, Corollary 10 & Lemma 11].

Proposition 2.1 The following three statements are true.

(a) ΠSp
+
(·) is F-differentiable at A ∈ Sp if and only if A is nonsingular.

(b) For any A ∈ Sp, the directional derivative Π′Sp
+
(A; ·) is F-differentiable at H ∈ Sp if and only if

H̃ββ is nonsingular, where H̃ := PT HP .

(c) Let A ∈ Sp be arbitrary and Θ(·) := Π′Sp
+
(A; ·). It holds that

∂BΠSp
+
(A) = ∂BΘ(0).

Proposition 2.1 and Lemma 2.1 allow us to prove the following useful result on ∂ΠSp
+
(·).

Proposition 2.2 Suppose that A ∈ Sp has the spectral decomposition as in (15). Then for any V ∈
∂BΠSp

+
(A) (respectively, ∂ΠSp

+
(A)), there exists a W ∈ ∂BΠS|β|+

(0) (respectively, ∂ΠS|β|+
(0)) such that

V (H) = P


H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ W (H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

PT ∀H ∈ Sp, (21)

where H̃ := PT HP . Conversely, for any W ∈ ∂BΠS|β|+
(0) (respectively, ∂ΠS|β|+

(0)) , there exists a

V ∈ ∂BΠSp
+
(A) (respectively, ∂ΠSp

+
(A)) such that (21) holds.

Proof. We only need to prove that (21) holds for V ∈ ∂BΠSp
+
(A) and W ∈ ∂BΠS|β|+

(0).

Let Θ(·) := Π′Sp
+
(A; ·). Define Ψ : Sp → Sp by Ψ(H) := PT HP , H ∈ Sp and Ξ : Sp → Sp by

Ξ(B) := P


Bαα Bαβ Uαγ ◦Bαγ

BT
αβ ΠS|β|+

(Bββ) 0

BT
αγ ◦ UT

αγ 0 0

PT , B ∈ Sp.

Then, by (16), we have
Θ(H) = Ξ(Ψ(H)), H ∈ Sp.

Since ΠS|β|+
is directionally differentiable everywhere and JHΨ(H) : Sp → Sp is onto, we know from

Lemma 2.1 that
∂BΘ(0) = ∂BΞ(0)JHΨ(0).

This, together with (c) of Proposition 2.1, completes the proof. �

Remark 2.1 Relation (21) in Proposition 2.2 holds for any orthogonal matrix P such that the spectral
decomposition (15) holds. One may further characterize ∂BΠS|β|+

(0) as in Pang et al. [26, Lemma 11]. In

this paper, we do not need the structure of ∂BΠS|β|+
(0).

Motivated by Shapiro [38, p. 313] and Bonnans and Shapiro [6, p. 487], for any given B ∈ Sp we
introduce a linear-quadratic function ΥB : Sp × Sp → < in the next definition.
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Definition 2.1 For any given B ∈ Sp, define the linear-quadratic function ΥB : Sp ×Sp → <, which is
linear in the first argument and quadratic in the second argument, by

ΥB(Γ, A) := 2
〈
Γ, AB†A

〉
, (Γ, A) ∈ Sp × Sp,

where B† is the Moore-Penrose pseudo-inverse of B.

The following result plays an important role in our subsequent analysis.

Proposition 2.3 Suppose that B ∈ Sp
+ and Γ ∈ NSp

+
(B). Then for any V ∈ ∂ΠSp

+
(B+Γ) and ∆B,∆Γ ∈

Sp such that ∆B = V (∆B + ∆Γ), it holds that

〈∆B,∆Γ〉 ≥ −ΥB(Γ,∆B). (22)

Proof. Let A := B + Γ. Then we know from Eaves [11] that

B = ΠSp
+
(B + Γ) = ΠSp

+
(A) and BΓ = ΓB = 0.

Thus, we can assume that A has the spectral decomposition as in (15),

B = P

 Λα 0 0

0 0 0

0 0 0

PT , and Γ = P

 0 0 0

0 0 0

0 0 Λγ

PT .

Let B̃ := PT BP , Γ̃ := PT ΓP , ∆B̃ := PT ∆BP , and ∆Γ̃ := PT ∆ΓP . Then, by Proposition 2.2, there
exists a W ∈ ∂ΠS|β|+

(0) such that

V (∆B + ∆Γ) = P


∆B̃αα + ∆Γ̃αα ∆B̃αβ + ∆Γ̃αβ Uαγ ◦ (∆B̃αγ + ∆Γ̃αγ)

(∆B̃αβ + ∆Γ̃αβ)T W (∆B̃ββ + ∆Γ̃ββ) 0

(∆B̃αγ + ∆Γ̃αγ)T ◦ UT
αγ 0 0

PT ,

which, together with the assumption that ∆B = V (∆B + ∆Γ), implies that

∆Γ̃αα = 0, ∆Γ̃αβ = 0, ∆B̃βγ = 0, ∆B̃γγ = 0, (23)

∆B̃ββ = W (∆B̃ββ + ∆Γ̃ββ), (24)

and
∆B̃αγ − Uαγ ◦∆B̃αγ = Uαγ ◦∆Γ̃αγ . (25)

By (c) of Lemma 2.2 and equation (24), we obtain that〈
∆B̃ββ ,∆Γ̃ββ

〉
=
〈
W (∆B̃ββ + ∆Γ̃ββ), (∆B̃ββ + ∆Γ̃ββ)−W (∆B̃ββ + ∆Γ̃ββ)

〉
≥ 0. (26)

Hence, by equations (23), (25), and (26),

〈∆B,∆Γ〉 =
〈
∆B̃,∆Γ̃

〉
= 2 Tr

(
(∆B̃αγ)T ∆Γ̃αγ

)
+ Tr

(
∆B̃ββ∆Γ̃ββ

)
≥ 2 Tr

(
(∆B̃αγ)T ∆Γ̃αγ

)
= 2

∑
i∈α,j∈γ

(∆B̃)ij(∆Γ̃)ij

= 2
∑

i∈α, j∈γ

|λj |
λi

(
(∆B̃)ij

)2

= −2
∑

i∈α, j∈γ

λj

λi

(
(∆B̃)ij

)2

. (27)

On the other hand, since

B† = P

 (Λα)−1 0 0

0 0 0

0 0 0

PT ,
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we obtain from (23) and the spectral decomposition of Γ that

ΥB(Γ,∆B) = 2
〈
Γ, (∆B)B†(∆B)

〉
= 2〈(∆B)Γ, B†(∆B)〉

= 2
〈
(∆B̃)Γ̃, (PT B†P )(∆B̃)

〉
= 2Tr

(
(∆B̃αγΛγ)T (Λα)−1∆B̃αγ

)
= 2

∑
i∈α, j∈γ

λj

λi

(
(∆B̃)ij

)2

. (28)

By combining (27) and (28), we get (22). �

3. Strong Second Order Sufficient Condition and Constraint Nondegeneracy Let D be an
arbitrary closed set in a given finite dimensional real vector space Z. The inner and outer second order
tangent sets (Bonnans and Shapiro [6, Section 3.2.1]) to the set D at the point y ∈ D and in the direction
d ∈ Z can be defined, respectively, by

T i,2
D (y, d) := {w ∈ Z : dist(y + td +

1
2
t2w,D) = o(t2) , t ≥ 0} (29)

and
T 2

D(y, d) := {w ∈ Z : ∃ tk ↓ 0 such that dist(y + tkd +
1
2
t2kw,D) = o(t2k)}. (30)

From the definitions of inner and outer second order tangent sets, we can see directly that T i,2
D (z, d) ⊆

T 2
D(y, d) and T i,2

D (z, d) = ∅ (respectively, T 2
D(z, d) = ∅) if d /∈ T i

D(y) (respectively, d /∈ TD(y)). In general,
T i,2

D (z, d) 6= T 2
D(z, d) even if D is convex (Bonnans and Shapiro [6, Section 3.3]). However, if D is C2-cone

reducible, the equality always holds (Bonnans and Shapiro [6, Proposition 3.136]). In particular, when
K := {0} × Sp

+ ⊂ Y := <m × Sp,

T i,2
K (y, d) = T 2

K(y, d) ∀ y, d ∈ Y.

Let x̄ be a feasible solution to the nonlinear semidefinite programming (NLSDP ). The critical cone
C(x̄) of (NLSDP ) at x̄ is defined by

C(x̄) := {d : JxG(x̄)d ∈ TK(G(x̄)), Jxf(x̄)d ≤ 0} , (31)

i.e.,
C(x̄) =

{
d : Jxh(x̄)d = 0, Jxg(x̄)d ∈ TSp

+
(g(x̄)), Jxf(x̄)d ≤ 0

}
. (32)

If x̄ is a stationary point of (NLSDP ), i.e., if M(x̄) is nonempty, then

C(x̄) =
{

d : Jxh(x̄)d = 0, Jxg(x̄)d ∈ TSp
+
(g(x̄)), Jxf(x̄)d = 0

}
. (33)

Let x̄ be a stationary point of (NLSDP ). Then there exists (ζ̄, Γ) ∈M(x̄) such that

JxL(x̄, ζ̄, Γ) = 0, −h(x̄) = 0, and Γ ∈ NSp
+
(g(x̄)).

By using the fact that
Γ ∈ NSp

+
(g(x̄)) ⇐⇒ Sp

+ 3 (−Γ) ⊥ g(x̄) ∈ Sp
+,

we may assume that A := g(x̄) + Γ̄ has the spectral decomposition as in (15),

g(x̄) = P

 Λα 0 0

0 0 0

0 0 0

PT , and Γ = P

 0 0 0

0 0 0

0 0 Λγ

PT . (34)

Then, by (17) and (18), we have

TSp
+
(g(x̄)) =

{
B ∈ Sp : [Pβ Pγ ]T B[Pβ Pγ ] � 0

}
,

TSp
+
(g(x̄)) ∩ Γ

⊥
=
{
B ∈ Sp : PT

β BPβ � 0, PT
β BPγ = 0, PT

γ BPγ = 0
}

, (35)
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and
lin
(
TSp

+
(g(x̄))

)
=
{
B ∈ Sp : [Pβ Pγ ]T B[Pβ Pγ ] = 0

}
. (36)

Furthermore, since M(x̄) is nonempty,

C(x̄) =
{
d : Jxh(x̄)d = 0, [Pβ Pγ ]T (Jxg(x̄)d)[Pβ Pγ ] � 0, PT

γ (Jxg(x̄)d)Pγ = 0
}

=
{

d : Jxh(x̄)d = 0, PT
β (Jxg(x̄)d)Pβ � 0, PT

β (Jxg(x̄)d)Pγ = 0,

PT
γ (Jxg(x̄)d)Pγ = 0

}
=

{
d : Jxh(x̄)d = 0, Jxg(x̄)d ∈ C(A;Sp

+)
}

,

(37)

where C(A;Sp
+) is the critical cone of Sp

+ at A = g(x̄) + Γ. However, it is not easy to give an explicit
formula to the affine hull of C(x̄), which we denote aff(C(x̄)).1 Instead, we define the following outer
approximation set to aff(C(x̄)) with respect to (ζ̄, Γ) by

app(ζ̄, Γ) :=
{
d : Jxh(x̄)d = 0, Jxg(x̄)d ∈ aff

(
C(A;Sp

+)
)}

. (38)

By (20), it holds that

app(ζ̄, Γ) =
{
d : Jxh(x̄)d = 0, PT

β (Jxg(x̄)d)Pγ = 0, PT
γ (Jxg(x̄)d)Pγ = 0

}
. (39)

Then by the definition of aff(C(x̄)), we have for any (ζ̄, Γ) ∈M(x̄) that

aff(C(x̄)) ⊆ app(ζ̄, Γ). (40)

Obviously, the two sets in (40) coincide if the strict complementary condition holds at (x̄, ζ̄, Γ):

rank(g(x̄)) + rank(Γ) = p,

where “rank” denotes the rank of a square matrix. In general, these two sets may be different even if
M(x̄) is a singleton as in the case for the conventional nonlinear programming (NLP ).

The next proposition shows that the equality in (40) holds if (ζ̄, Γ) ∈ M(x̄) satisfies a constraint
qualification stronger than Robinson’s CQ (7) at x̄ , which, in the context of (NLSDP ), is equivalent to(

Jxh(x̄)
Jxg(x̄)

)
X +

(
{0}

TSp
+
(g(x̄))

)
=
(
<m

Sp

)
. (41)

Proposition 3.1 2 Let x̄ be a feasible solution to the nonlinear semidefinite programming (NLSDP )
and (ζ̄, Γ) ∈M(x̄). Suppose that (ζ̄, Γ) satisfies the following strict constraint qualification:(

Jxh(x̄)
Jxg(x̄)

)
X +

(
{0}

TSp
+
(g(x̄)) ∩ Γ

⊥

)
=
(
<m

Sp

)
. (42)

Then M(x̄) is a singleton, i.e., M(x̄) = {(ζ̄, Γ)}, and aff(C(x̄)) = app(ζ̄, Γ).

Proof. The uniqueness of (ζ̄, Γ) follows from Bonnans and Shapiro [6, Proposition 4.50]. We only
need to show

app(ζ̄, Γ) ⊆ aff(C(x̄)).

Let d be an arbitrary vector in app(ζ̄, Γ). Let A := g(x̄) + Γ. We may assume that A has the spectral
decomposition as in (15) and the two matrices g(x̄) and Γ satisfy (34). Let S be any matrix in Sp such
that

PT SP =


PT

α SPα PT
α SPβ PT

α SPγ

PT
β SPα PT

β SPβ 0

PT
γ SPα 0 0

 with PT
β SPβ � 0.

1One referee pointed out that a characterization on the set aff(C(x̄)) was given in a recent report (Bonnans and Ramı́rez

C. [4, Lemma 2.2]) by using a direction d ∈ ri(C(x̄)), the relative interior of C(x̄).
2It was observed by one referee that in order to obtain aff(C(x̄)) = app(ζ̄, Γ), it suffices to assume the existence of a

direction d̄ ∈ C(x̄) such that P T
β (Jxg(x̄)d̄)Pβ � 0. See Bonnans and Ramı́rez C. [4, Corollary 2.3].
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By the strict constraint qualification (42), we know that there exist a vector d̄ ∈ X and a matrix
U ∈ TSp

+
(g(x̄)) ∩ Γ

⊥
such that {

Jxh(x̄)(−d̄) = 0,
Jxg(x̄)(−d̄) + U = −S,

(43)

which, together with (35), implies that

Jxg(x̄)d̄ = U + S ∈ TSp
+
(g(x̄)) ∩ Γ

⊥
, PT

β (Jxg(x̄)d̄)Pβ � 0, and d̄ ∈ C(x̄).

Let τ̄ > 0 be sufficiently large such that

PT
β [Jxg(x̄)(τ̄ d̄− d)]Pβ = τ̄PT

β (Jxg(x̄)d̄)Pβ − PT
β (Jxg(x̄)d)Pβ � 0.

Furthermore, since

PT
β (Jxg(x̄)d̄)Pγ = PT

β (Jxg(x̄)d)Pγ = 0 and PT
γ (Jxg(x̄)d̄)Pγ = PT

γ (Jxg(x̄)d)Pγ = 0,

it holds that
τ̄ d̄− d ∈ C(x̄).

Therefore, by using the facts that d = τ̄ d̄− (τ̄ d̄−d) and both τ̄ d̄ and τ̄ d̄−d are in the critical cone C(x̄),
we complete the proof. �

Before we state the second order conditions for (NLSDP ), we need below the concept of C2-cone
reducibility, which is adapted from Bonnans and Shapiro [6, Definition 3.135].

Definition 3.1 A closed (not necessarily convex) set D ⊆ Y is called C2-cone reducible at a point ȳ ∈ D
if there exist a neighborhood V ⊆ Y of ȳ, a pointed closed convex cone Q (a cone is said to be pointed if and
only its lineality space is the origin) in a finite dimensional space Z and a twice continuously differentiable
mapping Ξ : V → Z such that: (i) Ξ(ȳ) = 0 ∈ Z, (ii) the derivative mapping JyΞ(ȳ) : Y → Z is onto,
and (iii) D ∩ V = {y ∈ V |Ξ(y) ∈ Q}. We say that D is C2-cone reducible if D is C2-cone reducible at
every point ȳ ∈ Y (possibly to a different pointed cone Q).

Many interesting sets such as the polyhedral convex set, the second-order cone, and the cone Sp
+ are

all C2-cone reducible, and the Cartesian product of C2-cone reducible sets is again C2-cone reducible
(Bonnans and Shapiro [6], Shapiro [39]). In particular, K = {0} × Sp

+ is C2-cone reducible.

Recall that for any set D ⊆ Z, the support function of the set D is defined as

σ(y, D) := sup
z∈D

〈z, y〉, y ∈ Z.

Combining Theorem 3.45 and Proposition 3.136 with Theorem 3.137 in Bonnans and Shapiro [6], we
can state in the following theorem the second order necessary condition and the second order sufficient
condition for the nonlinear semidefinite programming (NLSDP ). See also Bonnans et al. [2].

Theorem 3.1 (Second order conditions.) Let K = {0} × Sp
+ ⊂ <m × Sp. Suppose that x̄ is a locally

optimal solution to the nonlinear semidefinite programming (NLSDP ) and Robinson’s CQ holds at x̄.
Then the following inequality holds:

sup
µ∈M(x̄)

{〈
d,J 2

xxL(x̄, µ)d
〉
− σ

(
µ, T 2

K(G(x̄),JxG(x̄)d)
)}
≥ 0 ∀ d ∈ C(x̄). (44)

Conversely, let x̄ be a feasible solution to (NLSDP ) such that M(x̄) is nonempty. Suppose that Robin-
son’s CQ holds at x̄. Then the following condition

sup
µ∈M(x̄)

{〈
d,J 2

xxL(x̄, µ)d
〉
− σ

(
µ, T 2

K(G(x̄),JxG(x̄)d)
)}

> 0 ∀ d ∈ C(x̄)\{0} (45)

is necessary and sufficient for the quadratic growth condition at the point x̄:

f(x) ≥ f(x̄) + c‖x− x̄‖2 ∀x ∈ N̂ such that G(x) ∈ K (46)

for some constant c > 0 and a neighborhood N̂ of x̄ in X.
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Obviously, when the second order growth condition (46) holds, x̄ is a strictly local solution of
(NLSDP ). So there exists no gap between the above second order sufficient condition (45) and the
second order necessary condition (44).

We write µ = (ζ, Γ) ∈ <m × Sp for any µ ∈ M(x̄). Then for µ ∈ M(x̄) and d ∈ C(x̄) the “sigma
term” in (44) and (45) can be written as

σ
(
µ, T 2

K(G(x̄),JxG(x̄)d)
)

= σ
(
ζ, T 2

{0}(h(x̄),Jxh(x̄)d)
)

+ σ
(
Γ, T 2

Sp
+
(g(x̄),Jxg(x̄)d)

)
= 0 + σ

(
Γ, T 2

Sp
+
(g(x̄),Jxg(x̄)d)

)
= σ

(
Γ, T 2

Sp
+
(g(x̄),Jxg(x̄)d)

)
,

which becomes −∞ for any d ∈ X such that Jxg(x̄)d /∈ TSp
+
(g(x̄)). This means that in order to define a

stronger second order sufficient condition over a set larger than C(x̄) one needs to find a substitute for
this sigma term. The following lemma, due to Shapiro [38, p. 313] and Bonnans and Shapiro [6, p. 487],
makes it possible.

Lemma 3.1 Let x̄ be a feasible solution to (NLSDP ) such that M(x̄) is nonempty. Then for any
(ζ, Γ) ∈M(x̄) with ζ ∈ <m and Γ ∈ Sp, one has

Υg(x̄)(Γ,Jxg(x̄)d) = σ
(
Γ, T 2

Sp
+
(g(x̄),Jxg(x̄)d)

)
∀ d ∈ C(x̄).

Now, we are ready to define a strong second order sufficient condition, which extends an analogue for
the conventional nonlinear programming (NLP ) introduced by Robinson [30] to the nonlinear semidefinite
programming (NLSDP ).

Definition 3.2 Let x̄ be a stationary point of the nonlinear semidefinite programming (NLSDP ). We
say that the strong second order sufficient condition holds at x̄ if

sup
(ζ,Γ)∈M(x̄)

{〈
d,J 2

xxL(x̄, ζ, Γ)d
〉
−Υg(x̄)(Γ,Jxg(x̄)d)

}
> 0 ∀ d ∈ Ĉ(x̄)\{0}, (47)

where for any (ζ, Γ) ∈M(x̄), (ζ, Γ) ∈ <m × Sp and

Ĉ(x̄) :=
⋂

(ζ,Γ)∈M(x̄)

app(ζ, Γ).

Next, we define a nondegeneracy condition for (NLSDP ), which is an analogue of the LICQ for
the conventional nonlinear programming (NLP ). The concept of nondegeneracy originally appeared in
Robinson [31] for the general optimization problem (OP ). Here we adopt a somewhat slightly different
version from Robinson’s original definition.

Definition 3.3 We say that a feasible point x̄ to the optimization problem (OP ) is constraint nonde-
generate if

JxG(x̄)X + lin(TK(ȳ)) = Y, (48)

where ȳ := G(x̄).

The name “constraint nondegeneracy” was coined by Robinson in [34]. A related concept called rank-
reducibility was introduced by Shapiro [37]. The nondegeneracy condition (48) given here is consistent
with the version given in Robinson [32] and has been extensively used in Bonnans and Shapiro [6] and
Shapiro [39] for sensitivity and stability analysis in optimization and variational inequalities. See Bonnans
and Shapiro [6] and Shapiro [39] for various equivalent forms. Certainly, the constraint nondegenerate
condition (48) implies Robinson’s CQ (7). For the conventional (NLP ), as observed in Robinson [31]
and Shapiro [39], the LICQ is equivalent to the constraint nondegeneracy. For the nonlinear semidefinite
programming (NLSDP ), the constraint nondegeneracy takes the following form:(

Jxh(x̄)
Jxg(x̄)

)
X +

(
{0}

lin
(
TSp

+
(g(x̄))

) ) =
(
<m

Sp

)
. (49)
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Let x be a feasible point to (NLSDP ) such thatM(x) is nonempty. Then there exists (ζ, Γ) ∈ <m×Sp,
together with x, satisfying the following KKT condition:

JxL(x, ζ, Γ) = 0, −h(x) = 0, and Γ ∈ NSp
+
(g(x)), (50)

where
L(x, ζ, Γ) = f(x) + 〈ζ, h(x)〉+ 〈Γ, g(x)〉.

Since, from Eaves [11],

Γ ∈ NSp
+
(g(x)) ⇐⇒ g(x) = ΠSp

+
(g(x) + Γ) ,

we can write the KKT condition (50) equivalently as

F (x, ζ, Γ) :=

 JxL(x, ζ, Γ)
−h(x)

−g(x) + ΠSp
+
(g(x) + Γ)

 =

 JxL(x, ζ, Γ)
−h(x)

Γ−ΠSp
−
(Γ + g(x))

 = 0, (51)

where Sp
− is the cone of negative semidefinite symmetric matrices in Sp, i.e., Sp

− = −Sp
+. Both (50) and

(51) are equivalent to

0 ∈

 JxL(x, ζ, Γ)
−h(x)
−g(x)

+

 NX(x)
N<m(ζ)
NSp

−
(Γ)

 . (52)

Problem (52) is in the form of the following generalized equation:

0 ∈ φ(z) +ND(z), (53)

where φ is a continuously differentiable mapping from a given finite dimensional real vector space Z to
itself and D is a closed convex set in Z.

Robinson [30] introduced the far reaching concept of strong regularity for a solution of the generalized
equation (53).

Definition 3.4 Let z̄ be a solution of the generalized equation (53). We say that z̄ is a strongly regular
solution of the generalized equation (53) if there exist neighborhoods B of the origin 0 ∈ Z and V of z̄
such that for every δ ∈ B, the following linearized generalized equation

δ ∈ φ(z̄) + Jzφ(z̄)(z − z̄) +ND(z)

has a unique solution in V, denoted by zV(δ), and the mapping zV : B → V is Lipschitz continuous.

Remark 3.1 Recall that a function Ξ : O ⊆ Z → Z is said to be a locally Lipschitz homeomorphism near
z̄ ∈ O if there exists an open neighborhood V ⊆ O of z̄ such that the restricted mapping Ξ |V : V → Ξ(V)
is Lipschitz continuous and bijective, and its inverse is also Lipschitz continuous. Define two mappings
Ξ̂, Ξ : Z → Z by

Ξ̂(z) := z −ΠD(z − φ̂(z)) and Ξ(z) := z −ΠD(z − φ(z)),

where φ̂(z) := φ(z̄)+Jzφ(z̄)(z−z̄), z ∈ Z. From Lemma 3.1 in Robinson [33] or Theorem 3.1 in Kummer
[20] we know that Ξ̂ is a locally Lipschitz homeomorphism near z̄ if and only if Ξ is so. See also Theorem
5.2.8 in Facchinei and Pang [12]. Thus, z̄ is a strongly regular solution of the generalized equation (53)
is equivalent to say that Ξ̂ or Ξ is a locally Lipschitz homeomorphism near z̄.

The next proposition relates the strong second order sufficient condition and constraint nondegeneracy
to the nonsingularity of Clarke’s Jacobian of the mapping F and the strong regularity of a solution to
the generalized equation (52).

Proposition 3.2 Let x̄ be a feasible solution to the nonlinear semidefinite programming (NLSDP ). Let
ζ̄ ∈ <m and Γ ∈ Sp be such that (ζ̄, Γ̄) ∈M(x̄), i.e., let (x̄, ζ̄, Γ) be a KKT point of (NLSDP ). Consider
the following three statements:

(a) The strong second order sufficient condition (47) holds at x̄ and x̄ is constraint nondegenerate.

(b) Any element in ∂F (x̄, ζ̄, Γ) is nonsingular.
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(c) The KKT point (x̄, ζ̄, Γ) is a strongly regular solution of the generalized equation (52).

It holds that (a) =⇒ (b) =⇒ (c).

Proof. “(a) =⇒ (b)” Since the constraint nondegeneracy condition (49) is assumed to hold at x̄,
(ζ̄, Γ) satisfies the strict constraint qualification (42). Thus, by Proposition 3.1, M(x̄) = {(ζ̄, Γ)} and
aff(C(x̄)) = app(ζ̄, Γ). The strong second order sufficient condition (47) then takes the following form:〈

d,J 2
xxL(x̄, ζ̄, Γ)d

〉
−Υg(x̄)

(
Γ,Jxg(x̄)d

)
> 0 ∀ d ∈ aff(C(x̄))\{0}. (54)

Let W be an arbitrary element in ∂F (x̄, ζ̄, Γ). We shall show that W is nonsingular. Let
(∆x, ∆ζ, ∆Γ) ∈ X ×<m × Sp be such that

W (∆x,∆ζ, ∆Γ) = 0.

Let A := g(x̄) + Γ. Without loss of generality, we assume that A has the spectral decomposition as in
(15) and g(x̄) and Γ satisfy (34). Then, by Lemma 2.1, we know that there exists a V ∈ ∂ΠSp

+
(A) such

that

W (∆x,∆ζ, ∆Γ) =

 J 2
xxL(x̄, ζ̄, Γ)∆x + Jxh(x̄)∗∆ζ + Jxg(x̄)∗∆Γ

−Jxh(x̄)∆x
−Jxg(x̄)∆x + V (Jxg(x̄)∆x + ∆Γ)

 = 0. (55)

From Proposition 2.2, (39), and the second and the third equations of (55) we know that

∆x ∈ app(ζ̄, Γ) = aff(C(x̄)). (56)

By the first and second equations of (55), we obtain that

0 =
〈
∆x,J 2

xxL(x̄, ζ̄, Γ)∆x + Jxh(x̄)∗∆ζ + Jxg(x̄)∗∆Γ
〉

=
〈
∆x,J 2

xxL(x̄, ζ̄, Γ)∆x
〉

+ 〈∆x,Jxh(x̄)∗∆ζ〉+ 〈∆x,Jxg(x̄)∗∆Γ〉

=
〈
∆x,J 2

xxL(x̄, ζ̄, Γ)∆x
〉

+ 〈∆ζ,Jxh(x̄)∆x〉+ 〈∆Γ,Jxg(x̄)∆x〉

=
〈
∆x,J 2

xxL(x̄, ζ̄, Γ)∆x
〉

+ 〈Jxg(x̄)∆x,∆Γ〉 ,

which, together with the third equation of (55) and Proposition 2.3, implies that

0 ≥
〈
∆x,J 2

xxL(x̄, ζ̄, Γ)∆x
〉
−Υg(x̄)

(
Γ,Jxg(x̄)∆x

)
. (57)

Hence, we can conclude from (56), (57), and the strong second order sufficient condition (54) that

∆x = 0.

Thus, (55) reduces to [
Jxh(x̄)∗∆ζ + Jxg(x̄)∗∆Γ

V (∆Γ)

]
= 0. (58)

From Proposition 2.2 and V (∆Γ) = 0, we obtain that

Pα
T ∆ΓPα = 0, Pα

T ∆ΓPβ = 0, and Pα
T ∆ΓPγ = 0. (59)

By the constraint nondegeneracy condition (49), there exist a vector d ∈ X and a matrix S ∈
lin
(
TSp

+
(g(x̄))

)
such that

Jxh(x̄)d = ∆ζ and Jxg(x̄)d + S = ∆Γ. (60)

Hence, by (60) and the first equation of (58), we obtain

〈∆ζ, ∆ζ〉+ 〈∆Γ,∆Γ〉 = 〈Jxh(x̄)d, ∆ζ〉+ 〈Jxg(x̄)d + S, ∆Γ〉

= 〈d,Jxh(x̄)∗∆ζ〉+ 〈d,Jxg(x̄)∗∆Γ〉+ 〈S, ∆Γ〉

= 〈d,Jxh(x̄)∗∆ζ + Jxg(x̄)∗∆Γ〉+ 〈S, ∆Γ〉

= 〈S, ∆Γ〉

= 〈PT SP, PT ∆ΓP 〉,
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which, together with (59) and (36), implies that

〈∆ζ, ∆ζ〉+ 〈∆Γ,∆Γ〉 = 〈PT SP, PT ∆ΓP 〉 = 0.

Thus,
∆ζ = 0 and ∆Γ = 0.

This, together with ∆x = 0, shows that W is nonsingular.

“(b) =⇒ (c)” By Clarke’s inverse function theorem (Clarke [8, 9]), F is a locally Lipschitz homeo-
morphism near (x̄, ζ̄, Γ). Thus, by Remark 3.1, (x̄, ζ̄, Γ) is a strongly regular solution of the generalized
equation (52). �

In Proposition 3.2, it is shown that (a) =⇒ (b) =⇒ (c). In the next section, we shall show that if x̄
is a locally optimal solution to the nonlinear semidefinite programming (NLSDP ) and Robinson’s CQ
holds at x̄, then these three statements are actually equivalent to each other.

4. Equivalent Conditions We first introduce a uniform version of the second order growth condi-
tion defined in Bonnans and Shapiro [6, Definition 5.16]. Let U be a Banach space and f : X × U → <
and G : X × U → Y . We say that (f(x, u), G(x, u)), with u ∈ U , is a C2-smooth parameterization of
the optimization problem (OP ) if f(·, ·) and g(·, ·) are twice continuously differentiable and there exists
a ū ∈ U such that f(·, ū) = f(·) and G(·, ū) = G(·). The corresponding parameterized problem takes the
form:

(OPu) min
x∈X

f(x, u)

s.t. G(x, u) ∈ K .
(61)

We say that a parameterization is canonical if U := X × Y , ū = (0, 0) ∈ X × Y , and

(f(x, u), G(x, u)) := (f(x)− 〈u1, x〉, G(x) + u2), x ∈ X, u := (u1, u2) ∈ X × Y.

Definition 4.1 Let x̄ be a stationary point of the optimization problem (OP ). We say that the uni-
form second order (quadratic) growth condition holds at x̄ with respect to a C2-smooth parameterization
(f(x, u), G(x, u)) if there exist c > 0 and neighborhoods VX of x̄ and VU of ū such that for any u ∈ VU

and any stationary point x(u) ∈ VX of the corresponding parameterized problem (OPu), the following
holds:

f(x, u) ≥ f(x(u), u) + c‖x− x(u)‖2 ∀x ∈ VX such that G(x, u) ∈ K. (62)
We say that the uniform second order growth condition holds at x̄ if (62) holds for every C2-smooth
parameterization of (OP ).

The next lemma shows that for the nonlinear semidefinite programming (NLSDP ) the uniform second
order growth condition implies the strong second order sufficient condition.

Lemma 4.1 Let x̄ be a stationary point of the nonlinear semidefinite programming (NLSDP ). Suppose
that Robinson’s CQ holds at x̄. If the uniform second order growth condition holds at x̄ with respect to
the canonical parameterization, then the strong second order sufficient condition (47) holds at x̄.

Proof. Let (ζ̄, Γ) ∈ M(x̄). We may assume that A := g(x̄) + Γ̄ has the spectral decomposition
as in (15) and g(x̄) and Γ satisfy (34). Consider the following parameterized nonlinear semidefinite
programming problem:

min
x∈X

f(x)

s.t. h(x) = 0,
g(x) + τPβPT

β ∈ Sp
+,

(63)

where τ ∈ < is a parameter. Then, for any τ > 0, (ζ̄, Γ), together with x̄, satisfies the following KKT
condition of the parameterized problem (63):

JxLτ (x̄, ζ, Γ) = JxL(x̄, ζ, Γ) = 0, −h(x̄) = 0, and Γ ∈ NSp
+

(
g(x̄) + τPβPT

β

)
, (64)

where for each τ ∈ <,

Lτ (x, ζ, Γ) := L(x, ζ, Γ) + τ〈Γ, PβPT
β 〉, (x, ζ, Γ) ∈ X ×<m × Sp.
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Let Mτ (x̄) be the set consisting of all (ζ, Γ) ∈ <m × Sp that satisfy (64). Thus, since rank(g(x̄) +
τPβPT

β ) + rank(Γ) = p for any τ > 0, the critical cone Cτ (x̄) of the parameterized problem (63) at x̄ for
τ > 0 takes the form:

Cτ (x̄) = {d : Jxh(x̄)d = 0, PT
γ (Jxg(x̄)d)Pγ = 0} ⊇ app(ζ̄, Γ), (65)

where app(ζ̄, Γ) satisfies (39). Therefore, by Lemma 3.1 and the second part of Theorem 3.1, we have for
all τ > 0 that

sup
(ζ,Γ)∈Mτ (x̄)

{〈
d,J 2

xxLτ (x̄, ζ, Γ)d
〉
−Υ(g(x̄)+τPβP T

β ) (Γ,Jxg(x̄)d)
}

> 0 ∀ d ∈ Cτ (x̄)\{0},

which, together with the fact that for any (ζ, Γ) ∈Mτ (x̄),

Υ(g(x̄)+τPβP T
β ) (Γ,Jxg(x̄)d) = Υg(x̄) (Γ,Jxg(x̄)d) ∀ d ∈ app(ζ̄, Γ),

J 2
xxLτ (x̄, ζ, Γ) = J 2

xxL(x̄, ζ, Γ), and (65), implies

sup
(ζ,Γ)∈Mτ (x̄)

{〈
d,J 2

xxL(x̄, ζ, Γ)d
〉
−Υg(x̄) (Γ,Jxg(x̄)d)

}
> 0 ∀ d ∈ app(ζ̄, Γ)\{0}. (66)

Since for any τ > 0, Mτ (x̄) ⊆M(x̄), we derive from (66) that

sup
(ζ,Γ)∈M(x̄)

{〈
d,J 2

xxL(x̄, ζ, Γ)d
〉
−Υg(x̄) (Γ,Jxg(x̄)d)

}
> 0 ∀ d ∈ app(ζ̄, Γ)\{0}.

This shows that the strong second order sufficient condition (47) holds. �

Another important concept in sensitivity and stability analysis of the optimization problem (OP ) is
the strong stability of a stationary point, introduced by Kojima in [19]. Below the definition of strong
stability is from Bonnans and Shapiro [6, Definition 5.33].

Definition 4.2 Let x̄ be a stationary point of the optimization problem (OP ). We say that x̄ is strongly
stable with respect to a C2-smooth parameterization (f(x, u), G(x, u)) if there exist neighborhoods VX of x̄
and VU of ū such that for any u ∈ VU , the corresponding perturbed problem (OPu) has a unique stationary
point x(u) ∈ VX and x(·) is continuous on VU . If this holds for any C2-smooth parameterization, we say
that x̄ is strongly stable.

Let F : X × <m × Sp → X × <m × Sp be defined as in (51) and (x̄, ζ̄, Γ) ∈ X × <m × Sp be a KKT
point of (NLSDP ). Then

F (x̄, ζ̄, Γ) =

 JxL(x̄, ζ̄, Γ̄)
−h(x̄)

−g(x̄) + ΠSp
+
(g(x̄) + Γ)

 = 0.

Let A := g(x̄)+Γ. Assume that A has the spectral decomposition as in (15) and g(x̄) and Γ satisfy (34).
Then, F is directionally differentiable at (x̄, ζ̄, Γ) and for any δ := (δ1, δ2, δ3) ∈ X ×<m × Sp,

Φ(δ) := F ′(x̄, ζ̄, Γ; δ) =

 J 2
xxL(x̄, ζ̄, Γ̄)δ1 + Jxh(x̄)∗δ2 + Jxg(x̄)∗δ3

−Jxh(x̄)δ1

−Jxg(x̄)δ1 + Π′Sp
+
(A;Jxg(x̄)δ1 + δ3)

 , (67)

where Π′Sp
+
(A; ·) is given by (16). Since Φ(·) is Lipschitz continuous, ∂BΦ(0) is well defined.

Lemma 4.2 Let A = g(x̄) + Γ and Φ be defined by (67). It holds that

∂BΦ(0) = ∂BF (x̄, ζ̄, Γ).

Proof. Define Ξ : X ×<m × Sp → Sp by

Ξ(δ) := Π′Sp
+
(A; Ψ(δ)),

where Ψ(δ) := Jxg(x̄)δ1 +δ3, δ := (δ1, δ2, δ3) ∈ X×<m×Sp. Then, by Lemma 2.1 and (c) of Proposition
2.1, we obtain that

∂BΞ(0) = ∂BΠSp
+
(A)JδΨ(0),

which, together with Lemma 2.1, proves the conclusion of this lemma. �

Let ind(φ, z̄) denote the index of a continuous function φ : Z → Z at an isolated zero z̄ ∈ Z used in
degree theory (Lloyd [21], Ortega and Rheinboldt [25]). Now, we are ready to state the main result of
this paper.
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Theorem 4.1 Let x̄ be a locally optimal solution to the nonlinear semidefinite programming (NLSDP ).
Suppose that Robinson’s CQ (41) holds at x̄ so that x̄ is necessarily a stationary point of (NLSDP ). Let
(ζ̄, Γ) ∈ <m × Sp be such that (x̄, ζ̄, Γ) is a KKT point of (NLSDP ). Then the following statements are
equivalent:

(a) The strong second order sufficient condition (47) holds at x̄ and x̄ is constraint nondegenerate.

(b) Any element in ∂F (x̄, ζ̄, Γ) is nonsingular.

(c) The KKT point (x̄, ζ̄, Γ) is a strongly regular solution of the generalized equation (52).

(d) The uniform second order growth condition holds at x̄ and x̄ is constraint nondegenerate.

(e) The point x̄ is strongly stable and x̄ is constraint nondegenerate.

(f) F is a locally Lipschitz homeomorphism near the KKT point (x̄, ζ̄, Γ).

(g) For every V ∈ ∂BF (x̄, ζ̄, Γ), sgn detV = ind(F, (x̄, ζ̄, Γ)) = ±1.

(h) Φ is a globally Lipschitz homeomorphism.

(i) For every V ∈ ∂BΦ(0), sgn detV = ind(Φ, 0) = ±1.

(j) Any element in ∂Φ(0) is nonsingular.

Proof. We have already known from Proposition 3.2 that (a) =⇒ (b) =⇒ (c) and from Remark
3.1 that (c) ⇐⇒ (f). The relations (c) ⇐⇒ (d) ⇐⇒ (e) follow from Bonnans and Shapiro [6, Theorems
5.24 & 5.35]. Since ΠSp

+
(·) is strongly semismooth everywhere (Sun and Sun [40]), F is a semismooth

function (see Mifflin [24], Qi and Sun [27] for discussions on semismooth functions). Then, by Gowda [14,
Theorem 3 & Corollary 4], we know that (f) ⇐⇒ (g). Furthermore, by the semismoothness of ΠSp

+
(·),

Lemma 4.2, and Theorem 6 in Pang et al. [26], it holds that (g) ⇐⇒ (h) ⇐⇒ (i). By Lemma 4.2, the
relation (b) ⇐⇒ (j) holds. The proof of this theorem will be completed if one can show that (d) =⇒ (a).
The latter, however, is implied by Lemma 4.1. �

Remark 4.1 As mentioned in Section 1, the equivalence between (a) and (c) has already been known for
the conventional nonlinear programming (NLP ). This equivalence for (NLP ) follows from Jongen et
al. [16, Theorem 3.1], Robinson [30, Theorem 4.1], and Kojima [19, Corollary 6.6]. For different proofs,
see Bonnans and Shapiro [6, Proposition 5.38], Bonnans and Sulem [7, Theorem 4.10], and Dontechev
and Rockafellar [10, Theorem 6]. By assuming x̄ to be a stationary point (not necessarily a local optimal
solution), for (NLP ), Jongen et al. [17] proved (b) ⇐⇒ (e) for a different but equivalent KKT system.
By focusing on the local optimal solution case only, we extend these results in Theorem 4.1 from (NLP )
to (NLSDP ).

5. Conclusions In this paper, we discussed a strong second order sufficient condition for the non-
linear semidefinite programming (NLSDP ). This strong second order sufficient condition, together with
constraint nondegeneracy, is shown to be equivalent to many conditions, notably the strong regularity of
the KKT point and the nonsingularity of Clarke’s Jacobian of the mapping F at the KKT point. There
are many important questions not addressed in this paper. For example, it would be interesting to know
whether these equivalent results given in Theorem 4.1 can be generalized to other C2-cone reducible sets.3

Another possibility is to see which of these conditions are still equivalent to (b) or (j) if x̄ is assumed to
be a stationary point only.
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3In their newly published paper, Bonnans and Ramı́rez C. [3] gave a positive answer to nonlinear second order cone

programming.
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