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Abstract In this paper, we present a two-phase augmented Lagrangianmethod, called
QSDPNAL, for solving convex quadratic semidefinite programming (QSDP) prob-
lems with constraints consisting of a large number of linear equality and inequality
constraints, a simple convex polyhedral set constraint, and a positive semidefinite
cone constraint. A first order algorithm which relies on the inexact Schur complement
based decomposition technique is developed in QSDPNAL-Phase I with the aim of
solving a QSDP problem to moderate accuracy or using it to generate a reasonably
good initial point for the second phase. In QSDPNAL-Phase II, we design an aug-
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mented Lagrangian method (ALM) wherein the inner subproblem in each iteration is
solved via inexact semismooth Newton based algorithms. Simple and implementable
stopping criteria are designed for the ALM. Moreover, under mild conditions, we are
able to establish the rate of convergence of the proposed algorithm and prove the R-
(super)linear convergence of the KKT residual. In the implementation of QSDPNAL,
we also develop efficient techniques for solving large scale linear systems of equations
under certain subspace constraints. More specifically, simpler and yet better condi-
tioned linear systems are carefully designed to replace the original linear systems and
novel shadow sequences are constructed to alleviate the numerical difficulties brought
about by the crucial subspace constraints. Extensive numerical results for various
large scale QSDPs show that our two-phase algorithm is highly efficient and robust
in obtaining accurate solutions. The software reviewed as part of this submission was
given the DOI (Digital Object Identifier) https://doi.org/10.5281/zenodo.1206980.

Keywords Quadratic semidefinite programming · Schur complement · Augmented
Lagrangian · Inexact semismooth Newton method

Mathematics Subject Classification 90C06 · 90C20 · 90C22 · 90C25 · 65F10

1 Introduction

Let Sn+ and Sn++ be the cones of positive semidefinite and positive definite matrices,
respectively, in the space of n × n symmetric matrices Sn endowed with the standard
trace inner product 〈·, ·〉 and Frobenius norm ‖ · ‖. We consider the following convex
quadratic semidefinite programming (QSDP) problem:

(P) min

{
1

2
〈X, QX〉 + 〈C, X〉 | AX = b, X ∈ Sn+ ∩ K

}
,

where Q : Sn → Sn is a self-adjoint positive semidefinite linear operator, A :
Sn → �m is a linear map whose adjoint is denoted as A∗, C ∈ Sn , b ∈ �m are
given data, K is a simple nonempty closed convex polyhedral set in Sn , such as
K = {X ∈ Sn | L ≤ X ≤ U } with L ,U ∈ Sn being given matrices. The main
objective of this paper is to design and analyse efficient algorithms for solving (P) and
its dual. We are particularly interested in the case where the dimensions n and/orm are
large, and it may be impossible to explicitly store or compute the matrix representation
ofQ. For example, ifQ = H ⊗H is the Kronecker product of a dense matrix H ∈ Sn+
with itself, then it would be extremely expensive to store the matrix representation of
Q explicitly when n is larger than, say, 500. As far as we are aware of, the best solvers
currently available for solving (P) are based on inexact primal-dual interior-point
methods [31]. However, they are highly inefficient for solving large scale problems as
interior-point methods have severe inherent ill-conditioning limitations which would
make the convergence of a Krylov subspace iterative solver employed to compute the
search directions to be extremely slow.While sophisticated preconditioners have been
constructed in [31] to alleviate the ill-conditioning, the improvement is however not
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dramatic enough for the algorithm to handle large scale problems comfortably. On the
other hand, an interior-point method which employs a direct solver to compute the
search directions is prohibitively expensive for solving (P) since the cost is at least
O((m+n2)3) arithmetic operations per iteration. It is safe to say that there is currently
no solver which can efficiently handle large scale QSDP problems of the form (P) and
our paper precisely aims to provide an efficient and robust solver for (P).

The algorithms which we will design later are based on the augmented Lagrangian
function for the dual of (P) (in its equivalent minimization form):

(D) min

{
δ∗
K(−Z) + 1

2
〈W, QW 〉 − 〈b, y〉

∣∣∣ Z − QW + S + A∗y = C,

S ∈ Sn+, W ∈ W, y ∈ �m, Z ∈ Sn

}
,

whereW is any subspace of Sn containing the range space ofQ (denoted as Ran(Q)),
δ∗
K(·) is the Fenchel conjugate of the indicator function δK(·).
Due to its great potential in applications and mathematical elegance, QSDP

has been studied quite actively both from the theoretical and numerical aspects
[1,11,14,15,19,23,31,32]. For the recent theoretical developments, one may refer
to [7,10,22,30] and the references therein. Here we focus on the numerical aspect
and we will next briefly review some of the methods available for solving QSDP
problems. Toh et al. [32] and Toh [31] proposed inexact primal-dual path-following
interior-pointmethods to solve the special class of convexQSDPwithout the constraint
in K. In theory, these methods can be used to solve QSDP problems with inequality
constraints and constraint in K by reformulating the problems into the required stan-
dard form. However, as already mentioned above, in practice interior-point methods
are not efficient for solving QSDP problems beyond moderate scales either due to the
extremely high computational cost per iteration or the inherent ill-conditioning of the
linear systems governing the search directions. In [34], Zhao designed a semismooth
Newton-CG augmented Lagrangian (NAL) method and analyzed its convergence for
solving the primal QSDP problem (P). However, the NAL algorithm often encounters
numerical difficulty (due to singular or nearly singular generalized Hessian) when the
polyhedral set constraint X ∈ K is present. Subsequently, Jiang et al. [13] proposed an
inexact accelerated proximal gradient method for least squares semidefinite program-
ming with only equality constraints where the objective function in (P) is expressed
explicitly in the form of ‖BX − d‖2 for some given linear map B.

More recently, inspired by the successes achieved in [28,33] for solving linear SDP
problems with nonnegative constraints, Li et al. [18] proposed a first-order algorithm,
known as the Schur complement based semi-proximal alternating direction method
of multipliers (SCB-sPADMM), for solving the dual form (D) of QSDP. As far as we
aware of, [18] is the first paper to advocate using the dual approach for solving QSDP
problems even though the dual problem (D) looks a lot more complicated than the pri-
mal problem (P), especially with the presence of the subspace constraint involvingW .
By leveraging on the Schur complement based decomposition technique developed
in [17,18], Chen et al. [6] also employed the dual approach by proposing an effi-
cient inexact ADMM-type first-order method (which we name as SCB-isPADMM)
for solving problem (D). Promising numerical results have been obtained by the dual
based first-order algorithms in solving various classes of QSDP problems to moder-
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ate accuracy [6,18]. Naturally one may hope to also rely on the ADMM scheme to
compute highly accurate solutions. However, as one will observe from the numerical
experiments presented later in Sect. 6, ADMM-type methods are incapable of finding
accurate solutions for difficult QSDP problems due to their slow local convergence
or stagnation. On the other hand, recent studies on the convergence rate of the aug-
mentedLagrangianmethod (ALM) for solving convex semidefinite programmingwith
multiple solutions [7] show that comparing to ADMM-type methods, the ALM can
enjoy a faster convergence rate (in fact asymptotically superlinear) under milder con-
ditions. These recent advances thus strongly indicate that one should be able to design
a highly efficient algorithm based on the ALM for (D) for solving QSDP problems to
high accuracy. More specifically, we will propose a two-phase augmented Lagrangian
based algorithm with Phase I to generate a reasonably good initial point to warm start
the Phase II algorithm so as to compute accurate solutions efficiently. We call this new
method Qsdpnal since it extends the ideas of SDPNAL [35] and SDPNAL+ [33]
for linear SDP problems to QSDP problems. Although the aforementioned two-phase
framework has already been demonstrated to be highly efficient for solving linear SDP
problems [33,35], it remains to be seen whether we can achieve comparable or even
more impressive performance on various QSDP problems.

In recent years, it has become fashionable to designfirst-order algorithms for solving
convex optimization problems, with some even claiming their efficacy in solving
various challenging classes of matrix conic optimization problems based on limited
performance evaluations. However, based on our extensive numerical experience in
solving large scale linear SDPs [28,33,35], we have observed that while first-order
methods can be rather effective in solving easy problems which are well-posed and
nondegenerate, they are typically powerless in solving difficult instances which are
ill-posed or degenerate. Even for a well designed first-order algorithmwith guaranteed
convergence and highly optimized implementations, such as the ADMM+ algorithm
in [28], a first-order method may still fail on slightly more challenging problems.
For example, the ADMM+ algorithm designed in [33] can encounter varying degrees
of difficulties in solving linear SDPs arising from rank-one tensor approximation
problems. On the other hand, the SDPNAL algorithm in [35] (which exploits second-
order information) is able to solve those problems very efficiently to high accuracy.
We believe that in order to design an efficient and robust algorithm to solve the highly
challenging class of matrix conic optimization problems including QSDPs, one must
fully combine the advantages offered by both the first and second order algorithms,
rather than just solely relying on first-order algorithms even though they may appear
to be easier to implement.

Next we briefly describe our algorithm Qsdpnal. Let Z = Sn × W × Sn × �m .
Consider the following Lagrange function associated with (D):

l(Z ,W, S, y; X) := δ∗
K(−Z) + 1

2
〈W, QW 〉 + δSn+(S) − 〈b, y〉

+〈Z − QW + S + A∗y − C, X〉,

where (Z ,W, S, y) ∈ Z and X ∈ Sn . For a given positive scalar σ , the augmented
Lagrangian function for (D) is defined by
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Lσ (Z ,W, S, y; X) := l(Z ,W, S, y; X) + σ

2
‖Z − QW + S

+A∗y − C‖2, (Z ,W, S, y) ∈ Z, X ∈ Sn . (1)

The algorithm which we will adopt in Qsdpnal-Phase I is a variant of the SCB-
isPADMM algorithm developed in [6]. In Qsdpnal-Phase II, we design an ALM
for solving (D) where the inner subproblem in each iteration is solved via an inexact
semismooth Newton based algorithm. Given σ0 > 0, (Z0,W 0, S0, y0, X0) ∈ Z×Sn ,
the (k + 1)th iteration of the ALM consists of the following steps:

(Zk+1,Wk+1, Sk+1, yk+1) ≈ argmin
{
Lσk (Z ,W, S, y; Xk) | (Z ,W, S, y) ∈ Z

}
,

Xk+1 = Xk + σk(Z
k+1 − QWk+1 + Sk+1 + A∗yk+1 − C),

where σk ∈ (0,+∞). The first issue in the above ALM is the choice of the subspace
W . The obvious choiceW = Sn can lead to various difficulties in the implementation
of the above algorithm. For example, since Q : Sn → Sn is only assumed to be
positive semidefinite, the Newton systems corresponding to the inner subproblems
may be singular and the sequence {Wk} generated by the ALM can be unbounded.
As a result, it will be extremely difficult to analyze the convergence of the inner
algorithm for solving the ALM subproblems. The second issue is that one needs to
design easy-to-check stopping criteria for the inner subproblems, and to ensure the
fast convergence of the ALM under reasonable conditions imposed on the QSDP
problems. Concerning the first issue, we propose to choose W = Ran(Q), although
such a choice also leads to obstacles which we will overcome in Section 4. Indeed,
by restricting W ∈ Ran(Q), the difficulties in analyzing the convergence and the
superlinear (quadratic) convergence of the Newton-CG algorithm are circumvented
as the possibilities of singularity and unboundedness are removed. For the second
issue, under the restriction that W = Ran(Q), thanks to the recent advances in [7],
we are able to design checkable stopping criteria for solving the inner subproblems
inexactly while establishing the global convergence of the above ALM. Moreover, we
are able to establish the R-(super)linear convergence rate of the KKT residual. At the
first glance, the restriction that W ∈ Ran(Q) appears to introduce severe numerical
difficulties when we need to solve a linear system under this restriction. Fortunately,
by carefully examining our algorithm and devising novel numerical techniques, we are
able to overcome these difficulties as we shall see in Sect. 4. Our extensive evaluations
of Qsdpnal have demonstrated that our algorithm is capable of solving large scale
general QSDP problems of the form (P) to high accuracy very efficiently and robustly.
For example, we are able to solve an elementwise weighted nearest correlation matrix
estimation problem with matrix dimension n = 10,000 in less than 11h to the relative
accuracy of less than 10−6 in the KKT residual. Such a numerical performance has
not been attained in the past.

As the readers may have already observed, even though our goal in developing
algorithms for solving convex optimization problems such as (P) and (D) is to design
thosewith desirable theoretical properties such as asymptotic superlinear convergence,
it is our belief that it is equally if not even more important for the algorithms designed
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to be practically implementable and able to achieve realistic numerical efficiency. It
is obvious that our proposed two-phase augmented Lagrangian based algorithm for
solving (P) and (D) is designed based on such a belief.

The remaining parts of this paper are organized as follows. The next section is
devoted to our main algorithmQsdpnal, which is a two-phase augmented Lagrangian
based algorithm whose Phase I is used to generate a reasonably good initial point to
warm-start the Phase II algorithm so as to obtain accurate solutions efficiently. In
Sect. 3, we propose to solve the inner minimization subproblems of the ALM by
semismooth Newton based algorithms and study their global and local superlinear
(quadratic) convergence. In Sect. 4, we discuss critical numerical issues concerning
the efficient implementation of Qsdpnal. In Sect. 5.1, we discuss the special case
of applying Qsdpnal to solve least squares semidefinite programming problems.
The extension of Qsdpnal for solving QSDP problems with unstructured inequality
constraints is discussed in Sect. 5.2. In Sect. 6, we conduct numerical experiments to
evaluate the performance of Qsdpnal in solving various QSDP problems and their
extensions. We conclude our paper in the final section.

Below we list several notation and definitions to be used in the paper. For a given
closed proper convex function θ : X → (−∞,∞], where X is a finite-dimensional
real inner product space, its Fenchel conjugate function is denoted by θ∗ : X →
(−∞,+∞] . For a given closed convex set D ⊆ X and x ∈ X , we define by �D(x)
the metric projector of x onto D and dist(x, D) := infd∈D ‖x − d‖ = ‖x − �D(x)‖.
For any X ∈ Sn , we use λmax(X) and λmin(X) to denote the largest and smallest
eigenvalues of X , respectively. Similar notation is used when X is replaced by the
linear operator Q.

2 A two-phase augmented Lagrangian method

In this section, we shall present our two-phase algorithm Qsdpnal for solving the
QSDP problems (D) and (P). For the convergence analysis of Algorithm Qsdpnal,
we need to make the following standard assumption for (P). Such an assumption is
analogous to the Slater’s condition in the context of nonlinear programming in �m .

Assumption 1 There exists X̂ ∈ Sn++ ∩ ri(K) such that

A(TK(X̂)) = �m,

where ri(K) denotes the relative interior of K and TK(X̂) is the tangent cone of K
at point X̂ .

2.1 Phase I: An SCB based inexact semi-proximal ADMM

In Phase I, we propose a new variant of the Schur complement based inexact
semi-proximal ADMM (SCB-isPADMM) developed in [6] to solve (D). Recall the
augmented Lagrangian function associated with problem (D) defined in (1).
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The detailed steps of our Phase I algorithm for solving (D) are given as follows.

Algorithm Qsdpnal-Phase I: An SCB based inexact semi-proximal ADMM for
(D).
Select an initial point (W 0, S0, y0, X0) ∈ Ran(Q) × Sn+ × �m × Sn and −Z0 ∈
dom(δ∗

K). Let {εk} be a summable sequence of nonnegative numbers, and σ > 0,
τ ∈ (0,∞) are given parameters. For k = 0, 1, . . ., perform the following steps in
each iteration.

Step 1. Compute

Ŵ k = argmin{Lσ (Zk,W, Sk, yk; Xk) − 〈δ̂kQ, W 〉 | W ∈ Ran(Q)}, (2)

Zk+1 = argmin{Lσ (Z , Ŵ k, Sk, yk; Xk) | Z ∈ Sn},

Wk+1 = argmin{Lσ (Zk+1,W, Sk, yk; Xk) − 〈δkQ, W 〉 | W ∈ Ran(Q)}, (3)

ŷk = argmin{Lσ (Zk+1,Wk+1, Sk, y; Xk) − 〈δ̂ky, y〉 | y ∈ �m},
Sk+1 = argmin{Lσ (Zk+1,Wk+1, S, ŷk; Xk) | S ∈ Sn},
yk+1 = argmin{Lσ (Zk+1,Wk+1, Sk+1, y; Xk) − 〈δky, y〉 | y ∈ �m},

where δky, δ̂ky ∈ �m , δkQ, δ̂kQ ∈ Ran(Q) are error vectors such that

max{‖δky‖, ‖δ̂ky‖, ‖δkQ‖, ‖δ̂kQ‖} ≤ εk .

Step 2. Compute Xk+1 = Xk + τσ (Zk+1 − QWk+1 + Sk+1 + A∗yk+1 − C).

Remark 2.1 We shall explain here the role of the error vectors δky, δ̂ky, δ
k
Q and δ̂kQ.

There is no need to choose these error vectors in advance. The presence of these error
vectors simply indicates that the corresponding subproblems can be solved inexactly.
For example, the updating rule of yk+1 in the above algorithm can be interpreted as
follows: find yk+1 inexactly through

yk+1 ≈ argminLσ (Zk+1,Wk+1, Sk+1, y; Xk)

such that the residual

‖δky‖ = ‖b − AXk − σA(Zk+1 − QWk+1 + Sk+1 + A∗yk+1 − C)‖ ≤ εk .

Remark 2.2 In contrast toAglorithmSCB-isPADMMin [6], ourAlgorithmQsdpnal-
Phase I requires the subspace constraint W ∈ Ran(Q) explicitly in the subproblems
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(2) and (3). Note that due to the presence of the subspace constraint W ∈ Ran(Q),
there is no need to add extra proximal terms in the subproblems corresponding to W
to satisfy the positive definiteness requirement needed in applying the inexact Schur
compliment based decomposition technique developed in [17,18]. This is certainly
more elegant than the indirect reformulation strategy considered in [6,18].

The convergence of the above algorithm follows from [6, Theorem 1] without much
difficulty, and its proof is omitted.

Theorem 2.1 Suppose that the solution set of (P) is nonempty and Assumption 1
holds. Let {(Zk,Wk, Sk, yk, Xk)} be the sequence generated by AlgorithmQsdpnal-
Phase I. If τ ∈ (0, (1 + √

5 )/2), then the sequence {(Zk,Wk, Sk, yk)} converges to
an optimal solution of (D) and {Xk} converges to an optimal solution of (P).
Remark 2.3 Under someerror boundconditions on the limit point of {(Zk ,Wk, Sk, yk,
Xk)}, one can derive the linear rate of convergence of the exact version of Algorithm
Qsdpnal-Phase I. For a recent study on this topic, see [10] and the references therein.
Here we will not address this issue as our Phase II algorithm enjoys a better rate of
convergence under weaker conditions.

2.2 Phase II: An augmented Lagrangian algorithm

In this section, we discuss our Phase II algorithm for solving the dual problem (D).
The purpose of this phase is to obtain high accuracy solutions efficiently after being
warm-started by our Phase I algorithm. The Phase II of our algorithm has the following
template.

Algorithm Qsdpnal-Phase II: An augmented Lagrangian method of multipliers
for solving (D).
Let σ0 > 0 be a given parameter. Choose (W 0, S0, y0, X0) ∈ Ran(Q)×Sn+×�m×Sn

and −Z0 ∈ dom(δ∗
K). For k = 0, 1, . . ., perform the following steps in each iteration.

Step 1. Compute

(Zk+1,Wk+1, Sk+1, yk+1)

≈ argmin

{
	k(Z ,W, S, y) := Lσk (Z ,W, S, y; Xk)

| (Z ,W, S, y) ∈ Sn × Ran(Q) × Sn × �m

}
.

(4)

Step 2. Compute

Xk+1 = Xk + σk(Z
k+1 − QWk+1 + Sk+1 + A∗yk+1 − C).

Update σk+1 ↑ σ∞ ≤ ∞.

As an important issue on the implementation of the above algorithm, the stopping
criteria for approximately solving subproblem (4) shall be discussed here. Let the
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feasible set for (P) be denoted as F := {X ∈ Sn | AX = b, X ∈ Sn+ ∩ K}. Define
the feasibility residual function γ : Sn → � for the primal problem (P) by

γ (X) := ‖b − AX‖ + ‖X − �Sn+(X)‖ + ‖X − �K(X)‖, ∀ X ∈ Sn .

Note that γ (X) = 0 if and only if X ∈ F . Indeed, for X /∈ F , γ (X) provides an easy-
to-compute measure on the primal infeasibility of X . Similar to [7, Proposition 4.2],
we can use this feasibility residual function to derive an upper bound on the distance
of a given point to the feasible set F in the next lemma. Its proof can be obtained
without much difficulty by applying Hoffman’s error bound [9, Lemma 3.2.3] to the
nonempty polyhedral convex set {X ∈ Sn | AX = b, X ∈ K}, e.g., see [2, Theorem
7].

Lemma 2.1 Assume that F ∩ Sn++ �= ∅. Then, there exists a constant μ > 0 such
that

‖X − �F (X)‖ ≤ μ(1 + ‖X‖)γ (X), ∀ X ∈ Sn . (5)

When the ALM is applied to solve (D), numerically it is difficult to execute the
criteria (A′′) and (B′′

1) proposed in [26]. Fortunately, Lemma 2.1 and recent advances
in the analysis of the ALM [7] allow us to design easy-to-verify stopping criteria for
the subproblems in Qsdpnal-Phase II. For any k ≥ 0, denote

fk(X) := −1

2
〈X, QX〉 − 〈C, X〉 − 1

2σk
‖X − Xk‖2, ∀ X ∈ Sn .

Note that fk(·) is in fact the objective function in the dual of problem (4). Let {εk}
and {δk} be two given positive summable sequences. Given k ≥ 0 and Xk ∈ Sn , we
propose to terminate the minimization of the subproblem (4) in the (k + 1)th iteration
of Algorithm Qsdpnal-Phase II with either one of the following two easy-to-check
stopping criteria:

(A)

{
	k(Z

k+1,Wk+1, Sk+1, yk+1) − fk(X
k+1) ≤ ε2k/2σk,

(1 + ‖Xk+1‖)γ (Xk+1) ≤ αkεk/
√
2σk,

(B)

{
	k(Z

k+1,Wk+1, Sk+1, yk+1) − fk(X
k+1) ≤ δ2k‖Xk+1 − Xk‖2/2σk,

(1 + ‖Xk+1‖)γ (Xk+1) ≤ βkδk‖Xk+1 − Xk‖/√2σk,
where

αk = min

{
1,

√
σk,

εk√
2σk‖∇ fk(Xk+1)‖

}
and

βk = min

{
1,

√
σk,

δk‖Xk+1 − Xk‖√
2σk‖∇ fk(Xk+1)‖

}
.
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Lemma 2.2 Assume that Assumption 1 holds. Let μ be the constant given in (5).
Suppose that for some k ≥ 0, Xk is not an optimal solution to problem (P). Then one
can always find (Zk+1,Wk+1, Sk+1, yk+1) and Xk+1 = Xk + σk(Zk+1 −QWk+1 +
Sk+1 + A∗yk+1 − C) satisfying both (A) and (B). Moreover, (A) implies that

	k(Z
k+1,Wk+1, Sk+1, yk+1) − inf 	k ≤ νε2k/2σk

and (B) implies that

	k(Z
k+1,Wk+1, Sk+1, yk+1) − inf 	k ≤ (νδ2k/2σk)‖Xk+1 − Xk‖2,

respectively, where

ν = 1 + μ + 1

2
λmax(Q) + 1

2
μ2. (6)

Proof With the help of Lemma 2.1, one can establish the assertion in the same fashion
as in [7, Proposition 4.2, Proposition 4.3]. ��

For the subsequent analysis, we need to define the essential objective function of
(P), which is given by

φ(X) := − inf { l(Z ,W, S, y; X) | (Z ,W, S, y) ∈ Sn × Ran(Q) × Sn × �m}

=
⎧⎨
⎩

1

2
〈X, QX〉 + 〈X, C〉 + δSn+(X) + δK(X) if AX = b,

+ ∞ otherwise.

For convenience, we also let � = ∂φ−1(0) denote the solution set of (P).
We say that for (P), the second order growth condition holds at an optimal solution

X ∈ � with respect to the set � if there exist κ > 0 and a neighborhood U of X such
that

φ(X) ≥ φ(X) + κ−1dist2(X,�), ∀ X ∈ U. (7)

Let the objective function g : Sn × Ran(Q) × Sn × �m → (−∞,+∞] associated
with (D) be given as follows:

g(Z ,W, S, y) := δ∗
K(−Z) + 1

2
〈W, QW 〉 + δSn+(S) − 〈b, y〉,

∀ (Z ,W, S, y) ∈ Sn × Ran(Q) × Sn × �m .

Now, with Lemma 2.2, we can prove the global and local (super)linear convergence
of Algorithm Qsdpnal-Phase II by adapting the proofs in [26, Theorem 4] and [7,
Theorem 4.2]. It shows that, for most QSDP problems, one can always expect the
KKT residual of the sequence generated by Qsdpnal-Phase II to converge at least
R-(super)linearly.
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Theorem 2.2 Suppose that �, the solution set of (P), is nonempty and Assumption 1
holds. Then the sequence {(Zk,Wk, Sk, yk, Xk)} generated by Algorithm Qsdpnal-
Phase II under the stopping criterion (A) for all k ≥ 0 is bounded, and {Xk} converges
to an optimal solution X∞ of (P), and {(Zk,Wk, Sk, yk)} converges to an optimal
solution of (D). Moreover, for all k ≥ 0, it holds that

g(Zk+1,Wk+1, Sk+1, yk+1) − inf (D)

≤ 	k(Z
k+1,Wk+1, Sk+1, yk+1) − inf 	k + (1/2σk)(‖Xk‖2 − ‖Xk+1‖2).

Assume that for (P), the second order growth condition (7) holds at X∞ with respect
to the set �, i.e., there exists a constant κ > 0 and a neighborhood U of X∞ such
that

φ(X) ≥ φ(X∞) + κ−1dist2(X,�), ∀ X ∈ U.

Suppose that the algorithm is executed under criteria (A) and (B) for all k ≥ 0 and ν

is the constant given in (6). Then, for all k sufficiently large, it holds that

dist(Xk+1,�) ≤ θkdist(X
k,�), (8)

‖Zk+1 − QWk+1 + Sk+1 + A∗y − C‖ ≤ τkdist(X
k,�), (9)

g(Zk+1,Wk+1, Sk+1, yk+1) − inf (D) ≤ τ ′
kdist(X

k,�), (10)

where

1 > θk = (κ/

√
κ2 + σ 2

k + 2νδk
)
(1 − νδk)

−1 → θ∞ = κ/

√
κ2 + σ 2∞

(θ∞ = 0 if σ∞ = ∞),

τk = σ−1
k (1 − νδk)

−1 → τ∞ = 1/σ∞ (τ∞ = 0 if σ∞ = ∞),

τ ′
k = τk(ν

2δ2k‖Xk+1 − Xk‖ + ‖Xk+1‖ + ‖Xk‖)/2 → τ ′∞ = ‖X∞‖/σ∞
(τ ′∞ = 0 if σ∞ = ∞).

Next we give a few comments on the convergence rates and assumptions made in
Theorem 2.2.

Remark 2.4 Under the assumptions of Theorem 2.2, we have proven that the KKT
residual, corresponding to (P) and (D), along the sequence {(Zk,Wk, Sk, yk, Xk)}
converges at least R-(super)linearly. Indeed, under stopping criteria (A), (B) and from
(8),(9) and (10), we know that the primal feasibility, the dual feasibility and the duality
gap all converge at least R-(super)linearly.

Remark 2.5 The assumption that the second order growth condition (7) holds for (P)
is quite mild. Indeed, it holds when any optimal solution X of (P), together with any
of its multiplier S ∈ Sn+ corresponding only to the semidefinite constraint, satisfies the
strict complementarity condition [7, Corollary 3.1]. It is also valid when the “no-gap”
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second order sufficient condition holds at the optimal solution1 to (P) [4, Theorem
3.137].

3 Inexact semismooth Newton based algorithms for solving the inner
subproblems (4) in ALM

In this section, we will design efficient inexact semismooth Newton based algorithms
to solve the inner subproblems (4) in the augmented Lagrangian method, where each
subproblem takes the form of:

min {	(Z ,W, S, y)

:= Lσ (Z ,W, S, y; X̂) | (Z ,W, S, y) ∈ Sn × Ran(Q) × Sn × �m} (11)

for a given X̂ ∈ Sn . Note that the dual problem of (11) is given as follows:

max

{
−1

2
〈X, QX〉 − 〈C, X〉 − 1

2σ
‖X − X̂‖2 | AX = b, X ∈ Sn+, X ∈ K

}
.

Under Assumption 1, from [24, Theorems 17 & 18], we know that the optimal
solution set of problem (11) is nonempty and for any α ∈ �, the level set Lα :=
{(Z ,W, S, y) ∈ Sn × Ran(Q) × Sn × �m | 	(Z ,W, S, y) ≤ α} is a closed and
bounded convex set.

3.1 A semismooth Newton-CG algorithm for (11) withK = Sn

Note that in quite a number of applications, the polyhedral convex set K is actually
the whole space Sn . Therefore, we shall first study how the inner problems (11) in
Algorithm ALM can be solved efficiently when K = Sn . Under this setting, Z is
vacuous, i.e., Z = 0.

Let σ > 0 be given. Denote

ϒ(W, y) := A∗y − QW − Ĉ, ∀ (W, y) ∈ Ran(Q) × �m .

where Ĉ = C − σ−1 X̂ . Observe that if

(W ∗, S∗, y∗) = argmin{	(0,W, S, y) | (W, S, y) ∈ Ran(Q) × Sn × �m},

then (W ∗, S∗, y∗) can be computed in the following manner

(W ∗, y∗) = argmin
{
ϕ(W, y) | (W, y) ∈ Ran(Q) × �m} ,

S∗ = �Sn+(−ϒ(W ∗, y∗)), (12)

1 In this case, the optimal solution set to (P) is necessarily a singleton though (D) may have multiple
solutions.
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where

ϕ(W, y):=1

2
〈W, QW 〉 − 〈b, y〉+σ

2
‖�Sn+(ϒ(W, y))‖2,∀ (W, y) ∈ Ran(Q) × �m .

Note that ϕ(·, ·) is a continuously differentiable function on Ran(Q) × �m with

∇ϕ(W, y) =
(QW − σQ�Sn+(ϒ(W, y))

−b + σA�Sn+(ϒ(W, y))

)
.

Then, solving (12) is equivalent to solving the following nonsmooth equation:

∇ϕ(W, y) = 0, (W, y) ∈ Ran(Q) × �m .

Since �Sn+ is strongly semismooth [27], we can design a semismooth Newton-CG
(SNCG) method to solve (12) and could expect to get a fast superlinear or even
quadratic convergence. For any (W, y) ∈ Ran(Q) × �m , define

∂̂2ϕ(W, y) :=
[
Q

0

]
+ σ

[
Q

−A

]
∂�Sn+(ϒ(W, y))[Q − A∗],

where ∂�Sn+(ϒ(W, y)) is the Clarke subdifferential [8] of �Sn+(·) at ϒ(W, y). Note
that from [12], we know that

∂̂2ϕ(W, y) (dW , dy) = ∂2ϕ(W, y) (dW , dy), ∀ (dW , dy) ∈ Ran(Q) × �m,

where ∂2ϕ(W, y) denotes the generalized Hessian of ϕ at (W, y), i.e., the Clarke
subdifferential of ∇ϕ at (W, y).

Given (W̃ , ỹ) ∈ Ran(Q)×�m , consider the following eigenvalue decomposition:

ϒ(W̃ , ỹ) = A∗ ỹ − QW̃ − Ĉ = P � PT,

where P ∈ �n×n is an orthogonal matrix whose columns are eigenvectors, and � is
the corresponding diagonal matrix of eigenvalues, arranged in a nonincreasing order:
λ1 ≥ λ2 ≥ · · · ≥ λn . Define the following index sets

α := {i | λi > 0}, ᾱ := {i | λi ≤ 0}.

We define the operator U 0 : Sn → Sn by

U 0(H) := P(� ◦ (PTHP))PT, H ∈ Sn, (13)

where “◦′′ denotes the Hadamard product of two matrices,

� =
[
Eαα ναᾱ

νT
αᾱ 0

]
, νi j := λi

λi − λ j
, i ∈ α, j ∈ ᾱ,

123



X. Li et al.

and Eαα ∈ S |α| is the matrix of ones. In [20, Lemma 11], it is proved that

U 0 ∈ ∂�Sn+(ϒ(W̃ , ỹ)).

Define

V 0 :=
[
Q

0

]
+ σ

[
Q

−A

]
U 0[Q − A∗]. (14)

Then, we have V 0 ∈ ∂̂2ϕ(W̃ , ỹ).
After all the above preparations, we can design the following semismooth Newton-

CG method as in [35] to solve (12).

Algorithm SNCG: A semismooth Newton-CG algorithm.
Given μ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], τ1, τ2 ∈ (0, 1) and δ ∈ (0, 1). Choose
(W 0, y0) ∈ Ran(Q) × �m . Set j = 0. Iterate the following steps.

Step 1. Choose U 0 ∈ ∂�Sn+(ϒ(W j , y j )) defined as in (13). Let Vj := V 0 be given

as in (14) and ε j = τ1 min{τ2, ‖∇ϕ(W j , y j )‖}. Apply the CG algorithm to

find an approximate solution (d j
W , d j

y ) ∈ Ran(Q) × �m to

Vj (dW , dy) + ε j (0, dy) = −∇ϕ(W j , y j ) (15)

such that

‖Vj (d
j
W , d j

y ) + ε j (0, d
j
y ) + ∇ϕ(W j , y j )‖ ≤ η j := min(η̄, ‖∇ϕ(W j , y j )‖1+τ ).

Step 2. Set α j = δm j , where m j is the first nonnegative integer m for which

ϕ(W j + δmd j
W , y j + δmd j

y ) ≤ ϕ(W j , y j ) + μδm〈∇ϕ(W j , y j ), (d j
W , d j

y )〉.

Step 3. Set W j+1 = W j + α j d
j
W and y j+1 = y j + α j d

j
y .

The convergence results for the above SNCG algorithm are stated in the next the-
orem.

Theorem 3.1 Suppose that Assumption 1 holds. Then Algorithm SNCG generates a
bounded sequence {(W j , y j )} and any accumulation point (W , ȳ) ∈ Ran(Q) × �m

is an optimal solution to problem (12).

The following proposition is the key ingredient in our subsequent convergence
analysis.

Proposition 3.1 Let U : Sn → Sn be a self-adjoint positive semidefinite linear
operator and σ > 0. Then, it holds that AUA∗ is positive definite if and only if
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〈[
W
y

]
,

([
Q

0

]
+ σ

[
Q

−A

]
U[Q − A∗]

)[
W
y

]〉
> 0 (16)

for all (W, y) ∈ Ran(Q) × �m\{(0, 0)}.
Proof Since the “if” statement obviously holds true, we only need to prove the “only
if” statement. Note that

〈W, QW 〉 > 0, ∀W ∈ Ran(Q)\{0}.

Now suppose that AUA∗ is positive definite, and hence nonsingular. By the Schur
complement condition for ensuring the positive definiteness of a linear operator, we
know that (16) holds if and only if

〈W, (Q + σQUQ − σQUA∗(AUA∗)−1AUQ)W 〉 > 0, ∀W ∈ Ran(Q)\{0}.
(17)

But for any W ∈ Ran(Q)\{0}, we have that 〈W, QW 〉 > 0, and

〈W, (QUQ − QUA∗(AUA∗)−1AUQ)W 〉
= 〈W, QU 1

2 (I − U 1
2A∗(AUA∗)−1AU 1

2 )U 1
2QW 〉

= 〈U 1
2QW, (I − U 1

2A∗(AUA∗)−1AU 1
2 )U 1

2QW 〉 ≥ 0.

Hence, (17) holds automatically. This completes the proof of the proposition. ��
Base on the above proposition, under the constraint nondegeneracy condition for

(P), we shall show in the next theorem that one can still ensure the positive definiteness
of the coefficient matrix in the semismooth Newton system at the solution point.

Theorem 3.2 Let (W , ȳ) be the optimal solution for problem (12). Let Y :=
�Sn+(A∗ ȳ − QW − Ĉ). The following conditions are equivalent:

(i) The constraint nondegeneracy condition,

A lin(TSn+(Y )) = �m, (18)

holds at Y , where lin(TSn+(Y )) denotes the lineality space of the tangent cone of

Sn+ at Y .
(ii) Every element in

[
Q

0

]
+ σ

[
Q

−A

]
∂�Sn+(A∗ ȳ − QW − Ĉ)[Q − A∗]

is self-adjoint and positive definite on Ran(Q) × �m .
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Proof In the same fashion as in [35, Proposition 3.2], we can prove that AUA∗ is
positive definite for all U ∈ ∂�Sn+(A∗ ȳ − QW − Ĉ) if only if (i) holds. Then, by
Proposition 3.1, we readily obtain the desired results. ��
Theorem 3.3 Assume that Assumption 1 holds. Let (W , ȳ) be an accumulation
point of the infinite sequence {(W j , y j )} generated by Algorithm SNCG for solv-
ing problem (12). Assume that the constraint nondegeneracy condition (18) holds at
Y := �Sn+(A∗ ȳ − QW − Ĉ). Then, the whole sequence {(W j , y j )} converges to

(W , ȳ) and

‖(W j+1, y j+1) − (W , ȳ)‖ = O(‖(W j , y j ) − (W , ȳ)‖1+τ ).

Proof FromTheorem 3.2, we know that under the constraint nondegeneracy condition
(18), every V ∈ ∂̂2ϕ(W , ȳ) is self-adjoint and positive definite onRan(Q)×�n . Hence
one can obtain the desired results from [35, Theorem 3.5] by further noting the strong
semismoothness of �Sn+(·). ��

We note that the convergence results obtained in this subsection depend critically
on the restriction that W ∈ W = Ran(Q). Without this restriction, the possible
singularity of the Newton systems (15) and the unboundedness of {W j } will make the
convergence analysis highly challenging, if possible at all.

3.2 Semismooth Newton based inexact ABCD algorithms for (11) whenK �= Sn

When K �= Sn , we will adapt the recently developed inexact accelerated block coor-
dinate descent (ABCD) algorithm [29] to solve the inner subproblems (11) in the
augmented Lagrangian method.

The detailed steps of the ABCD algorithm to be used for solving (11) will be pre-
sented below. In this algorithm, (Z ,W, S, y) is decomposed into two groups, namely
Z and (W, S, y). In this case, (W, S, y) is regarded as a single block and the cor-
responding subproblem in the ABCD algorithm can only be solved by an iterative
method inexactly. Here, we propose to develop a semismooth Newton-CG method to
solve the corresponding subproblem.
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Algorithm ABCD(Z0,W 0, S0, y0, X̂ , σ ): An inexact ABCD algorithm for (11).
Given (W 0, S0, y0) ∈ Ran(Q) × Sn+ × �m , −Z0 ∈ dom(δ∗

K) and η > 0, set
(Z̃1, W̃ 1, S̃1, ỹ1) = (Z0,W 0, S0, y0) and t1 = 1. Let {εl} be a nonnegative summable
sequence. For l = 1, . . . , perform the following steps in each iteration.

Step 1. Let R̃l = σ(S̃k + A∗ ỹl − QW̃ l − C + σ−1 X̂). Compute

Zl = argmin
{
	(Z , W̃ l , S̃l , ỹl) | Z ∈ Sn} = 1

σ

(
�K(R̃l) − R̃l),

(Wl , Sl , yl) = argmin

⎧⎨
⎩

	(Zl ,W, S, y) + η

2
‖y − ỹl‖2 − 〈δly, y〉 − 〈δlQ, W 〉

| (W, S, y) ∈ Ran(Q) × Sn × �m

⎫⎬
⎭ ,

(19)

where δly ∈ �m , δlQ ∈ Ran(Q) are error vectors such that

max{‖δly‖, ‖δlQ‖} ≤ εl/tl .

Step 2. Set tl+1 = 1+
√
1+4t2l
2 , βl = tl−1

tl+1
. Compute

W̃ l+1 = Wl+βl(W
l−Wl−1), S̃l+1 = Sl+βl(S

l−Sl−1), ỹl+1 = yl+βl(y
l−yl−1).

Note that in order to meet the convergence requirement of the inexact ABCD algo-
rithm, a proximal term involving the positive parameter η is added in (19) to ensure
the strong convexity of the objective function in the subproblem. For computational
efficiency, one can always take η to be a small number, say 10−6. For the subprob-
lem (19), it can be solved by a semismooth Newton-CG algorithm similar to the one
developed in Sect. 3.1. Since η > 0, the superlinear convergence of such a semis-
mooth Newton-CG algorithm can also be proven based on the strong semismoothness
of �Sn+(·) and the symmetric positive definiteness of the corresponding generalized
Hessian.

The convergence results for the above Algorithm ABCD are stated in the next
theorem, whose proof essentially follows from that in [29, Theorem 3.1]. Here, we
omit the proof for brevity.
Theorem 3.4 Suppose that Assumption 1 holds and η > 0. Let {(Zl ,Wl , Sl , yl)} be
the sequence generated by Algorithm ABCD. Then,

inf
Z

	(Z ,Wl , Sl , yl) − 	(Z∗,W ∗, S∗, y∗) = O(1/ l2)

where (Z∗,W ∗, S∗, y∗) is an optimal solution of problem (11).Moreover, the sequence
{(Zl ,Wl , Sl , yl)} is bounded and all of its cluster points are optimal solutions to
problem (11).
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4 Numerical issues in QSDPNAL

In Algorithm Qsdpnal-Phase I, in order to obtain Ŵ k and Wk+1 at the kth iteration,
we need to solve the following linear system of equations

(Q + σQ2)W ≈ QR, W ∈ Ran(Q) (20)

with the residual

‖QR − (Q + σQ2)W‖ ≤ ε, (21)

where R ∈ Sn and ε > 0 are given. Note that the exact solution to (20) is unique since
Q+ σQ2 is positive definite on Ran(Q). But the linear system is typically very large
even for a moderate n, say n = 500. Under the high dimensional setting which we
are particularly interested in, the matrix representation ofQ is generally not available
or too expensive to be stored explicitly. Thus (20) can only be solved inexactly by an
iterative method. However when Q is singular (and hence Ran(Q) �= Sn), due to the
presence of the subspace constraint W ∈ Ran(Q), it is extremely difficult to apply
preconditioning to (20) while ensuring that the approximate solution is contained
in Ran(Q). Fortunately, as shown in the next proposition, instead of solving (20)
directly, we can solve a simpler and yet better conditioned linear system to overcome
this difficulty.

Proposition 4.1 Let Ŵ be an approximate solution to the following linear system:

(I + σQ)W ≈ R (22)

with the residual satisfying

‖R − (I + σQ)Ŵ‖ ≤ ε

λmax(Q)
.

Then, ŴQ := �Ran(Q)(Ŵ ) ∈ Ran(Q) solves (20) with the residual satisfying (21).
Moreover, QŴQ = QŴ and 〈ŴQ, QŴQ〉 = 〈Ŵ , QŴ 〉.
Proof First we note that the results QŴQ = QŴ and 〈ŴQ, QŴQ〉 = 〈Ŵ , QŴ 〉
follow from the decomposition Ŵ = �Ran(Q)(Ŵ )+�Ran(Q)⊥(Ŵ ).Next, by observing
that

‖QR−(Q + σQ2)ŴQ‖=‖QR−(Q + σQ2)Ŵ‖≤λmax(Q) ‖R − (I + σQ)Ŵ‖≤ε,

one can easily obtain the desired results. ��
By Proposition 4.1, in order to obtain ŴQ, we can first apply an iterative method

such as the preconditioned conjugate gradient (PCG) method to solve (22) to obtain
Ŵ and then perform the projection step. However, by carefully analysing the steps
in Qsdpnal-Phase I, we are surprised to observe that instead of explicitly computing
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ŴQ, we can update the iterates in the algorithm by using onlyQŴQ = QŴ . Thus, we
only need to compute QŴ and the potentially expensive projection step to compute
ŴQ can be avoided completely.

It is important for us to emphasize the computational advantage of solving the linear
system (22) over (20). First, the former only requires one evaluation ofQ(·) whereas
the latter requires two such evaluations in each PCG iteration. Second, the coefficient
matrix in the former system is typically much more well-conditioned than the coef-
ficient matrix in the latter system. More precisely, when Q is positive definite, then
I + σQ is clearly better conditioned thanQ+ σQ2 by a factor of λmax(Q)/λmin(Q).
When Q is singular, with its smallest positive eigenvalue denoted as λ+(Q), then
I + σQ is better conditioned when λmax(Q) ≥ λ+(Q)(1 + σλ+(Q)). The previous
inequality would obviously hold when λ+ ≤ (

√
4σλmax(Q) + 1 − 1)/(2σ).

In Algorithm Qsdpal-Phase II, the subspace constraint W ∈ Ran(Q) also appears
whenwe solve the semismoothNewton linear system (15) inAlgorithmSNCG.Specif-
ically, we need to find (dW, dy) to solve the following linear system

V (dW, dy) + �(0, dy) ≈ (Q(R1), R2), (dW, dy) ∈ Ran(Q) × �m (23)

with the residual satisfying the following condition

‖V (dW, dy) + �(0, dy) − (Q(R1), R2)‖ ≤ ε, (24)

where

V :=
[
Q

0

]
+ σ

[
Q

−A

]
U[Q − A∗],

U is a given self-adjoint positive semidefinite linear operator on Sn and ε > 0, σ > 0
and � > 0 are given. Again, instead of solving (23) directly, we can solve a simpler
linear system to compute Q(dW ) approximately, as shown in the next proposition.
The price to pay is that we now need to solve nonsymmetric linear system instead of
a symmetric one.

Proposition 4.2 Let

V̂ :=
[
I

0

]
+ σ

[
I

−A

]
U[Q − A∗].

Suppose (̂dW , d̂y) is an approximate solution to the following system:

V̂ (dW, dy) + �(0, dy) ≈ (R1, R2) (25)

with the residual satisfying

‖V̂ (̂dW , d̂y) + �(0, d̂y) − (R1, R2)‖ ≤ ε

max{λmax(Q), 1} .
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Let̂dWQ = �Ran(Q)(̂dW ) ∈ Ran(Q) Then (̂dWQ, d̂y) solves (23) with the residual

satisfying (24). Moreover, Q̂dWQ = Q̂dW and 〈̂dWQ, Q̂dWQ〉 = 〈̂dW , Q̂dW 〉.
Proof The proof thatQ̂dWQ = Q̂dW and 〈̂dWQ, Q̂dWQ〉 = 〈̂dW , Q̂dW 〉 is the
same as in the previous proposition. Observe that V = Diag(Q, I)V̂ . Then, by using
the fact that

‖V (̂dWQ, d̂y) + �(0, d̂y)

−(Q(R1), R2)‖ = ‖V (̂dW , d̂y) + �(0, d̂y) − (Q(R1), R2)‖
≤ ‖Diag(Q, I)‖2 ‖V̂ (̂dW , d̂y) + �(0, d̂y) − (R1, R2)‖
≤ max{λmax(Q), 1} ε

max{λmax(Q), 1} = ε,

we obtain the desired results readily. ��

5 Adaption of QSDPNAL for least squares SDP and inequality
constrained QSDP

Here we discuss how our algorithmQsdpnal can bemodified and adapted for solving
least squares semidefinite programming as well as general QSDP problems with addi-
tional unstructured inequality constraints which are not captured by the polyhedral set
K.

5.1 The case for least squares semidefinite programming

In this subsection, we show that for least squares semidefinite programming problems,
Qsdpnal can be used in a more efficient way to avoid the difficulty of handling the
subspace constraint W ∈ Ran(Q).

Consider the following least squares semidefinite programming problem

min
{1
2
‖BX − d‖2 + 〈C, X〉 | AX = b, X ∈ Sn+ ∩ K

}
, (26)

where A : Sn → �m and B : Sn → �s are two linear maps, C ∈ Sn , b ∈ �m and
d ∈ �s are given data, K is a simple nonempty closed convex polyhedral set in Sn .

It is easy to see that (26) can be rewritten as follows

min
{1
2
‖u‖2 + 〈C, X〉 | BX − d = u, AX = b, X ∈ Sn+ ∩ K

}
. (27)

The dual of (27) takes the following form

max
{

− δ∗
K(−Z) − 1

2
‖ξ‖2 + 〈d, ξ 〉 + 〈b, y〉 | Z + B∗ξ + S + A∗y

= C, S ∈ Sn+
}
. (28)
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When Qsdpnal-Phase I is applied to solve (28), instead of solving (20), the linear
system corresponding to the quadratic term is given by

(I + σBB∗)ξ ≈ R, (29)

where R ∈ �s and σ > 0 are given data. Correspondingly, in applying Qsdpnal-
Phase II to (28), the linear system in the SNCG method is given by

([
I

0

]
+ σ

[
B
A

]
U
[
B∗ A∗ ]) [ dξ

dy

]
≈
[
R1
R2

]
, (30)

where R1 ∈ �s and R2 ∈ �m are given data, U is a given self-adjoint positive
semidefinite linear operator on Sn . It is clear that just like (22), one can solve (29)
efficiently via the PCG method. For (30), one can also solve it by the PCG method,
which is more appealing compared to using a nonsymmetric iterative solver such as
the preconditioned BiCGSTAB to solve the nonsymmetric linear system (25).

Remark 5.1 When the polyhedral constraint X ∈ K in (26) is absent, i.e., the polyhe-
dral convex set K = Sn , Jiang, Sun and Toh in [14] have proposed a partial proximal
point algorithm for solving the least squares semidefinite programming problem (26).
Here our Algorithm Qsdpnal is built to solve the much more general class of convex
composite QSDP problems.

5.2 Extension to QSDP problems with inequality constraints

Consider the following general QSDP problem:

min
{1
2
〈X, QX〉 + 〈C, X〉 | AE X = bE , AI X ≤ bI , X ∈ Sn+ ∩ K

}
, (31)

where AE : Sn → �mE and AI : Sn → �mI are two linear maps. By adding a slack
variable x , we can equivalently rewrite (31) into the following standard form:

min
1

2
〈X, QX〉 + 〈C, X〉

s.t. AE X = bE , AI X + Dx = bI , X ∈ Sn+ ∩ K, Dx ≥ 0,
(32)

where D : �mI → �mI is a positive definite diagonal matrix introduced for the
purpose of scaling the variable x . The dual of (32) is given by

max −δ∗
K(−Z) − 1

2
〈W, QW 〉 + 〈bE , yE 〉 + 〈bI , yI 〉

s.t. Z − QW + S + A∗
E yE + A∗

I yI = C,

D∗(s + yI ) = 0, S ∈ Sn+, s ≥ 0, W ∈ Ran(Q).

(33)
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We can express (33) in a form which is similar to (D) as follows:

max −δ∗
K(−Z) − 1

2
〈W, QW 〉 + 〈bE , yE 〉 + 〈bI , yI 〉

s.t.

(
I
0

)
Z −
(
Q
0

)
W +

(
I 0
0 D∗

)(
S
s

)
+
(
A∗

E A∗
I

0 D∗
)(

yE
yI

)
=
(
C
0

)
,

(S, s) ∈ Sn+ × �mI+ , W ∈ Ran(Q).

(34)

We can readily extend Qsdpnal to solve the above more general form of (34), and
our implementation of Qsdpnal indeed can be used to solve (34).

6 Computational experiments

In this section, we evaluate the performance of our algorithm Qsdpnal for solving
large-scale QSDP problems (31). SinceQsdpnal contains two phases, we also report
the numerical results obtained by running Qsdpnal-Phase I (a first-order algorithm)
alone for the purpose of demonstrating the power and importance of our two-phase
framework for solving difficult QSDP problems. In the numerical experiments, we
measure the accuracy of an approximate optimal solution (X, Z ,W, S, yE , yI ) for
QSDP (31) and its dual by using the following relative KKT residual:

ηqsdp = max{ηP , ηD, ηZ , ηS1 , ηS2 , ηI1 , ηI2 , ηI3 , ηW }, (35)

where

ηP = ‖bE − AE X‖
1 + ‖bE‖ , ηD = ‖Z − QW + S + A∗

E yE + A∗
I yI − C‖

1 + ‖C‖ , ηZ = ‖X − �K(X − Z)‖
1 + ‖X‖ + ‖Z‖ ,

ηS1 = |〈S, X〉|
1 + ‖S‖ + ‖X‖ , ηS2 =

‖X − �Sn+ (X)‖
1 + ‖X‖ , ηI1 = ‖min(bI − AI X, 0)‖

1 + ‖bI ‖ ,

ηI2 = ‖max(yI , 0)‖
1 + ‖yI ‖ , ηI3 = |〈bI − AI X, yI 〉|

1 + ‖yI ‖ + ‖bI − AI X‖ , ηW = ‖QW − QX‖
1 + ‖Q‖ .

Additionally, we also compute the relative duality gap defined by

ηgap = objP − objD
1 + |objP | + |objD| ,

where objP := 1
2 〈X, QX〉 + 〈C, X〉 and objD := −δ∗

K(−Z) − 1
2 〈W, QW 〉 +

〈bE , yE 〉 + 〈bI , yI 〉. We terminate both Qsdpnal and Qsdpnal-Phase I when
ηqsdp < 10−6 with the maximum number of iterations set at 50,000.

In our implementation ofQsdpnal, we always runQsdpnal-Phase I first to gener-
ate a reasonably good starting point to warm start our Phase II algorithm.We terminate
the Phase I algorithm and switch to the Phase II algorithm if a solution with amoderate
accuracy (say a solution with ηqsdp < 10−4) is obtained or if the Phase I algorithm
reaches the maximum number of iterations (say 1000 iterations). If the underlying
problems contain inequality or polyhedral constraints, we further employ a restarting
strategy similar to the one in [33], i.e., when the progress of Qsdpnal-Phase II is not
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satisfactory, we will restart the whole Qsdpnal algorithm by using the most recently
computed (Z ,W, S, y, X, σ ) as the initial point. In addition, we also adopt a dynamic
tuning strategy to adjust the penalty parameter σ appropriately based on the progress
of the primal and dual feasibilities of the computed iterates.

All our computational results are obtained from a workstation running on 64-bit
Windows Operating System having 16 cores with 32 Intel Xeon E5-2650 processors
at 2.60GHz and 64GBmemory. We have implementedQsdpnal inMatlab version
7.13.

6.1 Evaluation of QSDPNAL on the nearest correlation matrix problems

Our first test example is the problem of finding the nearest correlation matrix (NCM)
to a given matrix G ∈ Sn :

min
{1
2
‖H ◦ (X − G)‖2F | diag(X) = e, X ∈ Sn+ ∩ K

}
, (36)

where H ∈ Sn is a nonnegative weight matrix, e ∈ �n is the vector of all ones, and
K = {W ∈ Sn | L ≤ W ≤ U } with L ,U ∈ Sn being given matrices.

In our numerical experiments, we first take amatrix Ĝ, which is a correlationmatrix
generated from gene expression data from [16]. For testing purpose, we then perturb
Ĝ to

G := (1 − α)Ĝ + αE,

whereα ∈ (0, 1) is a given parameter and E is a randomly generated symmetricmatrix
with entries uniformly distributed in [− 1, 1] except for its diagonal elements which
are all set to 1. The weight matrix H is generated from a weight matrix H0 used by a
hedge fund company. The matrix H0 is a 93 × 93 symmetric matrix with all positive
entries. It has about 24% of the entries equal to 10−5 and the rest are distributed in the
interval [2, 1.28 × 103]. The Matlab code for generating the matrix H is given by

tmp = kron(ones(110,110),H0); H = tmp(1:n,1:n); H = (H’+H)/2.

The reason for using such a weight matrix is because the resulting problems gener-
ated are more challenging to solve as opposed to a randomly generated weight matrix.
We also test four more instances, namely PDidx2000, PDidx3000, PDidx5000
and PDidx10000, where the raw correlation matrix Ĝ is generated from the prob-
ability of default (PD) data obtained from the RMI Credit Research Initiative2 at the
National University of Singapore.We consider two choices ofK, i.e., case (i):K = Sn

and case (ii): K = {X ∈ Sn | Xi j ≥ − 0.5, ∀ i, j = 1, . . . , n}.
In Table 1, we report the numerical results obtained by Qsdpnal and Qsdpnal-

Phase I in solving various instances of the H-weighted NCM problem (36). In the
table, “it (subs)” denotes the number of outer iterations with subs in the parenthesis

2 https://www.rmicri.org.
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indicating the number of inner iterations ofQsdpnal-Phase II and “itSCB” stands for
the total number of iterations used in Qsdpnal-Phase I. We can see from Table 1 that
Qsdpnal is more efficient than the purely first-order algorithm Qsdpnal-Phase I. In
particular, for the instance PDidx10000 where the matrix dimension n = 10,000,
we are able to solve the problem in about 11h while the purely first-order method
Qsdpnal-Phase I needs about 60h.

6.2 Evaluation of QSDPNAL on instances generated from BIQ problems

Based on the SDP relaxation of a binary integer quadratic (BIQ) problem considered
in [28], we construct our second QSDP test example as follows:

(QSDP-BIQ) min
1

2
〈X, QX〉 + 1

2
〈Q, Y 〉 + 〈c, x〉

s.t. diag(Y ) − x = 0, α = 1, X =
(

Y x
xT α

)
∈ Sn+, X ∈ K,

−Yi j + xi ≥ 0, −Yi j + x j ≥ 0, Yi j − xi − x j ≥ − 1,
∀ i < j, j = 2, . . . , n − 1,

where the convex set K = {X ∈ Sn | X ≥ 0}. Here Q : Sn → Sn is a self-adjoint
positive semidefinite linear operator defined by

Q(X) = 1

2
(AXB + BX A) (37)

with A, B ∈ Sn+ beingmatrices truncated from two different large correlationmatrices
(generated from Russell 1000 and Russell 2000 index, respectively) fetched from
Yahoo finance by Matlab. In our numerical experiments, the test data for Q and
c are taken from the Biq Mac Library maintained by Wiegele, which is available at
http://biqmac.uni-klu.ac.at/biqmaclib.html.

Table 2 reports the numerical results forQsdpnal andQsdpnal-Phase I in solving
some large scale QSDP-BIQ problems. Note that from the numerical experiments
conducted in [6], one can clearly conclude that Qsdpnal-Phase I (a variant of SCB-
isPADMM) is themost efficient first-order algorithm for solvingQSDP-BIQ problems
with a large number of inequality constraints. Even then, one can observe from Table
2 that Qsdpnal is still faster than Qsdpnal-Phase I on most of the problems tested.

6.3 Evaluation of QSDPNAL on instances generated from QAP problems

Next we test the following QSDP problem motivated from the SDP relaxation of a
quadratic assignment problem (QAP) considered in [21]. The SDP relaxation we used
is adopted from [33] but we add a convex quadratic term in the objective to modify
it into a QSDP problem. Specifically, given the data matrices A1, A2 ∈ Sl of a QAP
problem, the problem we test is given by:
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QSDPNAL: a two-phase ALM for QSDP

(QSDP-QAP) min
1

2
〈X, QX〉 + 〈A2 ⊗ A1, X〉

s.t.
∑l

i=1 X
ii = I, 〈I, Xi j 〉 = δi j ∀ 1 ≤ i ≤ j ≤ l,

〈E, Xi j 〉 = 1 ∀ 1 ≤ i ≤ j ≤ l, X ∈ Sn+, X ∈ K,

where n = l2, and Xi j ∈ �l×l denotes the (i, j)-th block of X when it is partitioned
uniformly into an l × l block matrix with each block having dimension l × l. The
convex set K = {X ∈ Sn | X ≥ 0}, E is the matrix of ones, and δi j = 1 if i = j , and
0 otherwise. Note that here we use the same self-adjoint positive semidefinite linear
operator Q : Sn → Sn constructed in (37). In our numerical experiments, the test
instances (A1, A2) are taken from the QAP Library [5].

In Table 3, we present the numerical results for Qsdpnal and Qsdpnal-Phase
I in solving some large scale QSDP-QAP problems. It is interesting to note that
Qsdpnal can solve all the 73 difficult QSDP-QAP problems to an accuracy of 10−6

efficiently, while the purely first-order algorithm Qsdpnal-Phase I can only solve 2
of the problems (chr20a and tai25a) to the required accuracy. The superior numerical
performance ofQsdpnal overQsdpnal-Phase I clearly demonstrates the importance
and necessity of our proposed two-phase algorithm for which second-order informa-
tion is incorporated in the inexact augmented Lagrangian algorithm in Phase II. Note
that for QSDP-QAP problems, the iteration counts of Qsdpnal sometimes can vary
on different computers. The root cause of this phenomenon is the accumulation of
the rounding errors of the PCG steps used in QSDPNAL. Indeed, for these difficult
problems, a moderate number (sometimes can be up to 200) of PCG steps is needed
for solving the corresponding Newton system.

6.4 Evaluation of QSDPNAL on instances generated from sensor network
localization problems

Wealso test theQSDPproblems arising from the following sensor network localization
problems with m anchors and l sensors:

minu1,...,ul∈�d

{
1
2

∑
(i, j)∈N

(‖ui−u j‖2−d2i j
)2 | ‖ui − ak‖2 = d2ik, (i, k) ∈ M

}
,

(38)

where the location of each anchor ak ∈ �d , k = 1, . . . ,m is known, and the location
of each sensor ui ∈ �d , i = 1, . . . , l, is to be determined. The distance measures
{di j | (i, j) ∈ N } and {dik | (i, k) ∈ M} are known pair-wise distances between
sensor-sensor pairs and sensor-anchor pairs, respectively. Note that our model (38) is
a variant of the model studied in [3]. Let U = [u1 u2 . . . ul ] ∈ �d×l be the position
matrix that needs to be determined. We know that

‖ui − u j‖2 = eTi jU
TUei j , ‖ui − ak‖2 = aTik[U Id ]T [U Id ]aik,

where ei j = ei − e j and aik = [ei ;−ak]. Here, ei is the i th unit vector in �l , and Id is
the d×d identity matrix. Let gik = aik for (i, k) ∈ M, gi j = [ei j ; 0m] for (i, j) ∈ N ,
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and

V = UTU, X = [V UT ;U Id ] ∈ S(d+l)×(d+l).

Following the same approach in [3], we can obtain the following QSDP relaxation
model with a regularization term for (38)

min 1
2

∑
(i, j)∈N

(
gTi j Xgi j − d2i j

)2 − λ〈In+d − aaT , X〉
s.t. gTik Xgik = d2ik, (i, k) ∈ M, X � 0,

(39)

where λ is a given positive regularization parameter, a = [ê; â] with ê = e/
√
l + m

and â =∑m
k=1 ak/

√
l + m. Here e ∈ �n is the vector of all ones.

The test examples are generated in the followingmanner.Wefirst randomlygenerate
l points {x̂i ∈ �d | i = 1, . . . , l} in [−0.5, 0.5]d . Then, the edge setN is generated by
considering only pairs of points that have distances less than a given positive number
R, i.e.,

N = {(i, j) | ‖ûi − û j‖ ≤ R, 1 ≤ i < j ≤ l}.

Given m anchors {ak ∈ �d | k = 1, . . . ,m}, the edge set M is similarly given by

M = {(i, k) | ‖ûi − ak‖ ≤ R, 1 ≤ i ≤ l, 1 ≤ k ≤ m}.

We also assume that the observed distances di j are perturbed by random noises εi j as
follows:

di j = d̂i j |1 + τεi j |, (i, j) ∈ N ,

where d̂i j is the true distance between point i and j , εi j are assumed to be indepen-
dent standard Normal random variables, τ is the noise parameter. For the numerical
experiments, we generate 10 instances where the number of sensors l ranges from 250
to 1500 and the dimension d is set to be 2 or 3. We set the noise factor τ = 10%. The
4 anchors for the two dimensional case (d = 2) are placed at

(±0.3,±0.3),

and the positions of the anchors for the three dimensional case (d = 3) are given by

⎛
⎝1/3 2/3 2/3 1/3
1/3 2/3 1/3 2/3
1/3 1/3 2/3 2/3

⎞
⎠− 0.5E,

where E is the 3 × 3 matrix of all ones.
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QSDPNAL: a two-phase ALM for QSDP

Let Ni = {p | (i, p) ∈ N } be the set of neighbors of the i th sensor. To further
test our algorithmQsdpnal, we also generate the following valid inequalities and add
them to problem (38)

‖ûi − û j‖ ≥ R, ∀ (i, j) ∈ N̂ ,

where N̂ = ⋃n
i=1{(i, j) | j ∈ Np\Ni for some p ∈ Ni }. Then, we obtain the

following QSDP relaxation model

min 1
2

∑
(i, j)∈N

(
gTi j Xgi j − d2i j

)2 − λ〈In+d − aaT , X〉
s.t. gTik Xgik = d2ik, (i, k) ∈ M,

gTi j Xgi j ≥ R2, (i, j) ∈ N̂ , X � 0.
(40)

In Tables 4 and 5, we present the numerical results for Qsdpnal and Qsdpnal-
Phase I in solving some instances of problem (39) and (40), respectively. Clearly,
Qsdpnal outperforms the purely first-order algorithmQsdpnal-Phase I by a signifi-
cant margin. This superior numerical performance ofQsdpnal overQsdpnal-Phase
I again demonstrates the importance and necessity of our proposed two-phase frame-
work.

7 Conclusions

We have designed a two-phase augmented Lagrangian based method, called Qsdp-
nal, for solving large scale convex quadratic semidefinite programming problems.
The global and local convergence rate analysis of our algorithm is based on the clas-
sic results of proximal point algorithms [25,26], together with the recent advances
in second order variational analysis of convex composite quadratic semidefinite pro-
gramming [7]. By devising novel numerical linear algebra techniques, we overcome
various challenging numerical difficulties encountered in the efficient implementation
ofQsdpnal. Numerical experiments on various large scale QSDPs have demonstrated
the efficiency and robustness of our proposed two-phase framework in obtaining accu-
rate solutions. Specifically, for well-posed problems, our Qsdpnal-Phase I is already
powerful enough and it is not absolutely necessary to execute Qsdpnal-Phase II. On
the other hand, for more difficult problems, the purely first-order Qsdpnal-Phase I
algorithmmay stagnate because of extremely slow local convergence. In contrast, with
the activation ofQsdpnal-Phase II which has second order information wisely incor-
porated, our Qsdpnal algorithm can still obtain highly accurate solutions efficiently.

Appendix

Along with the paper, we provide a Matlab implementation of our algorithm. The
software package has been issued theDigital Object Identifier https://doi.org/10.5281/
zenodo.1206980. Here, as a short users’ guide, we present some general description
of the structure of our software.
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Installation Qsdpnal is aMatlab software package developed underMatlab ver-
sion 8.0 or above. It includes someC subroutineswritten to carry out certain operations
for which Matlab is not efficient at. These subroutines are called within Matlab
via the Mex interface. The user can simply follow the steps below to install Qsdpnal
withinMatlab:

(a) unzip QSDPNAL+v0.1.zip;
(b) runMatlab in the directory QSDPNAL+v0.1;

After that, to see whether you have installed Qsdpnal correctly, try the following
steps:

>> startup
>> qsdpdemo

In the above, startup.m sets up the paths for Qsdpnal in Matlab and
qsdpdemo.m is a demo file illustrating how to solve a QSDP problem (31) inQsdp-
nal.

Copyright Qsdpnal: A Matlab software for convex quadratic semidefinite pro-
gramming with inequality, equality and bound constraints, is copyrighted in 2016 by
Xudong Li, Defeng Sun and Kim-Chuan Toh. The software Qsdpnal is distributed
under the GNU General Public License 2.0. You can redistribute it and/or modify
it under the terms of the GNU General Public License 2.0 as published by the Free
Software Foundation Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA. For commercial applications that may be incompatible with this license, please
contact the authors to discuss alternatives. This software is distributed in the hope
that it will be useful, but without any warranty; without even the implied warranty
of merchantability or fitness for a particular purpose. See the GNU General Public
License for more details.

Main function and data structure Qsdpnal is an extension of the solvers Sdpnal
[34] and Sdpnal+ [33]. The internal implementation ofQsdpnal thus follows in part
the data structures and design framework of the above two solvers. A casual user does
not need to understand the internal implementation of Qsdpnal.

In the Qsdpnal solver, the main routine is qsdpnal.m, whose calling syntax is
as follows:

[obj,Z,W,QW,S,yE,yI,X,runhist,info] =
qsdpnal(blk,Q,AEt,bE,C,AIt,bI,options)

Input arguments

• blk: a cell array describing the conic structure of the QSDP problem.
• Q, AEt, bE, C, AIt, bI: data of QSDP problem (31). If the linear map
AI is not present, one can set AIt = [], bI = [].

• options: a structure array of parameters.

Output argumentsThe names chosen for the output arguments explain their contents.
The argument X is a solution to problem (31) up to the desired accuracy tolerance.
The argument info is a structure array which records various performance measures
of the solver. For example
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info.etaZ, info.etaI1, info.etaI2, info.etaI3

correspond to the measures ηZ , ηI1 , ηI2 and ηI3 defined in (35), respectively. The argu-
ment runhist is a structure array which records the history of various performance
measures during the course of running qsdpnal. For example,

runhist.primobj, runhist.dualobj, runhist.primfeasorg,
runhist.dualfeasorg

record the primal and dual objective values, primal and dual infeasibilities at each
iteration, respectively.

Data structure The format of the input data inQsdpnal is similar to those in Sdpnal
[34] and Sdpnal+ [33]. For problem (31), we set

blk{1,1} = ’s’, blk{1,2} = n,
Q.QXfun = @(X) some function handle output QX ,
AEt = [n̄ × mE sparse], AIt = [n̄ × mI sparse],
C = [n × n double or sparse],

where n̄ = n(n + 1)/2 and the self-adjoint linear operator Q is stored as a function
handle which takes any matrix X ∈ Sn as input and output the matrix QX ∈ Sn . For
the sake of computational efficiency, following the same approach used in Sdpnal
[34] and Sdpnal+ [33], we store the linear map AE in vectorized form as a single
n̄ × mE matrix AEt. The same procedure also applies to the linear operator AI ,
i.e., AIt is stored in the same format as AEt. The data of the simple nonempty
closed convex polyhedral set K is encoded in the argument options. For example,
if K = {X ∈ Sn | L ≤ X ≤ U } with L ,U ∈ Sn being given matrices, we set

options.L = [matrix L, sparse or double],
options.U = [matrix U ,

sparse or double ].

The default is options.L = [], options.U = []. If K = {X ∈ Sn | X ≥
0}, then one can simply set options.nonnegative = 1.

Apart from the information of K, various other parameters used in our solver
qsdpnal.m are set in the structure array options. We list here the important
parameters which the user is likely to reset.

• options.stoptol: accuracy tolerance to terminate the algorithm, default is
10−6.

• options.maxiter: maximum number of iterations allowed, default is 5000.
• options.sGSstoptol: accuracy tolerance to use for Qsdpnal-Phase I
(SCB_qsdp.m) when generating a starting point for the algorithm in the sec-
ond phase of qsdpnal.m (default = 10−4).

• options.sGSmaxiter: maximum number of Qsdpnal-Phase I iterations
allowed for generating a starting point (default = 1500).

Examples Next, we present two examples of using Qsdpnal for solving two QSDP
problems in detail. The segment below illustrates how one can solve the instance
be250.2 of QSDP-BIQ problems.
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>> G = biqread([’be250 .2. sparse ’]);
>> [blk ,AEt ,C,bE ,AIt ,bI] = biq_sqsdp(G,3);
>> Q.QXfun = @(X) randQXfun(X,blk {1 ,2});
>> options.nonnegative = 1;
>> [obj ,Z,W,QW ,S,yE ,yI ,X,runhist ,info] = ...
qsdpnal(blk ,Q,AEt ,bE ,C,AIt ,bI ,options );

The next example is using qsdpnal.m to solve the instance chr15c of QSDP-QAP
problems.

>> [AA ,BB] = qapread ([’chr15c.dat ’]);
>> [blk ,AEt ,C,bE] = qapAW(AA ,BB ,2);
>> AEt = AEt {1}; C = C{1}; AIt = []; bI = [];
>> options.nonnegative = 1;
>> Q.QXfun = @(X) randQXfun(X,blk {1 ,2});
>> [obj ,Z,W,QW ,S,yE ,yI ,X,runhist ,info] = ...
qsdpnal(blk ,Q,AEt ,bE ,C,AIt ,bI ,options );

In the above codes,randQXfun generates the self-adjoint positive semidefinite linear
operator Q in (37) with randomly generated matrices A, B ∈ Sn+.
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