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Abstract. We introduce a flexible optimization framework for nuclear norm minimization of
matrices with linear structure, including Hankel, Toeplitz, and moment structures and catalog appli-
cations from diverse fields under this framework. We discuss various first-order methods for solving
the resulting optimization problem, including alternating direction methods of multipliers, proxi-
mal point algorithms, and gradient projection methods. We perform computational experiments to
compare these methods on system identification problems and system realization problems. For the
system identification problem, the gradient projection method (accelerated by Nesterov’s extrapola-
tion techniques) and the proximal point algorithm usually outperform other first-order methods in
terms of CPU time on both real and simulated data, for small and large regularization parameters,
respectively, while for the system realization problem, the alternating direction method of multipli-
ers, as applied to a certain primal reformulation, usually outperforms other first-order methods in
terms of CPU time. We also study the convergence of the proximal alternating direction methods of
multipliers used in this paper.
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1. Introduction. The matrix rank minimization problem, or minimizing the
rank of a matrix subject to convex constraints, has recently attracted much interest.
This problem arises in many engineering and statistical modeling applications, where
notions of order, dimensionality, or complexity of a model can be expressed by the
rank of an appropriate matrix. Thus, choosing the “simplest” model that is consistent
with observations or data often translates into finding a matrix with the smallest
rank subject to convex constraints. Rank minimization is NP-hard in general, and
a popular convex heuristic for it minimizes the nuclear norm of the matrix (the sum
of the singular values) instead of its rank [17, 47]. The regularized version of this
problem can be written as

minX
1

2
‖A(X)− b‖2 + μ‖X‖∗,(1.1)

where X ∈ R
m×n is the optimization variable and A : Rm×n → R

p is a linear map,
b ∈ R

p, and μ > 0 is the trade-off parameter between the nuclear norm and the
least-squares fitting error. Problem (1.1) has been widely studied, and recently a

∗Received by the editors November 4, 2011; accepted for publication (in revised form) by N.
Mastronardi April 23, 2013; published electronically July 11, 2013.

http://www.siam.org/journals/simax/34-3/85399.html
†Department of Electrical Engineering, University of Washington, Seattle, WA 98195 (mfazel@ee.

washington.edu).
‡Department of Mathematics, University of Washington, Seattle, WA 98195 (tkpong@uw.edu).
§Department of Mathematics and Risk Management Institute, National University of Singapore,

Singapore (matsundf@nus.edu.sg).

946

D
ow

nl
oa

de
d 

09
/2

5/
13

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HANKEL MATRIX RANK MINIMIZATION 947

variety of efficient algorithms have been developed [5, 9, 27, 30, 31, 38, 52]. A special
case of this problem is the matrix completion problem [7, 8], which has applications
in collaborative filtering and machine learning. In this problem the measurements
are simply a subset of the entries of the matrix. The majority of existing work on
algorithms for problem (1.1) has concentrated on this special case.

In this paper, we focus on problems where we need to find a matrix X that, in
addition to being low-rank, is required to have a certain linear structure, for example,
(block-)Hankel, (block-)Toeplitz, or moment structure. Hankel (and Toeplitz) struc-
tures arise in dynamical systems problems discussed in section 1.1, while moment
structure comes up in Lasserre relaxations for minimizing polynomials [28]. We con-
sider problem (1.1), and represent the desired structure by a linear map X = H(y),
where y is our optimization variable. Note that if H(y) is a moment matrix, we need
to add the constraint H(y) � 0.

1.1. Motivating applications.

1.1.1. Applications in linear dynamical systems. Linear time-invariant
(LTI) systems have a long and successful history in modeling dynamical phenom-
ena in many fields, from engineering to finance. The goal of fitting an LTI model to
observed data gives rise to different classes of optimization problems, depending on
whether the model is parametric or black-box, given in time or frequency domain,
deterministic or stochastic, as well as on the type of data, e.g., input-output or state
measurements (see, e.g., [12, 19, 34]). In all these cases, picking the appropriate
model order or complexity and understanding its trade-off with the fitting or valida-
tion errors is crucial. In the problems described in this section, the system order or
complexity can be expressed as the rank of a Hankel-type matrix. We discuss some
of these problems in more detail in sections 4 and 5.

Minimal system realization with time-domain constraints. Consider the problem
of designing a discrete-time LTI dynamical system, directly from convex specifications
on the system’s response in the time domain; see, e.g., [18, 32]. Such a problem arises
in designing filters for signal processing and control applications. The objective is
to balance the order of the linear system with how well the specifications are met.
A low-order design is desired since, in practice, it translates into a system that is
easier and cheaper to build and analyze. Typical specifications are desired rise-time,
settling-time, slew-rate, and overshoot of the filter’s response to a step input signal.
These specifications can be expressed as upper and lower bounds on the step response
over a fixed time horizon, say N time samples. Equivalently, they can be written in
terms of the impulse response, which translate into linear inequality constraints on the
entries of a Hankel matrix whose rank corresponds to the system order or McMillan
degree; see, e.g., [51]. Using the nuclear norm heuristic for rank, we get

min
y

‖H(y)‖∗
s.t. li ≤

∑i
k=1 yk ≤ bi, i = 1, . . . , N,

(1.2)

where the optimization variable is y ∈ R
2N−1 with yi corresponding to the value of

the impulse response at time i, li and bi denoting the bounds on the step response
given by the specifications, and H(y) denoting an N ×N Hankel matrix; see [18] for
more details. Notice that this problem is not exactly in the form of (1.1); we shall
discuss how algorithms proposed in this paper can be extended to tackle this model
in Appendix A.
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948 M. FAZEL, T. K. PONG, D. SUN, AND P. TSENG

Minimal partial realization. A related problem in linear system theory is the
minimal partial realization problem for multi-input, multi-output systems: given a
sequence of matrices Hk, k = 1, . . . , N , find a minimal state space model, described
by a 3-tuple of appropriately sized matrices (A,B,C) such that Hk = CAk−1B [51,
Chapter 6]. This problem is related to the above realization problem that handled a
single input and a single output. In this problem, the order of the system (minimal
size of a state-space representation) is equal to the rank of a block-Hankel matrix
consisting of the Hk; see [33, section II.A].

Input-output system identification (system ID). Identifying a linear dynamical
system given noisy and/or partial observations of its inputs and outputs, also related
to time-series analysis, is a fundamental problem studied in a variety of fields [55, 56],
including signal processing, control, and robotics; see, e.g., [11, 34]. We will discuss
this problem and a Hankel rank formulation for it in detail in section 4.

Stochastic realization. Another fundamental problem in linear system theory is
finding a minimal stochastic ARMA (autoregressive moving average) model for a
vector random process, given noisy and/or partial estimates of process covariances
[12, 35]. The minimal order is the rank of a block-Hankel matrix consisting of the
exact covariances. This problem is discussed in detail in section 5.

1.1.2. Other applications.

Shape from moments estimation. Consider a polygonal region P in the complex
plane with ordered vertices z1, . . . , zm. Complex moments of P are defined as

τk := k(k − 1)

∫
P

zk−2dxdy, τ0 = τ1 = 0,

and can be expressed as τk =
∑m

i=1 aiz
k
i , where m is the number of vertices and ai

are complex constants. The problem of determining P given its complex moments
has been studied in [16, 39, 50] and arises in many applications such as computer
tomography, where X-ray is used to estimate moments of mass distribution, and
geophysical inversion, where the goal is to estimate the shape of a region from external
gravitational measurements. Note that the number of vertices is equal to the rank of
the Hankel matrix consisting of the moments [16, 24]. In practice, often only noisy
or partial measurements of the complex moments are available, and the challenge is
to find a polygon with the minimum number of vertices that is consistent with the
measurements. Formulating this problem as a rank minimization problem, we propose
using the nuclear norm heuristic for rank. This leads to a problem of the form (1.1),
where the optimization variable is the vector of complex moments τ .

Moment matrix rank minimization for polynomial optimization. Suppose p(x),
x ∈ R

n, is a polynomial of degree d. Denote the corresponding moment matrix by
M(y), where y is the vectors of moments; i.e., yi corresponds to the ith monomial;
see [28, 29]. Moment matrices are important in Lasserre’s hierarchy of relaxations
for polynomial optimization, where a condition on the rank of the moment matrix
in successive relaxations in the hierarchy determines whether the relaxation is exact;
see, e.g., [29, section 5].

In the dual problem of representing a polynomial as a sum of squares of other
polynomials [45], the rank of the coefficient matrix equals the minimum number of
squared polynomials in the representation; thus the nuclear norm (or trace) penalty
helps find simpler representations. Note that in these problems we also have an
additional positive semidefinite constraint on the desired matrix.
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HANKEL MATRIX RANK MINIMIZATION 949

Further applications. Another application arises in video inpainting in computer
vision, where features extracted from video frames are interpolated by finding a low-
rank completion to a Hankel matrix, and help reconstruct the missing frames or
occluded parts of a frame [13].

Finally, our problem formulation also gives a relaxation for the problem known
as the structured total least-squares problem [10] studied extensively in the controls
community; see [36, 37]. Our algorithms are thus applicable to this set of problems
as well. A variety of applications are discussed in [37].

1.2. Our contributions. We introduce a flexible optimization framework for
nuclear norm minimization of linearly structured matrices, including Hankel, Toeplitz,
and moment matrices. We identify and catalog applications from diverse fields, some
of which have not been studied from this perspective before, for example, the shape
from moments estimation problem. In view of the wide applicability of the model
(1.1), it is important to find efficient algorithms for solving it. Along this direction,
recently, Liu and Vandenberghe [32] proposed an interior-point method for solving a
reformulation of problem (1.1), where they used the SDP (semidefinite programming)
representation for the nuclear norm and exploited the problem structure to efficiently
solve the Newton system. They applied their algorithm to the system identification
and system realization problems mentioned above. They showed that the cost per
iteration of the algorithm grows roughly as O(p qn2), where y ∈ R

n and X = H(y) ∈
R

p×q with y �→ H(y) being injective.

In this paper, we derive various primal and dual reformulations of problem (1.1)
(with X = H(y)) and propose several first-order methods for solving the reformu-
lations. In particular, we show that the alternating direction method of multipliers
and the proximal point algorithm can be suitably applied to solving reformulations
of (1.1). These methods have been widely used in the literature recently for solv-
ing (1.1), when no linear structure is imposed on X ; see, e.g., [31, 58]. We discuss
implementation detail of these methods in sections 3.1 and 3.2. For these methods,
typically, each iteration involves a singular value decomposition whose cost grows as
O(p2q), whereX = H(y) ∈ R

p×q and p < q; see, e.g., [25, p. 254]. Next, in section 3.3,
assuming that A∗A is invertible, we show that the (accelerated) gradient projection
algorithms can be efficiently applied to solve a dual reformulation of (1.1). In this
approach, each iteration also involves a singular value decomposition, and there is
an explicit upper bound on the number of iterations required to attain a certain ac-
curacy. This solution approach has been considered recently in [40] for solving the
system identification problem.

To demonstrate the computational efficiency of our algorithms, we apply them to
solving the input-output system identification problem and the stochastic system re-
alization problem mentioned in the previous subsection. For the system identification
problem, we consider both simulated data and real data from the DaISy database [11].
Our computational results show that the accelerated gradient projection algorithm
and the proximal point algorithm usually outperform other first-order methods for
this application in terms of CPU time for small and large regularization parameters,
respectively. We also observe that these methods significantly outperform the interior
point implementation proposed in [32]. For the system realization problem, we con-
sider only simulated data, and our computational results show that the alternating
direction method of multipliers, as applied to a certain primal reformulation of (1.1),
usually outperforms other first-order methods in terms of CPU time.

In addition, in Appendix B, we establish a general convergence result that covers
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all versions of proximal alternating direction methods of multipliers used in this paper.
Specifically, our theorem allows the use of positive semidefinite proximal terms under

some mild assumptions, and any step length chosen from (0,
√
5+1
2 ). It covers many

existing convergence results and allows more flexible applications of the proximal
alternating direction methods of multipliers.

The rest of this paper is organized as follows. In section 1.3, we introduce no-
tation used in this paper. We then derive primal and dual reformulations of (1.1)
in section 2, and discuss several first-order methods for solving the reformulations in
section 3. In sections 4 and 5, we present computational results of our first-order meth-
ods for solving the system identification and system realization problems, respectively.
Concluding remarks are given in section 6. Finally, we discuss an alternative formu-
lation for modeling the structured matrix rank minimization problem in Appendix A,
and establish a convergence result that covers all versions of proximal alternating di-
rection methods of multipliers used in this paper in Appendix B. A brief description
of the classical subspace method for system identification is given in Appendix C, as
a supplement to section 4.1.2.

1.3. Notation. In this paper, Rn denotes the n-dimensional Euclidean space.
For a vector x ∈ R

n, ‖x‖ denotes the Euclidean norm of x. The set of all m × n
matrices with real entries is denoted by R

m×n. For any A ∈ R
m×n, ‖A‖ denotes

the spectral norm of A, ‖A‖F denotes the Fröbenius norm of A, ‖A‖∗ denotes the
nuclear norm of A (which is the sum of all singular values of A), and vec(A) denotes
the column vector formed by stacking columns of A one by one. For two matrices
A and B in R

m×n, A ◦ B denotes the Hadamard (entrywise) product of A and B.
If a symmetric matrix A is positive semidefinite, we write A � 0. Linear maps will
be denoted by scripted letters. For a linear map A : Rm×n → R

p, A∗ denotes the
adjoint of A, ‖A‖ denotes the spectral norm of A, while σmax(A) and σmin(A) denote
the maximum and minimum singular values of A, respectively. Finally, we denote the
identity matrix and identity map by I and I, respectively, whose dimensions should
be clear from the context.

2. Basic problem formulations. Consider the following general Hankel matrix
nuclear norm minimization problem:

v := min
y
f(y) :=

1

2
‖A(y)− b‖2 + μ‖H(y)‖∗,(2.1)

where A : Rm×n(j+k−1) → R
p is a linear map, b ∈ R

p, y =
(
y0 · · · yj+k−2

)
is an

m× n(j + k − 1) matrix with each yi being an m× n matrix for i = 1, . . . , j + k − 2,
and H(y) := Hm,n,j,k(y)Υ with

Hm,n,j,k(y) :=

⎛
⎜⎜⎜⎝

y0 y1 · · · yk−1

y1 y2 · · · yk
...

...
...

yj−1 yj · · · yj+k−2

⎞
⎟⎟⎟⎠ ∈ R

mj×nk

and Υ ∈ R
nk×q. We assume without loss of generality that σmax(Υ) ≤ 1. In this

section, we derive primal and dual reformulations of (2.1).

First, using the substitutions Y = −H(y) and z = b−A(y), problem (2.1) can be
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reformulated as

min
Y,z,y

1

2
‖z‖2 + μ‖Y ‖∗

s.t. Y +H(y) = 0,
z +A(y) = b.

(2.2)

From the reformulation (2.2), we can easily write down the Lagrange dual to (2.2)
(and hence, equivalently, to (2.1)) as follows:

v = min
Y,z,y

max
γ,Λ

{
1

2
‖z‖2 + μ‖Y ‖∗ − 〈Λ, Y +H(y)〉 − 〈γ, z +A(y)− b〉

}

=max
γ,Λ

min
Y,z,y

{
1

2
‖z‖2 + μ‖Y ‖∗ − 〈Λ, Y +H(y)〉 − 〈γ, z +A(y)− b〉

}

=max
γ,Λ

min
Y,z,y

{
1

2
‖z‖2 − 〈γ, z〉+ μ‖Y ‖∗ − 〈Λ, Y 〉 − 〈H∗(Λ) +A∗(γ), y〉+ 〈b, γ〉

}

=max
γ,Λ

{
−1

2
‖γ‖2 + 〈γ, b〉 : H∗(Λ) +A∗(γ) = 0, ΛTΛ � μ2I

}
,

where the second equality holds because of strong duality [48, Corollary 28.2.2]. The
dual problem can thus be rewritten as the minimization problem

min
γ,Λ

d(γ) :=
1

2
‖γ‖2 − bTγ

s.t. H∗(Λ) +A∗(γ) = 0,
ΛTΛ � μ2I.

(2.3)

Alternatively, noting the fact that the nuclear norm is just the dual norm of the
spectral norm, one can derive a reduced dual problem as follows:

v = min
y

1

2
‖A(y)− b‖2 + μ‖H(y)‖∗ = min

y
max

ΛTΛ�μ2I

1

2
‖A(y)− b‖2 − 〈Λ,H(y)〉

= − min
ΛTΛ�μ2I

d2(Λ) := sup
y

{
〈Λ,H(y)〉 − 1

2
‖A(y)− b‖2

}
,(2.4)

where the third equality holds because of the compactness of the spectral norm ball
[48, Corollary 37.3.2]. In the special case when A∗A is invertible, the function d2 has
a closed form representation. Indeed, in this case, writing R(Λ) := (A∗A)−1H∗(Λ)
and b̄ := (A∗A)−1A∗b, we obtain that

d2(Λ) =
1

2
(〈H∗(Λ),R(Λ)〉 + 2〈H∗(Λ), b̄〉+ 〈A∗b, b̄〉 − ‖b‖2).

Hence, when A∗A is invertible, the reduced dual problem (2.4) is equivalent to

(2.5)
min
Λ

1

2
〈H∗(Λ),R(Λ)〉 + 〈H∗(Λ), b̄〉+ 1

2
〈A∗b, b̄〉 − 1

2
‖b‖2

s.t. ΛTΛ � μ2I.

Before ending this section, we derive an upper bound on the spectral norm of H∗.

D
ow

nl
oa

de
d 

09
/2

5/
13

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

952 M. FAZEL, T. K. PONG, D. SUN, AND P. TSENG

Notice that H∗(Λ) = H∗
m,n,j,k(ΛΥ

T ), where for any W ∈ R
mj×nk

H∗
m,n,j,k(W ) = H∗

m,n,j,k

⎛
⎜⎜⎜⎝

w00 w01 · · · w0,k−1

w10 w11 · · · w1,k−1

...
...

...
wj−1,0 wj−1,1 · · · wj−1,k−1

⎞
⎟⎟⎟⎠

=
(
w00 w01 + w10 w02 + w11 + w20 · · · wj−1,k−1

)
∈ R

m×n(j+k−2).(2.6)

It follows from (2.6) that

‖H∗
m,n,j,k(W )‖2F
= ‖w00‖2F + ‖w01 + w10‖2F + ‖w02 + w11 + w20‖2F + · · ·+ ‖wj−1,k−1‖2F
≤ ‖w00‖2F + 2(‖w01‖2F + ‖w10‖2F ) + · · ·+ ‖wj−1,k−1‖2F ≤ r‖W‖2F ,

where r := min{j, k}. Combining this estimate with σmax(Υ) ≤ 1, we obtain that

‖H∗(Λ)‖2F ≤ r‖ΛΥT‖2F ≤ r‖Λ‖2F ,

and thus the spectral norm of H∗ is less than or equal to
√
r.

3. Algorithms. In this section, we discuss several first-order methods for solving
(2.1) and (2.3).

3.1. Alternating direction method of multipliers. In this section, we dis-
cuss how the alternating direction method of multipliers (ADMM) can be applied to
solving (2.1) and (2.3). To apply the ADMM for solving (2.1), we first introduce the
augmented Lagrangian function

Lβ(Y, y,Λ) =
1

2
‖A(y)− b‖2 + μ‖Y ‖∗ − 〈Λ, Y +H(y)〉+ β

2
‖Y +H(y)‖2F

for each β > 0. In the classical ADMM (see, e.g., [2, section 3.4.4]), in each iteration,
we minimize Lβ with respect to Y and then with respect to y, followed by an update
of the multiplier Λ. While minimizing Lβ with respect to Y admits an easy closed
form solution, minimizing Lβ with respect to y does not usually have a simple closed
form solution due to the complicated quadratic terms. One way to resolve this is to
add a proximal term with (semi)norm induced by a suitable positive (semi)definite
matrix to “cancel” out the complicated parts. In this approach, we update

yk+1 = argmin
y

{
Lβ(Y

k+1, y,Λk) +
β

2
‖y − yk‖2Q0

}
,

where ‖ · ‖Q0 is the (semi)norm induced by the (semi-)inner product xTQ0x,

(3.1) Q0 :=

(
r+

(σmax(A))2
β

)
I −

(
H∗H+

1

β
A∗A

)
� 0.

The convergence analysis of this approach has been considered in [26], for example,
in the context of variational inequalities. The main motivation for introducing the
proximal terms in [26] is to weaken the imposed convergence conditions rather than
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for the sake of cancellation, as was more recently explained in [59]. All existing
convergence results requireQ0 to be positive definite and hence are not general enough
to cover our proposed method. In Appendix B, we present a new convergence analysis
of this approach. We now present our algorithm as follows.

Primal ADMM.
Step 0. Input (y0,Λ0), β > 0, σ = β

βr+(σmax(A))2 , and τ ∈ (0,
√
5+1
2 ).

Step 1. Compute the SVD:

−H(yk) + Λk

β
= UΣV T ,

where U and V have orthogonal columns, Σ is diagonal. Set

Y k+1 = U max

{
Σ− μ

β
I, 0

}
V T ,

yk+1 = yk − σ
(
H∗

(
− 1

β
Λk +H(yk) + Y k+1

)
+

1

β
A∗(A(yk)− b)

)
,

Λk+1 = Λk − τβ(Y k+1 +H(yk+1)).

Step 2. If a termination criterion is not met, go to Step 1.

The ADMM can also be applied to solving the dual problem (2.3). In this ap-
proach, we use the following augmented Lagrangian function:

lβ(γ,Λ, y) =
1

2
‖γ‖2 − bTγ + 〈y,H∗(Λ) +A∗(γ)〉+ β

2
‖H∗(Λ) +A∗(γ)‖2F

for some β > 0.

The algorithm is described as follows.

Dual ADMM.
Step 0. Input (y0,Λ0), β > 0, σ1 = 1

(σmax(A))2 , σ2 = 1
r , and τ ∈ (0,

√
5+1
2 ).

Step 1. Set

γk+1 =
σ1

σ1 + β

(
b+ β

γk

σ1
−A(yk)− βA(H∗(Λk) +A∗(γk))

)
.

Compute the SVD:

Λk − σ2
(
1

β
H(yk) +H(H∗(Λk) +A∗(γk+1))

)
= UΣV T ,

where U and V have orthogonal columns, Σ is diagonal. Set

Λk+1 = U min{Σ, μI}V T ,

yk+1 = yk + τβ(H∗(Λk+1) +A∗(γk+1)).

Step 2. If a termination criterion is not met, go to Step 1.

Indeed, since the minimizer of lβ with respect to γ is usually not easy to find and
the minimizer with respect to Λ does not always admit a simple closed form solution,
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as before, we add suitable proximal terms to cancel out complicated terms. More
precisely, in the above algorithm, we update

γk+1 := argmin
γ

{
lβ(γ,Λ

k, yk) +
β

2
‖γ − γk‖2Q1

}
,

Λk+1 := argmin
ΛTΛ�μ2I

{
lβ(γ

k+1,Λ, yk) +
β

2
‖Λ− Λk‖2Q2

}
,

where

Q1 := (σmax(A))2I − AA∗ � 0, Q2 := rI −HH∗ � 0.(3.2)

From Theorem B.1 in the appendix, for the sequence {(Y k, yk,Λk)} generated
from Primal ADMM, {yk} converges to a solution of the problem (2.1), while {Λk}
converges to a solution of the problem (2.4). Similarly, for the sequence {(yk, γk,Λk)}
generated from Dual ADMM, {yk} converges to a solution of (2.1), and {(γk,Λk)}
converges to a solution of (2.3).

3.2. Dual proximal point algorithm. In this section, we discuss how the
proximal point algorithm (PPA) can be applied to solving the dual problem. We
shall make use of the reduced dual problem (2.4). Fix λ > 0. For any Λ, define the
Moreau–Yosida regularization of d2 at Λ associated with λ by

Gλ(Λ) = min
ΓTΓ�μ2I

d2(Γ) +
1

2λ
‖Γ− Λ‖2F .

Using this definition and the definition of d2 in (2.4), we obtain that

Gλ(Λ) = min
ΓTΓ�μ2I

sup
y

{
〈Γ,H(y)〉 − 1

2
‖A(y)− b‖2

}
+

1

2λ
‖Γ− Λ‖2F

= sup
y

{
min

ΓTΓ�μ2I

{
〈Γ,H(y)〉+ 1

2λ
‖Γ− Λ‖2F

}
− 1

2
‖A(y)− b‖2

}
,

where the second equality holds due to the compactness of the spectral norm ball [48,
Corollary 37.3.2]. Furthermore, it is not hard to show that

min
ΓTΓ�μ2I

{
〈H(y),Γ〉+ 1

2λ
‖Λ− Γ‖2F

}

= 〈H(y),Λ〉 − λ

2
‖H(y)‖2F +

1

2λ
‖Pμ(Λ− λH(y))‖2F ,

where Pμ(W ) is the unique optimal solution to the following convex optimization
problem:

min
Z
‖Z‖∗ + 1

2μ
‖Z −W‖2F .

Thus, Gλ(Λ) = supy Θλ(y; Λ), where

Θλ(y; Λ) := 〈H(y),Λ〉 − λ

2
‖H(y)‖2F +

1

2λ
‖Pμ(Λ − λH(y))‖2F −

1

2
‖A(y)− b‖2 .

Recall from the Moreau–Yosida regularization theory that Pμ(·) is globally Lipschitz
continuous with modulus 1 and that ‖Pμ(·)‖2F is continuously differentiable with
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∇(‖Pμ(Y )‖2F ) = 2Pμ(Y ). Hence, Θλ(·; Λ) is a continuously differentiable concave
function in y with

∇yΘλ(y; Λ) = H∗(Λ− λH(y)) −H∗Pμ(Λ − λH(y))−A∗(A(y) − b).
In addition, we have that

‖∇yΘλ(y
′; Λ)−∇yΘλ(y; Λ)‖F

≤ (λ‖H∗H‖+ ‖A∗A‖) ‖y′ − y‖F + ‖H∗Pμ(Λ− λH(y′))−H∗Pμ(Λ − λH(y))‖F
≤ (

λr+ (σmax(A))2
) ‖y′ − y‖F + λr‖y′ − y‖F ,

which implies that ∇yΘλ(·; Λ) is Lipschitz continuous with Lipschitz modulus

(3.3) 2λr+ (σmax(A))2.
We are now ready to describe the PPA for solving the dual problem (2.4).

Dual PPA.
Step 0. Input (y0,Λ0) and λ0 > 0.
Step 1. (Find an approximate maximizer yk+1 ≈ argmaxΘλk

(y; Λk).)
Input u0 := yk. Let s0, tolk > 0, 1 > t, σ > 0.
While ‖∇yΘλk

(ul; Λk)‖ > tolk do
(a) Let s̄l be the largest element of {sν , tsν , t2sν , . . .} satisfying

Θλk
(ul[s]; Λk) ≥ Θλk

(ul; Λk) + σs‖∇yΘλk
(ul; Λk)‖2F ,

where ul[s] = ul + s∇yΘλk
(ul; Λk).

(b) Set ul+1 ← ul[s̄l] and update sν .
End (while)
Set yk+1 ← ul+1.

Step 2. Compute the SVD:

Λk − λkH(yk+1) = UΣV T .

Set

Λk+1 = U min(Σ, μI)V T .

Step 3. If a termination criterion is not met, update λk. Go to Step 1.

3.3. Dual gradient projection methods. In this section we assume that A∗A
is invertible. Recall that in this case the dual of (2.1) is given by (2.5). Moreover, we
have

‖∇d2(Λ1)−∇d2(Λ2)‖2F
= ‖H((A∗A)−1H∗(Λ1 − Λ2))‖2F ≤ r‖(A∗A)−1H∗(Λ1 − Λ2)‖2F
≤ r

(σmin(A∗A))2 ‖H
∗(Λ1 − Λ2)‖2F ≤

(
r

σmin(A∗A)
)2

‖Λ1 − Λ2‖2F .

This shows that the gradient of d2 is Lipschitz continuous with Lipschitz constant

LD :=
r

σmin(A∗A) .
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Since the projection onto the feasible set of (2.5) is simple, we can apply the gradient
projection (GP) methods to solving (2.5). One simple version is described as follows.

Dual GP.
Step 0. Input Λ0 such that Λ0TΛ0 � μ2I and L > LD

2 .
Step 1. Compute the SVD:

Λk − 1

L
∇d2(Λk) = UΣV T ,

where U and V have orthogonal columns, Σ is diagonal. Set

Λk+1 = U min{Σ, μI}V T .

Step 2. If a termination criterion is not met, go to Step 1.

The iterate generated by the Dual GP satisfies

d2(Λ
k)− v = O

(
L

k

)
;

see, e.g., [53, Theorem 1]. Hence, for faster convergence, a smaller L is favored. Also,
note that if y∗ and Λ∗ are solutions to (2.1) and (2.5), respectively, then we can see
from (2.4) that

y∗ = R(Λ∗) + b̄

where R(Λ) := (A∗A)−1H∗(Λ) and b̄ := (A∗A)−1A∗b. Hence, the sequence

(3.4) yk := R(Λk) + b̄

can be used to check for termination; see section 4.1.
The Dual GP can be accelerated using Nesterov’s extrapolation techniques (see,

e.g., [41, 42, 43, 44, 53]). This method has also been used in [46, 52] for nuclear norm-
related problems. The method, which we call the dual accelerated gradient projection
(Dual AGP), is described below.

Dual AGP.
Step 0. Input Λ0 such that Λ0TΛ0 � μ2I and L ≥ LD. Initialize Λ−1 = Λ0

and θ−1 = θ0 = 1. Go to Step 1.
Step 1. Set

Ψk = Λk +

(
θk
θk−1

− θk
)
(Λk − Λk−1).

Compute the SVD:

Ψk − 1

L
∇d2(Ψk) = UΣV T ,

where U and V have orthogonal columns, Σ is diagonal. Update

Λk+1 = U min{Σ, μI}V T , θk+1 =

√
θk

4 + 4θk
2 − θk2

2
.

Step 2. If a termination criterion is not met, go to Step 1.
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The sequence generated from the Dual AGP satisfies

d2(Λ
k)− v = O

(
L

k2

)
;

see, e.g., [53, Theorem 1]. Hence, a smaller L is favored for faster convergence. Fur-
thermore, a suitable primal variable at each iteration can be generated similarly as in
(3.4).

4. System identification. In this section, we consider the problem of identify-
ing a linear dynamical system from observations of its inputs and outputs. We focus
on “output error” system identification, meaning that the output may be noisy. Given
a sequence of inputs ut ∈ R

p and measured (noisy) outputs ỹt ∈ R
m, t = 0, . . . , N ,

the goal is to find a discrete-time, linear time-invariant state space model,

xt+1 = Axt +But,(4.1)

yt = Cxt +Dut,

that satisfies yt ≈ ỹt and is low-order (i.e., corresponds to a low-dimensional state
vector xt ∈ R

r). To determine the model, we need to find the A,B,C,D matrices,
the initial state x0, and the model order r. As described in [32, eq. (23)] (see also
Appendix C, [33], and more classically [54, p. 36]), under reasonable assumptions,
the minimal model order is equal to the rank of the matrix Hm,1,r+1,N+1−r(y)U

⊥,
where U⊥ ∈ R

(N+1−r)×q is a matrix whose columns form an orthogonal basis of the
null space of Hp,1,r+1,N+1−r(u) and u is the input to the system (see [32] for further
details).

Upon relaxing the rank function to the nuclear norm, the trade-off between the
fitting error and the nuclear norm (which is a proxy for the model order) is given by
the following optimization problem:

(4.2) min
y

1

2
‖y − ỹ‖2F + μ‖Hm,1,r+1,N+1−r(y)U

⊥‖∗,

where ỹ ∈ R
m×(N+1), N ≥ 1, r ≥ 0, and μ > 0. This problem corresponds to (2.1)

with Υ = U⊥, A(y) = vec(y), and b = vec(ỹ). Thus

σmax(A) = σmax(Υ) = 1, H∗(Λ) = H∗
m,1,r+1,N+1−r(Λ(U

⊥)T ).

Note that the solution set of (4.2) is nonempty since the function y �→ ‖y − ỹ‖2F is
coercive.

4.1. Computational results. In this section, we compare different algorithms
for solving (4.2) on random and real data. Specifically, we consider Primal and Dual
ADMM, Dual PPA, Dual GP, and Dual AGP. We note that since A = I, one could
also set Q0 = rI −H∗H for Primal ADMM; however, it is not hard to show that this
variant gives the same iterate as Primal ADMM, which uses (3.1).

We initialize all algorithms except Dual PPA at the origin, where the latter algo-
rithm is initialized at an approximate solution obtained from Dual AGP.1 We termi-
nate the algorithms by checking the relative duality gap with tol = 10−4, i.e.,

(4.3)
mint∈Kk{f(yt), f(ŷt)}+maxt∈Kk d2(P(Λt))

max{1, |maxt∈Kk d2(P(Λt))|} < 10−4,

1We terminate Dual AGP by checking the relative duality gap with tol = 5×10−3, checked every
10 iterations. We also terminate the algorithm early if the change in Fröbenius norm of successive
iterates is small (< 10−8 for each variable) or the maximum number of iteration hits 2000.
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where {(yk,Λk)} are defined in sections 3.1, 3.2, and 3.3; P(Λk) is the projection of
Λk onto the spectral norm ball with radius μ; and ŷk := ỹ + H∗(P(Λk))).2 We set
Kk = {1 ≤ ν ≤ k : ν divides 10} for all algorithms except for Dual PPA and check
(4.3) every 10 iterations. For Dual PPA, we set Kk = {1 ≤ ν ≤ k} and check (4.3)
every iteration since the relative duality gap is needed for updating λk and tolk.

3

We also terminate the algorithms early if the change in Fröbenius norm of successive
iterates is small (< 10−8 for each variable) or the maximum number of iteration hits
2000.

We set β = μr
2σmax(ỹ)

for Primal ADMM, β = σmax(ỹ)
16μr for Dual ADMM, and take

τ = 1.61 for the ADMMs. We set L = LD

1.95 for Dual GP and L = LD for Dual AGP.
All codes are written in MATLAB and run on a Sunfire X4440 with 4 Opteron 8384
quad-core CPUs and 32G of RAM, equipped with CentOS 5.8 and MATLAB 7.12.

4.1.1. Random data. We randomly generate a matrix u = ( u0 ··· uN ) ∈ R
p×(N+1)

with standard Gaussian entries (i.e., 0 mean and variance 1), and let r̄ be the true
order of the system. We then generate matrices A ∈ R

r̄×r̄, B ∈ R
r̄×p, C ∈ R

m×r̄, and
D ∈ R

m×p with i.i.d. standard Gaussian entries and normalize them to have spectral
norm 1. We also generate a vector x0 ∈ R

r̄, again with standard Gaussian entries.
The output ȳ = ( ȳ0 ··· ȳN ) ∈ R

m×(N+1) is then generated using a state-space model:
for each t = 0, . . . , N ,

xt+1 = Axt +But,

ȳt = Cxt +Dut.

To model the measurement noise, we add noise to the output ȳ to get ỹ = ȳ+σε, where
ε has Gaussian entries with mean 0 and variance 1, and σ > 0. Finally, U⊥ is a matrix
whose columns form an orthonormal basis of the nullspace of Hp,1,2r̄+2,N−2r̄(u). Note
that in theory we require the r used in determining the size of the Hankel matrix to
be larger than the true order of the system. However, in practice, we often don’t know
the true system order and only have a guess or estimate for it. Therefore, when we
set the size of the Hankel matrix in our problem, as a rule of thumb, we use roughly
twice the estimated order; i.e., r = 2r̄ + 1.

In the tests below, we consider p = 5, m = 5, 10, r̄ = 10, 20, and N + 1 =
2000, 4000. We pick σ = 5 × 10−2, which corresponds roughly to 5% noise. The
statistics of the test problems used are reported in Table 4.1.4 We run our algorithms
for μ = 10−2, 10−1, 1, 10. Our computational results are reported in Table 4.2, where
iter stands for the number of iterations, cpu is the CPU time taken, and obj is the
primal objective value at termination corresponding to each algorithm. The words
“Primal” and “Dual” are abbreviated as “P.” and “D.”, respectively. For Dual PPA,
the CPU time and number of iterations for Dual AGP used for initialization are in
parenthesis, and the CPU time not in parenthesis refers to the total runtime. The
word “max” denotes the maximum number of iterations. The fastest algorithm(s) in
each instance is highlighted in bold. We see that the gradient projection algorithms
usually work best when μ is small, with Dual AGP usually more robust (i.e., solving

2This is modeled after (3.4). Thus, we have ŷk = yk for Dual GP and Dual AGP.
3For Dual PPA, we set t = 0.3, σ = 10−4, s0 = 1.95

L
, with L given in (3.3). For each ν ≥ 1,

we set sν = 1.11sν−1 if the maximum stepsize sν−1 was used in previous line-search, and fix it
otherwise. The parameter λk is initialized at λ0 = 1 and is doubled based on changes in gapk, the
relative duality gap in the kth outer iteration. The tolk decreases from 0.04 based on the change of
gapk and is bounded below by 10−3.

4Note that each of our algorithm requires an SVD of a matrix of size m(r+1)×q in each iteration.
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Table 4.1

Parameters for the randomly generated test problems.

P N + 1 r̄ m q
1 2000 10 5 1869
2 2000 10 10 1869
3 2000 20 5 1749
4 2000 20 10 1749
5 4000 10 5 3869
6 4000 10 10 3869
7 4000 20 5 3749
8 4000 20 10 3749

Table 4.2

Computational results for problems from Table 4.1. The fastest algorithm is highlighted in bold.

D. GP D. AGP D. PPA P. ADMM D. ADMM

P µ iter/cpu/obj iter/cpu/obj iter/cpu/obj iter/cpu/obj iter/cpu/obj

1 0.01 6/0.7/3.76e+0 9/1.1/3.76e+0 1(9)/1.4(1.0)/3.76e+0 30/3.8/3.76e+0 10/1.2/3.76e+0

0.10 10/1.1/2.87e+1 10/1.2/2.87e+1 1(10)/1.6(1.2)/2.87e+1 30/3.8/2.87e+1 20/2.3/2.87e+1

1.00 150/16.0/1.70e+2 70/7.8/1.70e+2 10(20)/6.1(2.3)/1.70e+2 40/5.1/1.70e+2 40/4.5/1.70e+2

10.00 1310/139.2/1.01e+3 240/26.5/1.01e+3 33(50)/22.5(5.6)/1.01e+3 190/24.0/1.01e+3 180/19.6/1.01e+3

2 0.01 7/1.8/5.19e+0 10/2.8/5.19e+0 1(10)/4.3(2.7)/5.19e+0 20/5.9/5.19e+0 10/2.7/5.19e+0

0.10 20/5.1/3.29e+1 20/5.2/3.29e+1 1(10)/4.1(2.7)/3.29e+1 30/8.8/3.29e+1 30/7.8/3.29e+1

1.00 210/51.5/1.05e+2 90/22.9/1.05e+2 18(20)/19.7(5.2)/1.05e+2 50/14.7/1.05e+2 50/12.9/1.05e+2

10.00 900/222.0/4.26e+2 420/106.9/4.26e+2 17(70)/37.0(17.9)/4.26e+2 240/70.3/4.26e+2 230/58.8/4.26e+2

3 0.01 9/2.1/4.57e+0 10/2.4/4.57e+0 1(10)/3.0(2.4)/4.57e+0 30/7.9/4.57e+0 10/2.4/4.57e+0

0.10 380/84.4/2.06e+1 70/15.9/2.06e+1 22(20)/19.9(4.7)/2.06e+1 240/63.3/2.06e+1 510/116.0/2.06e+1

1.00 730/163.0/8.60e+1 180/40.6/8.60e+1 17(40)/27.8(8.9)/8.60e+1 130/33.4/8.60e+1 100/22.3/8.60e+1

10.00 max/429.4/3.70e+2 420/94.6/3.70e+2 18(140)/65.6(31.5)/3.70e+2 620/162.8/3.70e+2 500/111.6/3.70e+2

4 0.01 9/4.7/8.69e+0 10/5.6/8.69e+0 1(10)/7.2(5.7)/8.69e+0 20/12.2/8.69e+0 10/5.8/8.69e+0

0.10 460/243.2/3.65e+1 80/43.5/3.65e+1 22(20)/50.0(11.0)/3.65e+1 290/180.6/3.65e+1 620/337.4/3.65e+1

1.00 400/210.0/1.33e+2 170/91.5/1.33e+2 13(30)/61.2(16.4)/1.33e+2 130/ 81.4/1.33e+2 80/43.6/1.33e+2

10.00 max/1043.7/6.19e+2 470/251.6/6.19e+2 20(100)/162.1(53.2)/6.19e+2 510/315.9/6.19e+2 410/221.5/6.19e+2

5 0.01 6/1.7/4.67e+0 8/2.4/4.67e+0 1(8)/4.0(2.3)/4.67e+0 30/9.0/4.67e+0 10/2.9/4.67e+0

0.10 10/2.8/3.73e+1 10/3.0/3.73e+1 1(10)/3.8(2.9)/3.73e+1 20/6.0/3.73e+1 10/3.0/3.73e+1

1.00 150/36.6/1.75e+2 60/15.5/1.75e+2 10(20)/13.7(5.5)/1.75e+2 40/11.9/1.75e+2 40/10.7/1.75e+2

10.00 1070/261.3/9.39e+2 270/68.7/9.39e+2 31(50)/79.6(13.0)/9.39e+2 170/49.5/9.39e+2 150/38.8/9.39e+2

6 0.01 6/3.5/7.57e+0 9/5.4/7.57e+0 1(9)/8.7(5.2)/7.57e+0 20/12.9/7.57e+0 10/6.0/7.57e+0

0.10 10/5.6/5.56e+1 10/6.1/5.56e+1 1(10)/7.7(6.1)/5.56e+1 20/12.8/5.56e+1 10/6.0/5.56e+1

1.00 200/104.8/1.63e+2 80/44.7/1.63e+2 10(20)/33.6(11.7)/1.63e+2 50/31.8/1.63e+2 50/28.1/1.63e+2

10.00 470/245.6/7.75e+2 250/137.4/7.75e+2 13(50)/60.0(28.2)/7.75e+2 190/120.4/7.75e+2 180/99.7/7.75e+2

7 0.01 7/3.9/6.91e+0 10/5.8/6.91e+0 1(10)/8.6(5.8)/6.91e+0 30/17.8/6.91e+0 10/5.7/6.91e+0

0.10 170/85.2/3.66e+1 50/26.5/3.66e+1 10(10)/39.3(5.7)/3.66e+1 160/94.3/3.66e+1 330/171.0/3.66e+1

1.00 360/177.2/1.32e+2 130/67.6/1.32e+2 12(30)/48.4(16.0)/1.32e+2 90/53.3/1.32e+2 70/37.2/1.32e+2

10.00 980/481.8/6.09e+2 410/212.6/6.09e+2 12(90)/99.4(47.3)/6.09e+2 470/280.3/6.09e+2 360/189.0/6.09e+2

8 0.01 7/9.2/1.29e+1 10/14.1/1.29e+1 1(10)/17.7(14.1)/1.29e+1 20/30.0/1.29e+1 10/14.1/1.29e+1

0.10 230/293.8/6.34e+1 60/78.4/6.34e+1 13(10)/127.6(14.0)/6.34e+1 210/310.5/6.34e+1 450/597.3/6.34e+1

1.00 320/405.1/1.77e+2 140/182.2/1.77e+2 14(30)/141.7(40.6)/1.77e+2 100/150.0/1.77e+2 70/91.8/1.77e+2

10.00 850/1067.0/8.53e+2 430/569.8/8.53e+2 15(80)/224.7(105.1)/8.53e+2 420/625.0/8.53e+2 340/444.8/8.53e+2

all instances within 2000 iterations) than Dual GP. Furthermore, Dual PPA and Dual
ADMM usually work best when μ is large.

4.1.2. Real data from DaISy database. In this section, we consider eight
benchmark problems from DaISy (Database for the Identification of Systems) [11]. A
brief description of the data is given in Table 4.3. Each data set is given in form of a
y (output) and a u (input).

In our first test, we look at the computational efficiency of the first-order methods
in solving large scale instances. We take the first 25% of the inputs and outputs for
testing purposes. As a rule of thumb, we set r = 41 and compute U⊥ from the input
accordingly. We apply the five algorithms from Table 4.2 to solving these problems for
different values of μ, using the same parameters as in the previous section. The results
are reported in Table 4.4, where iter and cpu are as in Table 4.2, while nr denotes the
number of singular values of H(y∗) that are larger than 0.005 σmax(H(y∗)), and err
denotes the fitting error measured by ‖y∗ − ỹ‖F ; here, y∗ is the approximate optimal
solution of (4.2) obtained by the algorithms. We see that Dual AGP and Dual PPA
work best. Furthermore, we see that nr decreases with μ, while err increases as μ
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Table 4.3

Description of test problems, taken from DaISy [11].

P Description N + 1 m q
1 [96-007] CD player arm 513 2 388
2 [98-002] Continuous stirring tank reactor 1876 2 1793
3 [96-006] Hair dryer 251 1 168
4 [97-002] Steam heat exchanger 1001 1 918
5 [96-011] Heat flow density 421 1 296
6 [97-003] Industrial winding process 626 2 375
7 [96-002] Glass furnace 312 6 145
8 [96-016] Industrial dryer 217 3 50

Table 4.4

Computational results for problems from Table 4.3. The fastest algorithm is highlighted in bold.

D. GP D. AGP D. PPA P. ADMM D. ADMM

P µ iter/cpu/nr/err iter/cpu/nr/err iter/cpu/nr/err iter/cpu/nr/err iter/cpu/nr/err

1 0.01 60/1.1/35/3.2e-1 30/0.6/35/3.2e-1 9(10)/0.6(0.2)/35/3.1e-1 100/2.2/35/3.2e-1 210/4.1/35/3.2e-1

0.10 1470/27.6/23/1.6e+0 180/3.4/23/1.6e+0 73(30)/4.1(0.6)/23/1.6e+0 290/6.3/23/1.6e+0 610/11.7/23/1.6e+0

1.00 max/36.9/10/2.8e+0 1200/22.6/5/2.8e+0 45(180)/11.8(3.4)/5/2.8e+0 360/7.7/5/2.8e+0 460/8.8/5/2.8e+0

10.00 max/37.0/26/3.0e+0 max/37.5/16/3.2e+0 42(max)/69.7(37.3)/3/3.2e+0 max/42.6/3/3.2e+0 1760/33.3/4/3.2e+0

2 0.01 10/0.8/6/2.7e-1 10/0.9/6/2.7e-1 1(10)/1.1(0.9)/6/2.7e-1 1920/174.7/6/2.6e-1 max/157.0/6/2.9e-1

0.10 30/2.3/6/2.0e+0 10/0.9/6/2.0e+0 1(10)/1.2(0.9)/6/2.0e+0 660/60.7/6/2.0e+0 1290/102.8/6/2.0e+0

1.00 50/3.8/3/1.4e+1 20/1.6/3/1.4e+1 1(10)/3.0(0.9)/3/1.4e+1 480/43.6/3/1.4e+1 1010/78.7/3/1.4e+1

10.00 130/9.7/1/6.5e+1 50/4.0/1/6.5e+1 6(10)/16.7(0.9)/1/6.5e+1 340/30.8/1/6.5e+1 710/54.3/1/6.5e+1

3 0.01 20/0.1/19/3.0e-1 20/0.1/19/3.0e-1 1(10)/0.1(0.1)/19/3.0e-1 120/0.7/19/3.0e-1 240/1.2/19/3.0e-1

0.10 240/1.2/6/9.9e-1 80/0.4/6/9.9e-1 32(10)/0.5(0.1)/6/9.8e-1 250/1.4/6/9.9e-1 530/2.7/6/9.9e-1

1.00 550/2.7/3/2.6e+0 160/0.8/3/2.6e+0 17(40)/0.6(0.2)/3/2.6e+0 90/0.5/3/2.6e+0 120/0.6/3/2.6e+0

10.00 390/1.9/1/1.2e+1 390/2.0/1/1.2e+1 25(130)/2.0(0.6)/1/1.2e+1 470/2.7/1/1.2e+1 330/1.7/1/1.2e+1

4 0.01 7/0.1/2/4.0e-1 10/0.2/2/4.0e-1 1(10)/0.3(0.2)/2/4.0e-1 50/1.0/2/4.0e-1 110/2.0/2/4.0e-1

0.10 30/0.5/2/3.3e+0 10/0.2/2/3.4e+0 1(10)/0.3(0.2)/2/3.4e+0 170/3.5/2/3.3e+0 340/6.1/2/3.3e+0

1.00 100/1.7/2/1.1e+1 20/0.4/2/1.1e+1 2(10)/1.0(0.2)/2/1.1e+1 120/2.5/2/1.1e+1 240/4.3/2/1.1e+1

10.00 160/2.7/1/6.0e+1 80/1.5/1/6.0e+1 7(10)/4.8(0.2)/1/6.0e+1 70/1.5/1/6.0e+1 140/2.5/1/6.0e+1

5 0.01 9/0.1/42/3.8e-1 10/0.1/42/3.8e-1 1(10)/0.1(0.1)/42/3.8e-1 30/0.3/42/3.8e-1 10/0.1/42/3.8e-1

0.10 410/3.0/10/2.0e+0 80/0.6/10/2.0e+0 22(20)/0.6(0.2)/11/2.0e+0 170/1.4/10/2.0e+0 340/2.5/10/2.0e+0

1.00 850/6.1/3/2.8e+0 360/2.6/3/2.8e+0 39(60)/3.6(0.5)/3/2.8e+0 130/1.1/3/2.8e+0 100/0.8/3/2.8e+0

10.00 700/5.0/1/7.1e+0 700/5.1/1/7.1e+0 29(210)/2.6(1.5)/1/7.1e+0 780/6.5/1/7.1e+0 640/4.8/1/7.1e+0

6 0.01 10/0.2/79/4.9e-1 10/0.2/79/4.9e-1 1(10)/0.3(0.2)/79/4.9e-1 30/0.7/79/4.9e-1 20/0.4/79/5.0e-1

0.10 190/3.6/49/3.3e+0 60/1.2/49/3.3e+0 17(10)/1.5(0.2)/49/3.3e+0 70/1.5/49/3.3e+0 150/3.0/49/3.3e+0

1.00 max/37.5/5/5.8e+0 320/6.2/5/5.8e+0 40(70)/4.1(1.4)/5/5.8e+0 210/4.6/5/5.8e+0 160/3.1/5/5.8e+0

10.00 990/18.6/2/1.4e+1 830/15.8/2/1.4e+1 26(210)/7.8(4.0)/2/1.4e+1 1440/31.5/2/1.4e+1 830/16.2/2/1.4e+1

7 0.01 10/0.2/100/5.9e-1 10/0.2/100/5.9e-1 1(10)/0.3(0.2)/100/5.9e-1 30/0.9/100/5.9e-1 20/0.5/100/5.9e-1

0.10 340/7.9/37/3.4e+0 70/1.7/37/3.4e+0 17(20)/1.8(0.5)/37/3.3e+0 150/4.0/37/3.4e+0 300/7.2/37/3.4e+0

1.00 1640/36.7/8/8.5e+0 250/5.8/8/8.5e+0 32(40)/5.7(0.9)/8/8.5e+0 170/4.4/8/8.6e+0 150/3.5/8/8.5e+0

10.00 max/44.7/3/2.8e+1 530/12.1/2/2.8e+1 27(130)/6.1(3.0)/2/2.8e+1 850/22.4/2/2.8e+1 550/12.8/2/2.8e+1

8 0.01 10/0.1/38/2.7e-1 10/0.1/38/2.7e-1 1(10)/0.1(0.1)/38/2.7e-1 70/0.4/38/2.7e-1 150/0.8/38/2.7e-1

0.10 250/1.3/23/1.8e+0 70/0.4/23/1.8e+0 15(10)/0.3(0.1)/23/1.8e+0 310/1.9/23/1.8e+0 640/3.5/23/1.8e+0

1.00 max/10.5/12/6.9e+0 380/2.0/11/6.9e+0 66(50)/1.5(0.3)/12/6.9e+0 480/2.9/11/6.9e+0 1010/5.9/12/6.9e+0

10.00 max/10.4/ 2/1.6e+1 1460/7.7/2/1.6e+1 46(260)/13.9(1.4)/2/1.6e+1 800/4.8/2/1.6e+1 1130/6.1/2/1.6e+1

increases.

To further illustrate the performance of the first-order methods on real data, as
a second test, we consider the first problem in Table 4.3 and attempt to identify the
system order using solutions obtained from Dual AGP. We follow the procedure used
in [32, section 5.3], which we summarize in the following five steps:

Step 1. Take two sets of data points. The first set, called the identification set,
contains NI + 1 data points from time 0 to NI , while the second set, called
the validation set, contains NV + 1 data points from time 0 to NV , and
NV > NI . Form ỹt, t = 0, . . . , NV , from the data points.

Step 2. Consider a series of μ from 10−4 to 10 and fix an r.
Step 3. For each μ:

• Solve the corresponding problem (4.2) by Dual AGP to obtain yμ. For
faster implementation we initialize the Dual AGP at Λ0 = 0 for μ =
10−4, and then for each subsequent μ, we initialize at Λ0 = Λμ− , the
optimal solution of (2.5) for the previous μ−. (Warmstart)
• Estimate the state-space matrices A, B, C, D, and x0 in (4.1) as done
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Table 4.5

Identification errors and validation errors for CD player arm data.

μ rank(H(yμ)) errid errv ‖H(yμ)‖∗
1.233 6 0.141 0.230 0.185
1.385 6 0.143 0.247 0.127
1.556 3 0.178 0.187 0.104
1.748 3 0.178 0.187 0.097
1.963 3 0.177 0.186 0.090

in [32, section 5.2]. This is the standard subspace identification method;
see, for example, [34, section 10.6]. For the sake of completeness, we also
describe the details in Appendix C.
• Compute identification errors (errid) and validation errors (errv) as in
[32, eq. (5.7)], using respectively the NI + 1 and NV + 1 data points:

errid =

√√√√∑NI

t=0 ‖ỹt − ŷt‖2∑NI

t=0 ‖ỹt − ȳI‖2
, errv =

√√√√ ∑NV

t=0 ‖ỹt − ŷt‖2∑NV

t=0 ‖ỹt − ȳV ‖2
,

where

ȳI =
1

NI + 1

NI∑
t=0

ỹt, ȳV =
1

NV + 1

NV∑
t=0

ỹt,

and ŷt is the output generated from (4.1) using the estimated A, B, C,
D, and x0.

Step 4. Plot identification and validation errors against the nuclear norm of H(yμ).
Identify the μ∗ where the “best” trade-off between the errors occurs.

Step 5. The estimated system order is set to be the numerical rank of H(yμ∗), where
yμ∗ is the solution of (4.2) with μ = μ∗. The system parameters are then
given by the corresponding A, B, C, D, and x0.

For comparison with the work [32], we use the same number of data points for
identification and validation as in [32, Table 5.1], i.e., 200 points for identification
and 600 points for validation for the CD player arm problem. Furthermore, we mimic
their choice and set

(4.4) r =

⌊
NI + 2

p+m+ 1

⌋
.

Table 4.5 shows some identification errors (errid) and validation errors (errv), as
well as the corresponding rank5 and nuclear norm of H(yμ), while Figure 4.1 plots
identification and validation errors against the nuclear norm of H(yμ). From these,
we conclude that μ∗ = 1.556 and the estimated system order in this case is 3, which
agrees with the result obtained in [32, Table 5.2]. We also show in Figure 4.2 a plot of
the top 20 singular values of H(yμ∗) (normalized by dividing by σmax(H(yμ∗))) and
that of H(ỹ) (normalized by dividing by σmax(H(ỹ))). We see that it is relatively
easier to identify a numerical rank of 3 for H(yμ∗) than for H(ỹ).

Another commonly used method for identifying system order is the subspace algo-
rithm, which is implemented in the MATLAB function n4sid. A detailed comparison

5We determine the rank by looking at the plot of the top 20 singular values of H(yμ).
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Fig. 4.1. Plot of errid and errv against ‖H(y)‖∗.
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Fig. 4.2. Plot of top 20 singular values of H(ỹ) and H(yμ∗ ), normalized by the respective
spectral norm of the matrices, where ∗ denotes the weighted singular values for H(ỹ) and ◦ denotes
the weighted singular values for H(yμ∗ ).

between our approach described above and the MATLAB function n4sid has been
presented in [32, Table 5.2]. Since our first-order method usually obtains a solution
to (4.2) with lower accuracy than the interior point method used in [32], and the
MATLAB function n4sid has been updated since the publication of [32], it is worth
repeating the comparison for the problems in Table 4.3. In the test below, we use
the same number of data points for identification and validation as in [32, Table 5.1]
and use (4.4). We report the system orders (ord), identification errors (errid), and
validation errors (errv) obtained via our approach outlined above (nn), the n4sid

with default order (n4sidd) called using the option ’best’, and the n4sid using the
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Table 4.6

Comparing our approach and n4sid on problems from Table 4.3.

nn n4sidd n4sidn
P ord/errid/errv/μ

∗ ord/errid/errv ord/errid/errv
1 3/0.18/0.19/1.556 2/0.21/0.23 3/0.16/0.18
2 3/0.19/0.20/1.556 3/0.21/0.58 3/2.20/5.77
3 4/0.069/0.12/0.215 2/0.13/0.18 4/0.080/0.13
4 5/0.11/0.23/0.343 2/3.36/5.38 5/5.47/7.36
5 8/0.14/0.13/1.385 1/0.18/0.17 8/0.14/0.13
6 3/0.17/0.17/0.546 2/0.52/0.58 3/0.18/0.17
7 4/0.22/0.40/1.556 2/0.41/0.53 4/0.60/0.64
8 6/0.28/0.29/2.205 1/0.47/0.29 6/0.31/0.27

order obtained from our approach (n4sidn) in Table 4.6. We also report the μ∗ used
in our approach. We observe that the orders and errors obtained from our approach
are usually slightly different from those in [32, Table 5.2]. This can be attributed to
the solution accuracy in solving (4.2) and the threshold for determining the rank of
H(yμ).6 On the other hand, we still observe that our approach usually yields lower
identification and validation errors than do the two versions of n4sid.7

Comparison with interior point solver from [32]. Finally, we apply the interior
point method in [32] to solving the first problem in Table 4.3 (i.e., with N = 512).
We use the code (written in Python and calling cvxopt 1.1.3, which is installed
from source using Python 2.6.5) available on the authors’ Web page, compiled with
Python 2.6.5. While the interior point method provides a solution of higher accuracy
(the relative duality gap is usually around 10−6, rather than the 10−4 as required in
our first-order methods), it is much slower. We observe that the number of iterations
and CPU time for the interior point method are not sensitive to the change of μ and
are usually around 9 iterations and 1000 seconds, respectively. In particular, when
μ ≤ 1, this method is significantly slower than Dual AGP, which takes between 1 and
40 seconds for this range of μ. The relative performance can also be explained via the
cost per iteration. For the interior point method from [32], since H(y) ∈ R

m(r+1)×q

and y ∈ R
m×(N+1), the cost per iteration is O(m3rN2q), with m(N +1) ≥ q ≥ m(r+

1), and the method requires around 10 iterations.8 On the other hand, for the first-
order methods, although the method takes around 1000 iterations, each iteration only

6We determine the rank by looking at the plot of the top 20 singular values of H(yμ), except
for problems 4 and 7, where the cut-off is not clear and we truncate at 10−4 · σmax(H(yμ)) and
10−2 · σmax(H(yμ)), respectively.

7We note two observations:
(a) The errors for problems 2 and 4 obtained from n4sid are exceptionally large. In view of

this, we also tried to vary the input order for n4sid from 1 to 12 for these two problems
and observed the corresponding identification and validation errors. For problem 2, the
smallest (errid, errv) = (0.19, 0.39), which occurs when the order is 10, while for problem
4, the smallest (errid, errv) = (0.14, 0.22), which occurs when the order is 8.

(b) The commands n4sidn and n4sidd give different errors for problem 2 even though
the order is the same. It seems that a different set of A, B, C, D is obtained
if one directly inputs to n4sid the order obtained from calling n4sid with the option
’best’ (this was observed for all eight problems). To be precise, here is how we call n4sidd:
n4sid(data,’best’,’nk’,zeros(1,m),’InitialState’,’Estimate’,’CovarianceModel’,’None’,’Focus’,
’Stability’, ’DisturbanceModel’,’None’).

8The cost per iteration—more precisely, the cost for computing the Newton direction—was de-
rived under the assumption that y �→ H(y) is injective for the simpler problem, miny ‖H(y) − B‖∗
for a given matrix B. The analysis can be adapted for (2.1) if y �→ H(y) is injective, and gives the
same iteration complexity.
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involves an SVD of cost O(m2r2q) [25, Page 254] and several matrix multiplications
for forming the products Hm,1,r+1,N+1−r(y)U

⊥ and Λ(U⊥)T , each of cost O(mNrq).
Thus, the first order methods appear more suitable for larger scale identification
problems.

5. Stochastic system realization. Another fundamental problem in linear sys-
tem theory is finding a minimal stochastic ARMA (autoregressive moving average)
model for a vector random process, given noisy and/or partial estimates of process
covariances. Covariance estimates are often obtained from sample averages of a se-
quence of noisy observations of the process, hence including both measurement noise
and error due to the finite sample size. Here we focus on a form of this problem, de-
scribed in [33, section II.B]; see also [35]. Consider a state-space model of an ARMA
process yt ∈ R

n,

xt+1 = Axt +Bet,

yt = Cxt + et,

where xt ∈ R
r and et is white noise with covariance matrix Q. The process covariances

hi = E(ytyt+i
T ) ∈ R

n×n satisfy

h0 = CPCT +Q, ht = CAt−1D, t ≥ 1,

where D = APCT + BQ and P = E(xtx
T
t ) satisfies the Lyapunov equation P =

APAT +BQBT . In a stochastic realization problem, we are given noisy estimates of
hi, denoted by h̃i, i = 1, . . . , T − 1, and the goal is to find the minimal model order
r as well as the model parameters A,B,C,Q. It is known that the minimal order is
equal to the rank of the block-Hankel matrix Hn,n,j,k consisting of the exact process
covariances [35]. (As in the system ID problem, we need the Hankel matrix to be
large enough; that is, j and k should be larger than the rank.)

A general form of this problem, allowing for both noise and missing covariance
information, can be stated as follows:

(5.1) min
y

1

2
‖w ◦ (y − h̃)‖2F + μ‖Hm,n,j,k(y)‖∗,

where ◦ denotes the Hadamard (or entrywise) product and w =
(
w0 · · · wj+k−2

)
is an m× n(j + k − 1) matrix, with each wi being an m× n zero matrix or a matrix
of all ones (denoting the case where some covariance blocks are unknown or missing),
or a matrix with 0, 1 entries (denoting the case where some covariance entries are
missing). The problem corresponds to (2.1) with Υ = I, A(y) = vec(w ◦ y), and
b = vec(w ◦ h̃). Thus,

σmax(A) = σmax(Υ) = 1, H∗(Λ) = H∗
m,n,j,k(Λ).

Notice that the solution set of (5.1) is nonempty since the function y �→ ‖H(y)‖∗ is
coercive.

5.1. Computational results. In this section, we compare different algorithms
for solving (5.1). Specifically, we consider Primal ADMM, Dual ADMM, and Dual
PPA. Since the action of (βH∗H+A∗A)−1 on vectors can be easily computed for any
β > 0, we also consider a variant of Primal ADMM (referred to as Primal ADMM2)
with Q0 = 0 instead of (3.1). Furthermore, notice that the quadratic term in (5.1) is
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not strictly convex in y; the dual problem will then have additional linear constraints
that make gradient projection expensive computationally. Thus, we do not consider
gradient projection algorithms for solving (5.1).

We initialize all algorithms except Dual PPA at the origin, where the latter algo-
rithm is initialized at an approximate solution obtained from Primal ADMM2,9 and
terminate the algorithms by checking

max

{
mint∈Kk f(yt) + d(−w ◦ H∗(P(Λk)))

max{1, |d(−w ◦ H∗(P(Λk)))|} ,
‖H∗(P(Λk))− w ◦ H∗(P(Λk))‖F

max{1, ‖H∗(P(Λk))‖F }
}(5.2)

< 10−4,

with {(yk,Λk)} defined as in sections 3.1 and 3.2; P is the projection onto the spectral
norm ball with radius μ. We set Kk = {1 ≤ ν ≤ k : ν divides 10} for all algorithms
except the Dual PPA and check (5.2) every 10 iterations. For Dual PPA we set
Kk = {1 ≤ ν ≤ k} and check (5.2) every iteration. For the ADMMs we still set
τ = 1.61, but we set β = μr

2σmax(h)
for Primal ADMM and Primal ADMM2 and

β = σmax(h)
8μr for Dual ADMM. For Dual PPA, we use the same parameters as in the

previous section.
Following [33, section II(B)], we generate matrices A ∈ R

r×r, B ∈ R
r×n, and C ∈

R
n×r with i.i.d. standard Gaussian entries (i.e., with mean 0 and variance 1). These

matrices are then normalized to have spectral norm 1. We also randomly generate an
initial state x0 ∼ N(0, I) and noise vectors et ∼ N(0, I) for t = 0, . . . , T − 1, again
with i.i.d. standard Gaussian entries. We then generate an output ȳt, t = 0, . . . , T −1,
according to the state-space model:

xt+1 = Axt +Bet,

ȳt = Cxt + et.

To model measurement noise, we further add noise to ȳ and get ỹ = ȳ + σε, where
ε has i.i.d. Gaussian entries with mean 0 and variance 1. We then set, for each
i = 0, . . . , k − 1,

h̃i =
1

T

T−1−i∑
t=0

ỹt+iỹ
T
t ,

and h̃i is zero for i ≥ k. Finally, set w = (w0 ··· wj+k−2 ) such that w0 = · · · = wk−1

equals the matrix of all ones, and zero otherwise. In the tests below, we consider
T = 1000, n = 20, 30, and k = 100, 200. We use r = 10 and hence set j = 21. We
further pick σ = 5 × 10−2. The statistics of the test problems used are reported in
the caption for Table 5.1; recall that q = nk in this case. We run our algorithms for a
range of values of μ, namely μ = 10−2, 10−1, 1, 10, in our simulations below to study
the performance of the algorithms for different values of μ. The computational results
are reported in Table 5.1. We see that Primal ADMM2 works best in all instances.10

9We terminate Primal ADMM2 by checking relative duality gap and relative dual feasibility with
tol = 5× 10−3, checked every 10 iterations. We also terminate the algorithm early if the change in
Fröbenius norm of successive iterates is small (< 10−8 for each variable) or the maximum number
of iteration hits 2000.

10We note that since the action of (I + βAA∗)−1 on vectors is easy to compute, one could have
chosen Q1 = 0 rather than I −AA∗ in Dual ADMM. However, since γ0 = 0, it is not hard to check
that the variant with Q1 = 0 would generate exactly the same sequence as Dual ADMM, which uses
(3.2).
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Table 5.1

Computational results for the stochastic system realization problem. For Problems 1 and 2,
k = 100, with n = 20 and 30, respectively; for problems 3 and 4, k = 200, with n = 20 and 30,
respectively.

P. ADMM P. ADMM2 D. ADMM D. PPA
P μ iter/cpu/obj iter/cpu/obj iter/cpu/obj iter/cpu/obj
1 0.01 360/207.3/5.38e+0 30/17.3/5.38e+0 70/35.4/5.38e+0 55(20)/96.4(11.4)/5.38e+0

0.10 70/39.4/2.73e+1 70/39.9/2.73e+1 140/69.3/2.73e+1 51(20)/71.8(11.2)/2.73e+1
1.00 200/113.5/4.18e+1 20/11.3/4.18e+1 110/54.5/4.18e+1 14(10)/28.0(5.5)/4.18e+1
10.00 180/103.3/4.38e+1 20/11.2/4.38e+1 180/90.4/4.38e+1 45(10)/86.3(5.5)/4.38e+1

2 0.01 490/788.5/9.12e+0 30/47.4/9.12e+0 100/142.4/9.12e+0 112(20)/451.5(31.8)/9.12e+0
0.10 80/126.8/4.99e+1 40/64.6/4.99e+1 80/114.3/4.99e+1 43(10)/726.2(15.2)/4.99e+1
1.00 180/287.2/7.04e+1 20/31.2/7.04e+1 100/141.7/7.04e+1 16(10)/165.1(15.3)/7.04e+1
10.00 180/287.3/7.16e+1 20/31.3/7.16e+1 180/255.1/7.16e+1 39(10)/222.1(15.3)/7.16e+1

3 0.01 410/499.7/7.16e+0 30/35.7/7.16e+0 90/95.3/7.16e+0 61(20)/215.6(23.7)/7.16e+0
0.10 70/84.2/4.02e+1 40/47.6/4.02e+1 50/53.2/4.02e+1 42(10)/273.4(11.7)/4.02e+1
1.00 160/194.9/5.29e+1 20/23.8/5.29e+1 80/85.5/5.29e+1 7(10)/35.6(11.6)/5.29e+1
10.00 180/216.6/5.33e+1 20/23.7/5.33e+1 180/191.6/5.33e+1 35(10)/195.6(11.5)/5.33e+1

4 0.01 550/1932.1/1.35e+1 30/106.9/1.35e+1 90/281.4/1.35e+1 51(20)/2307.9(69.0)/1.35e+1
0.10 110/384.1/8.74e+1 40/138.8/8.74e+1 50/157.1/8.74e+1 26(10)/953.2(32.8)/8.74e+1
1.00 130/457.2/1.23e+2 20/71.6/1.23e+2 80/250.5/1.23e+2 8(10)/92.8(32.8)/1.23e+2
10.00 180/629.7/1.25e+2 20/67.5/1.25e+2 180/550.1/1.25e+2 39(10)/470.9(33.1)/1.25e+2

Comparison with other methods for system realization.. We also adapted Cad-
zow’s method [4], an approach based on alternating projections, that has been used
in engineering applications for similar problems. We start by specifying an estimate
r̃ of the order and ε̃ > 0 of the noise level. In each iteration, we first project onto
the set of matrices with a Hankel structure to obtain Hk, then project onto the ball
centered at h̃ with radius ε̃ to obtain Y k, and finally project onto the (nonconvex) set
of matrices with rank less than r̃ to obtain Rk. The algorithm is terminated when

max{‖Hk − Y k‖F , ‖Rk − Y k‖F }
max{1, ‖Hk‖F} < 10−3.

In the examples we tested, the performance and convergence of this algorithm is
very sensitive to the values of the two parameters, the noise level and the order
estimate. Indeed, it is known to be suboptimal as discussed in [10, section V.A]. On
the other hand, the convex optimization approach presented here depends only on
one parameter (μ), and the runtime does not change significantly as μ varies.

Finally, we mention that another common approach to solving the system real-
ization problem is via subspace methods [35]. For a detailed comparison between the
nuclear norm approach and the subspace method applied to this problem, we refer
readers to [33, section 2B], where problem (5.1) was solved via an interior-point solver.

6. Concluding remarks. We studied the optimization problem of minimizing
the nuclear norm of matrices with linear structure, including Hankel, Toeplitz, and
moment structures. We showed that solving this problem leads to a systematic ap-
proach to capturing the trade-off between a model’s order and complexity and fitting
(and validation) errors, a trade-off that arises in many modeling applications. We
then focused on first-order methods for solving the resulting optimization problem.
In our computational experiments, for the system identification problem, the gradient
projection method (accelerated by Nesterov’s extrapolation techniques) and the dual
proximal point algorithm usually outperform other first-order methods in terms of
CPU time for large and small regularization parameters, respectively. For the sys-
tem realization problem, the alternating direction method of multipliers, as applied
to a certain primal reformulation, usually outperforms other first-order methods in
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terms of CPU time. In our tests, we also observe that these methods outperform the
interior-point implementation proposed in [32] for system identification problems.

We remark that most of the algorithms proposed in this work can easily be
adapted to solving (1.1) with a general linear structure X = L(y), as long as L(y) can
be computed efficiently and the norm of L can be estimated. We chose to focus our
discussion on the Hankel structure to relate to our motivating applications discussed
in the introduction, which mainly concern Hankel structure.

An interesting direction for future work on this problem is whether there are
conditions under which the nuclear norm heuristic can be theoretically guaranteed to
find the minimum-rank solution. In order to make analogies with the existing low-rank
matrix recovery framework, we can consider the following problem: how many generic,
random linear measurements of a rank-r, n × n Hankel matrix suffice for correct
recovery of the Hankel matrix? If we ignore the Hankel structure, existing results
on recovery from random Gaussian measurements require O(nr) measurements [6];
however, it is expected that the number would be much lower due to the Hankel
structure.

Another future research direction involves applying our algorithms to the broader
range of applications identified in the introduction, particularly moment-based prob-
lems. Some of these problems have further structure that the algorithms can exploit.

Appendix A. An alternative formulation. In this appendix, we describe
an alternative formulation for modeling the structured matrix rank minimization.
Instead of minimizing a least-squares fitting error, we constrain the difference A(y)−b
to be in a set. The problem is then formulated as

(A.1)
min
y

‖H(y)‖∗
s.t. A(y)− b ∈ Ω,

where Ω is the closed convex set modeling uncertainty. For instance, problem (1.2)
can be modeled as (A.1) with Ω = [l1, b1]× [l2, b2]× · · · × [ln, bn].

As in section 2, we can rewrite (A.1) as

(A.2)

v1 := min
Y,z,y

‖Y ‖∗
s.t. Y +H(y) = 0,

z +A(y) = b,
z ∈ Ω.

It is then not hard to show that the dual to (A.2) is equivalent to solving

(A.3)

−v1 = min
γ,Λ

s
Ω
(γ)− bTγ

s.t. H∗(Λ) +A∗(γ) = 0,
ΛTΛ � I,

where s
Ω
(γ) := supy∈Ω y

Tγ is the support function of the set Ω.
Unlike (2.3), the objective function of (A.3) is in general not differentiable; hence

gradient projection methods are not easily applicable. However, the ADMMs and the
dual PPA can be suitably applied to solving (A.2) and (A.3). The efficiency in solving
the subproblems depends on the specific form of Ω.

Appendix B. Convergence of the proximal ADMM. In this appendix, we
provide a convergence proof of a proximal alternating direction method of multipliers,
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which covers all versions of proximal ADMMs used in this paper. Consider the convex
optimization problem with the following separable structure:

min
x,y

f(x) + g(y)

s.t. Ax +By = c,
(B.1)

where f : X → (−∞,+∞] and g : Y → (−∞,+∞] are closed proper convex functions,
A : X → Z and B : Y → Z are linear operators, and X ,Y, and Z are real finite
dimensional Euclidean spaces with inner product 〈·, ·〉 and its induced norm ‖ ·‖. The
proximal ADMM for solving (B.1) takes the following form:

Proximal ADMM
Step 0. Input (x0, y0, z0) ∈ dom f × dom g ×Z.
Step 1. Set

(B.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin
x∈X

f(x)− 〈zk, Ax〉

+
λ

2
‖Ax+Byk − c‖2 + 1

2
‖x− xk‖2S ,

yk+1 = argmin
y∈Y

g(y)− 〈zk, By〉

+
λ

2
‖Axk+1 +By − c‖2 + 1

2
‖y − yk‖2T ,

zk+1 = zk − τ λ(Axk+1 +Byk+1 − c),

where λ > 0 is the penalty parameter, τ ∈ (0, (1 +
√
5)/2) is the

step length (one can take τ ∈ (0, 2) when the x-part or the y-part
disappears), and S and T are two self-adjoint positive semidefinite,
not necessarily positive definite, operators on X and Y, respectively.

Step 2. If a termination criterion is not met, go to Step 1.

When S = 0 and T = 0, the proximal ADMM (B.2) reduces to the classical
ADMM introduced by Glowinski and Marroco [23] and Gabay and Mericier [22]. It
was shown by Eckstein and Bertsekas [15] that the ADMM with τ = 1, as a special
case of the Douglas–Rachford splitting [21], is actually an application of the proximal
point algorithm on the dual problem by means of a specially constructed splitting
operator. Based on the same argument, by further applying a change of variables
to the operators, Eckstein [14] presented the first proximal ADMM as in (B.2) with
S = αI and T = βI for positive constants α > 0 and β > 0. Later, He et al. [26]
further extended the idea of Eckstein [14] to monotone variational inequalities to allow
λ, S, and T to be replaced by different parameters λk, Sk, and Tk in each iteration.
The convergence results provided in [14] and [26] for the proximal ADMM both need
S and T to be positive definite, which makes the convergence analysis easily accessible
but may limit the applications of the method. Very recently, Xu and Wu [57] provided
a nice extension on convergence analysis from the classical ADMM to the proximal
ADMM (B.2), allowing the step length τ to stay in the larger range (0, (1 +

√
5)/2),

which is desirable in many applications in the following scenarios: (i) T = 0 and
S + λA∗A = αI; (ii) S = 0 and T + λB∗B = βI; and (iii) S + λA∗A = αI and
T + λB∗B = βI, where α > λσmax(A

∗A) and β > λσmax(B
∗B) are two positive

constants. On the one hand, to require S or T to be positive definite instead of being
positive semidefinite will not make much difference in numerical computations. On the
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other hand, the restriction on the positive definiteness will exclude some interesting
situations such as the classical ADMM. Here we will provide a unified convergence
theorem by requiring S and T to be positive semidefinite only. This will allow us
to apply the proximal ADMM to more interesting problems (for such a case, see the
second remark after the proof of our theorem) as well as provide a guide on choices
of S and T (both S and T should be as small as possible). Actually, by exploiting
the potential composite structures of f and g, we may not even need S + λA∗A or
T + λB∗B to be positive definite, a commonly used assumption for existing ADMM
and its variants. Our proof is quite routine in some sense, as the variational tools
employed are quite standard, and is closely based on the essential ideas developed by
Fortin and Glowinski [20] for the convergence of the ADMM with B = I. For clarity
and ease of reference, we include a proof here.

For technical reasons, we consider the following constraint qualification:
CQ: There exists (x0, y0) ∈ ri(dom f × dom g) ∩ P , where P is the constraint set

in (B.1).
Under the CQ, it follows from [48, Corollaries 28.2.2 and 28.3.1] that (x̄, ȳ) ∈

X × Y is an optimal solution to problem (B.1) if and only if there exists a Lagrange
multiplier z̄ ∈ Z such that

(B.3) A∗z̄ ∈ ∂f(x̄), B∗z̄ ∈ ∂g(ȳ), Ax̄+Bȳ − c = 0,

where ∂f and ∂g are the subdifferential mappings of f and g, respectively. Moreover,
any z̄ ∈ Z satisfying (B.3) is an optimal solution to the dual problem of (B.1). On the
other hand, since the subdifferential mappings of the closed proper convex functions
are maximal monotone [49, Theorem 12.17], there exist two self-adjoint and positive
semidefinite operators Σf and Σg such that for all x, x̂ ∈ dom(f), u ∈ ∂f(x), and
û ∈ ∂f(x̂),

(B.4) f(x) ≥ f(x̂) + 〈û, x− x̂〉+ 1

2
‖x− x̂‖2Σf

and 〈u − û, x− x̂〉 ≥ ‖x− x̂‖2Σf
,

and for all y, ŷ ∈ dom(g), v ∈ ∂g(y), and v̂ ∈ ∂g(ŷ),

(B.5) g(y) ≥ g(ŷ) + 〈v̂, y − ŷ〉+ 1

2
‖y − ŷ‖2Σg

and 〈v − v̂, y − ŷ〉 ≥ ‖y − ŷ‖2Σg
.

For notational convenience, define for (x, y) ∈ X ×Y that h(x, y) := Ax+By and for
(x, y, z) ∈ X × Y × Z that

(B.6) θ(x, y, z) := (τλ)−1‖z − z̄‖2 + ‖x− x̄‖2S + ‖y − ȳ‖2T + λ‖B(y − ȳ)‖2.

Theorem B.1. Assume that the solution set of (B.1) is nonempty and that the
CQ holds. Assume also that both Σf + S + λA∗A and Σg + T + λB∗B are positive
definite. Let {(xk, yk, zk)} be generated from the proximal ADMM. For k = 1, 2, . . . ,
denote

(B.7)

⎧⎪⎪⎨
⎪⎪⎩

δk+1 := min(τ, 1 + τ − τ2)λ||B(yk+1 − yk)‖2 + ‖yk+1 − yk‖2T ,
tk+1 := δk+1 + ‖xk+1 − xk‖2S + 2‖xk+1 − x̄‖2Σf

+ 2‖yk+1 − ȳ‖2Σg
,

ψk+1 := θ(xk+1, yk+1, zk+1) + ||yk+1 − yk‖2T .

Then, the following results hold:
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(a) if τ ∈ (0, 1], we have for k ≥ 1 that

ψk+1 + (1− τ)λ‖h(xk+1 , yk+1)− c‖2 − [ψk + (1− τ)λ‖h(xk, yk)− c‖2]
≤ −[tk+1 + λ‖h(xk+1, yk+1)− c‖2];(B.8)

(b) if τ > 1, we have for k ≥ 1 that

ψk+1 + (1− τ−1)λ‖h(xk+1, yk+1)− c‖2 − [ψk + (1− τ−1)λ‖h(xk, yk)− c‖2]
≤ −[tk+1 + τ−1(1 + τ − τ2)λ‖h(xk+1, yk+1)− c‖2];(B.9)

(c) if τ ∈ (0, (1+
√
5)/2), then the sequence {(xk, yk)} converges to an optimal so-

lution to (B.1) and {zk} converges to an optimal solution to the dual problem
of (B.1);

(d) and if A is vacuous and f ≡ 0, then for τ ∈ (0, 2) we have that xk+1 = x0 = x̄,
and for k ≥ 0 it holds that

(τλ)−1‖zk+1 − z̄‖2 + ‖yk+1 − ȳ‖2T ≤ (τλ)−1‖zk − z̄‖2 + ‖yk − ȳ‖2T
−[(2− τ)λ‖B(yk+1)− c‖2 + ‖yk+1 − yk‖2T + 2‖yk+1 − ȳ‖2Σg

],(B.10)

and the sequence {(xk, yk)} converges to an optimal solution to (B.1), and
{zk} converges to an optimal solution to the dual problem of (B.1).

Proof. Obviously, the sequence {(xk, yk, zk)} is well defined under the assump-
tions given in this theorem. Notice that the iteration scheme (B.2) of the proximal
ADMM can be rewritten as: for k = 0, 1, 2, . . .,⎧⎪⎨

⎪⎩
0 ∈ ∂f(xk+1)−A∗[zk − λ(h(xk+1 , yk)− c)] + S(xk+1 − xk),
0 ∈ ∂g(yk+1)−B∗[zk − λ(h(xk+1, yk+1)− c)] + T (yk+1 − yk),
0 = h(xk+1, yk+1)− c+ (τλ)−1(zk+1 − zk),

which implies

(B.11)

⎧⎪⎪⎨
⎪⎪⎩

A∗[zk+1 − (1− τ)λ(h(xk+1 , yk+1)− c)− λB(yk − yk+1)]
− S(xk+1 − xk) ∈ ∂f(xk+1),

B∗[zk+1 − (1− τ)λ(h(xk+1 , yk+1)− c)]
− T (yk+1 − yk) ∈ ∂g(yk+1).

Define xke := xk − x̄ for notational simplicity, and define yke and zke similarly. Let

uk+1 := zk+1 − (1 − τ)λ(h(xk+1 , yk+1)− c)− λB(yk − yk+1),
vk+1 := zk+1 − (1− τ)λ(h(xk+1 , yk+1)− c).

Combining (B.4) and (B.5) with (B.3) and (B.11), we have

〈A∗uk+1 − S(xk+1 − xk)−A∗z̄, xk+1 − x̄〉 ≥ ‖xk+1 − x̄‖2Σf
,

〈B∗vk+1 − T (yk+1 − yk)−B∗z̄, yk+1 − ȳ〉 ≥ ‖yk+1 − ȳ‖2Σg
.

Adding up these two inequalities and using the definitions of uk+1 and vk+1 and the
relation

h(xk+1
e , yk+1

e ) = h(xk+1, yk+1)− c = (τλ)−1(zk − zk+1) = (τλ)−1(zke − zk+1
e ),
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we obtain that
(B.12)

(τλ)−1〈zk+1
e , zke − zk+1

e 〉 − (1− τ)λ‖h(xk+1, yk+1)− c‖2
+λ〈B(yk+1 − yk), h(xk+1, yk+1)− c〉 − λ〈B(yk+1 − yk), Byk+1

e 〉
− 〈S(xk+1 − xk), xk+1

e 〉 − 〈T (yk+1 − yk), yk+1
e 〉 ≥ ‖xk+1

e ‖2Σf
+ ‖yk+1

e ‖2Σg
.

Next, we shall estimate the term λ〈B(yk+1 − yk), h(xk+1, yk+1) − c〉 in (B.12).
By noticing from (B.11) that

B∗vk+1 − T (yk+1 − yk) ∈ ∂g(yk+1) and B∗vk − T (yk − yk−1) ∈ ∂g(yk),

we obtain from the maximal monotonicity of ∂g(·) that

〈yk+1 − yk, B∗vk+1 − T (yk+1 − yk)− [B∗vk − T (yk − yk−1)]〉 ≥ 0

⇒ 〈B(yk+1 − yk), vk+1 − vk〉 ≥ ‖yk+1 − yk‖2T − 〈yk+1 − yk, T (yk − yk−1)〉 .

Thus, by letting μk+1 := (1 − τ)λ〈B(yk+1 − yk), h(xk, yk)− c〉, we have

λ〈B(yk+1 − yk), h(xk+1, yk+1)− c〉
= (1 − τ)λ〈B(yk+1 − yk), h(xk+1, yk+1)− c〉+ 〈B(yk+1 − yk), zk − zk+1〉
= μk+1 + 〈B(yk+1 − yk), vk − vk+1〉
≤ μk+1 − ‖yk+1 − yk‖2T + 〈yk+1 − yk, T (yk − yk−1)〉

≤ μk+1 − 1

2
‖yk+1 − yk‖2T +

1

2
‖yk − yk−1‖2T ,

which, together with (B.12), implies

(τλ)−1〈zk+1
e , zke − zk+1

e 〉 − (1− τ)λ‖h(xk+1, yk+1)− c‖2 + μk+1

− 1

2
‖yk+1 − yk‖2T +

1

2
‖yk − yk−1‖2T − λ〈B(yk+1 − yk), Byk+1

e 〉
− 〈S(xk+1 − xk), xk+1

e 〉 − 〈T (yk+1 − yk), yk+1
e 〉 ≥ ‖xk+1

e ‖2Σf
+ ‖yk+1

e ‖2Σg
.

Using zk+1− zk = −τλ[h(xk+1 , yk+1)− c] and elementary relations 〈u, v〉 = 1
2 (‖u‖2+‖v‖2 − ‖u− v‖2) = 1

2 (‖u+ v‖2 − ‖u‖2 − ‖v‖2), we further obtain that

(B.13)

(τλ)−1(‖zke ‖2 − ‖zk+1
e ‖2)− (2− τ)λ‖h(xk+1, yk+1)− c‖2 + 2μk+1

−‖yk+1 − yk‖2T + ‖yk − yk−1‖2T − λ‖B(yk+1 − yk)‖2 − λ‖Byk+1
e ‖2 + λ‖Byke ‖2

−‖xk+1 − xk‖2S − ‖xk+1
e ‖2S + ‖xke‖2S − ‖yk+1 − yk‖2T − ‖yk+1

e ‖2T + ‖yke‖2T
≥ 2‖xk+1

e ‖2Σf
+ 2‖yk+1

e ‖2Σg
.

Now we are ready to consider the two cases for the steplengths τ ∈ (0, 1] and τ > 1,
respectively.

Case I. τ ∈ (0, 1]. In this case, by using the fact that

2〈B(yk+1 − yk), h(xk, yk)− c〉 ≤ ‖B(yk+1 − yk)‖2 + ‖h(xk, yk)− c‖2
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and the definition 2μk+1 = 2(1− τ)λ〈B(yk+1 − yk), h(xk, yk)− c〉, after some simple
manipulations we can obtain from (B.13) that (B.8) holds.

Case II. τ > 1. Similarly, by using the inequality

−2〈B(yk+1 − yk), h(xk, yk)− c〉 ≤ τ‖B(yk+1 − yk)‖2 + τ−1‖h(xk, yk)− c‖2,
we know from (B.13) that (B.9) holds.

Assume that τ ∈ (0, (1 +
√
5)/2). We can now consider the convergence of the

sequence {(xk, yk, zk)}. From (B.7)–(B.9), we see immediately that the sequence
θ(xk+1, yk+1, zk+1) + ‖yk+1 − yk‖2T is bounded and

(B.14) lim
k→∞

tk+1 = 0 and lim
k→∞

‖zk+1 − zk‖ = lim
k→∞

(τλ)−1‖h(xk+1, yk+1)− c‖ = 0.

By using the definitions of θ in (B.6) and tk+1 in (B.7), we see that the three sequences
{‖zk+1‖}, {‖yk+1

e ‖2(Σg+T+λB∗B)}, and {‖xk+1
e ‖2(Σf+S)} are all bounded. Since Σg +

T + λB∗B is assumed to be positive definite, the sequence {‖yk+1‖} is also bounded.
Furthermore, by using

(B.15) ‖Axk+1
e ‖ ≤ ‖Axk+1

e +Byk+1
e ‖+ ‖Byk+1

e ‖ = ‖h(xk+1, yk+1)− c‖+ ‖Byk+1
e ‖,

we also know that the sequence {‖Axk+1
e ‖} is bounded, and so is the sequence

{‖xk+1
e ‖2(Σf+S+λA∗A)}. This shows that the sequence {‖xk+1‖} is also bounded, as

the operator Σf + S + λA∗A is assumed to be positive definite. Thus, the sequence
{(xk, yk, zk)} is bounded.

Since the sequence {(xk, yk, zk)} is bounded, there exists a subsequence {(xki , yki ,
zki)} that converges to a cluster point, say (x∞, y∞, z∞). We next show that (x∞, y∞)
is an optimal solution to problem (B.1) and z∞ is a corresponding Lagrange multiplier.

To this end, we first note from (B.14) that

lim
k→∞

‖B(yk+1 − yk)‖ = 0, lim
k→∞

‖(xk+1 − xk)‖S = 0,

and lim
k→∞

‖(yk+1 − yk)‖T = 0.(B.16)

By using the inequality

‖Axk+1 +Byk − c‖ ≤ ‖Axk+1 +Byk+1 − c‖+ ‖B(yk+1 − yk)‖,
we deduce from (B.16) and (B.14) that

(B.17) lim
k→∞

‖zk+1 − zk‖ = 0 and lim
k→∞

‖Axk+1 +Byk − c‖ = 0.

Taking limits on both sides of (B.11) along the subsequence {(xki , yki , zki)}, using
(B.16), (B.17), and invoking the closedness of the graphs of ∂f and ∂g [3, p. 80], we
obtain that

A∗z∞ ∈ ∂f(x∞), B∗z∞ ∈ ∂g(y∞), Ax∞ +By∞ − c = 0;

i.e., (x∞, y∞, z∞) satisfies (B.3). From the discussion prior to the theorem, we con-
clude that (x∞, y∞) is an optimal solution to problem (B.1) and that z∞ is a corre-
sponding Lagrange multiplier.

To complete the proof of part (c), we show that (x∞, y∞, z∞) is actually the
unique limit of {(xk, yk, zk)}. Recall that (x∞, y∞, z∞) satisfies (B.3). Hence, we
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could replace (x̄, ȳ, z̄) with (x∞, y∞, z∞) in the above arguments, starting from (B.4)
and (B.5). Consequently, for τ ∈ (0, 1] the subsequence {ψki + (1− τ)λ‖h(xki , yki)−
c‖2} converges to 0 as ki →∞, and for τ ∈ (1, (1+

√
5)/2) the subsequence {ψki+(1−

τ−1)λ‖h(xki , yki) − c‖2} converges to 0 as ki → ∞. Since the two subsequences are
from two nonincreasing sequences and since the sequence {‖h(xk, yk)− c‖} converges
to zero,

(B.18) lim
k→∞

θ(xk, yk, zk) + ||yk − yk−1‖2T = lim
k→∞

ψk = 0.

From this, we see immediately that limk→∞ zk = z∞. Moreover, we obtain from
(B.18) and (B.14) that

lim
k→∞

(‖yke‖2Σg
+ ‖yke‖2T + λ‖Byke ‖2) + (‖xke‖2Σf

+ ‖xke‖2S) = 0.

Hence, we have limk→∞ yk = y∞ as the operator Σg + T + λB∗B is positive definite.
This, together with (B.15), further implies limk→∞ ‖Axke‖ = 0. Thus, we have

lim
k→∞

‖xke‖2Σf
+ ‖xke‖2S + λ‖Axke‖2 = 0,

which, from the fact that the operator Σf +S+λA
∗A is positive definite, ensures that

limk→∞ xk = x∞. Therefore, we have shown that the whole sequence {(xk, yk, zk)}
converges to (x∞, y∞, z∞) if τ ∈ (0, (1 +

√
5)/2).

Finally, by observing that the third and the fourth terms on the left-hand side of
(B.12) cancel each other out if A is vacuous, we can easily start from (B.12) to get
(B.10). The convergence of {(xk, yk, zk)} can be obtained in a similar but simpler
manner as in the proof for part (c).

Remark B.1. Theorem B.1 provides general conditions for the convergence of the
proximal ADMM. It includes some recent results in the literature as special cases. For
example, the convergence of the proximal ADMM has been considered by Attouch
and Soueycatt [1] for the case S = 1

λI and T = 1
λI. Moreover, Zhang, Burger, and

Osher [59] considered the case when B = I and S is chosen to be positive definite and
established a slightly weaker convergence result, that is, that all the cluster points
of {(xk, yk)} and {zk} are optimal solutions to the primal and dual problems, re-
spectively. Furthermore, Yang and Zhang [58] applied the proximal ADMM to solve
l1-norm minimization problems in compressive sensing, allowing the step length to
be chosen under some conditions other than only 1. It is notable that when the step
length is chosen to be 1, the iteration scheme in [58] simply reduces to (B.2) with
A = I and a self-adjoint and positive definite operator T . It is also not hard to see
that Theorem B.1 covers all three convergence results in the aforementioned work of
Xu and Wu [57].

Remark B.2. Suppose that f takes the form of f0 + p with f0 being a convex
quadratic function whose Hessian is Σ and p being a “simple” closed proper convex
function whose proximal mapping, under the weighted inner product 〈·, ·〉D := 〈·, D ·〉
for a given self-adjoint and positive definite operator D, admits an efficient algorithm.
Then the condition in Theorem B.1 actually allows the flexibility to introduce an S
to “cancel” out also the second-order term in f0, in addition to the second-order term
in the quadratic penalty, such that

S + (Σ + λA∗A) = αD,

where α is the smallest positive number such that S is positive semidefinite. That
is, S makes up the difference between αD and Σ + λA∗A. In the extreme case of
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Σ + λA∗A = βD for some positive number β, one may and should just take S = 0.
These comments on f are also applicable to the function g. Furthermore, if either the
x-part or the y-part disappears, one can allow the step length τ to take values in the
larger interval (0, 2).

Appendix C. Subspace identification algorithm for system identifica-
tion. In this appendix, we discuss how the rank of the matrix H(y) is related to the
system order in the system identification problem in section 4. We will follow closely
the discussion in [32, section 5]. Based on this discussion, we describe a version of the
classical subspace method as used in Step 3 of our approach for system identification,
discussed in section 4.1.2.

Notice that if there is no output measurement noise, then (4.1) is satisfied with
y = ỹ. Assume further that r is larger than the true order of the system. Then we
obtain from (4.1) that

(C.1) Hm,1,r+1,N+1−r(y) = GX + LHp,1,r+1,N+1−r(u),

where X =
(
x0 x1 · · · x(N − r)) and

G =

⎛
⎜⎜⎜⎝

C
CA
...

CAr

⎞
⎟⎟⎟⎠ , L =

⎛
⎜⎜⎜⎜⎜⎝

D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...
CAr−1B CAr−2B · · · · · · D

⎞
⎟⎟⎟⎟⎟⎠ .(C.2)

Thus, if U⊥ denotes the orthogonal matrix whose columns span the nullspace of
Hp,1,r+1,N+1−r(u), by multiplying both sides of (C.1) by U⊥, we get

(C.3) H(y) = Hm,1,r+1,N+1−r(y)U
⊥ = GXU⊥.

Hence, the rank of H(y) equals the rank of G (which is equal to the true system
order) if there is no rank cancellation in the product GXU⊥. This latter property
holds generically for a randomly chosen input sequence u.

The subspace method for system identification with noisy output, which we use
in Step 3 of our algorithm, can be derived based on the above relations. We describe
the method below.

• Set the threshold for the (numerical) rank of the matrix H(yμ) at some suit-
able integer n. This will be the approximate system order. Motivated by
(C.3), we next find Ĝ ∈ R

m(r+1)×n whose columns span the range of the
rank-n approximation of H(yμ), where

Ĝ =

⎛
⎜⎜⎜⎝
Ĝ0

Ĝ1

...

Ĝr

⎞
⎟⎟⎟⎠ ,

with each Ĝi ∈ R
m×n for all i = 0, . . . , r.

• Motivated by (C.2), we then set C to be the first block of Ĝ; i.e., we set
C = Ĝ0.
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• Again motivated by the definition of G in (C.2), we solve the following system
in the least-squares sense to obtain A:⎛

⎜⎝
Ĝ1

...

Ĝr

⎞
⎟⎠ =

⎛
⎜⎝

Ĝ0

...

Ĝr−1

⎞
⎟⎠A.

• With the above A and C, we solve for B, D, and x0 in the least-squares sense
using the following system of equations, which is essentially (C.1) but with y
replaced by the noisy output ỹ:

CAtx0 +

t−1∑
k=0

CAt−k−1Buk +Dut = ỹt, t = 0, . . . , N.
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