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Introduction

Optimal Transport

Consider the discrete probability distribution with finite support points:

P :=
{

(ai , q i ) ∈ R+ × Rd : i = 1, · · · ,m
}
,

where {q1, · · · , qm} are the support points and a := (a1, · · · , am) is the associated
probability satisfying

∑m
i=1 ai = 1.

The p-Wasserstein distance (p ≥ 1)2 between Pu and Pv is defined by:

(Wp(Pu,Pv ))p := min
X∈Rmu×mv

〈X ,D(Pu,Pv )〉

s.t. X>1mu = av,
X1mv = au,
X ≥ 0,

(1)

where D(Pu,Pv ) ∈ Rmu×mv is the distance matrix with D(Pu,Pv )ij = ‖qu
i − qv

j ‖pp.

2Kantorovich, L. ”On the transfer of masses (in Russian).” Doklady Akademii Nauk. Vol. 37. No. 2. 1942.
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Introduction

Wasserstein Barycenter Problem (WBP)

WBP is to compute the mean of a set of discrete probability distributions under the
Wasserstein distance3.

Figure: (Top) 30 artificial images of two nested random ellipses. Mean measures using the (a) Euclidean distance (b) Euclidean after re-centering

images (c) Jeffrey centroid (d) RKHS distance (e) 2-Wasserstein distance.

3Cuturi, Marco, and Arnaud Doucet. ”Fast computation of Wasserstein barycenters.” International conference on machine
learning. PMLR, 2014.
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Introduction

Wasserstein Barycenter Problem with fixed support

Given a collection of probability distribution {P t}Tt=1:

P t :=
{(

ati , q
t
i

)
∈ R+ × Rd : i = 1, · · · ,m

}
,

a p-Wasserstein barycenter Pc := {(aci , qc
i ) : i = 1, · · · ,m}4 with fixed support can be

formulated as the following linear programming (LP):

min
ac∈Rm,{X t}Tt=1∈Rm×mt

∑T
t=1 ωt

〈
D
(
Pc ,P t

)
,X t

〉
s.t.

(
X t
)>

1m = at , t = 1, · · · ,T ,
X t1mt = ac , t = 1, · · · ,T ,
X t ≥ 0, t = 1, · · · ,T ,
〈ac , 1m〉 = 1.

(2)

Note that if support Qc := {qc
i , i = 1, . . . ,m} is not fixed, then problem (2) becomes a

non-convex multi-marginal OT problem. One needs to find the Qc and ac simultaneously.

4Agueh, Martial, and Guillaume Carlier. ”Barycenters in the Wasserstein space.” SIAM Journal on Mathematical Analysis 43.2
(2011): 904-924.
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Introduction

Wasserstein Barycenter Problem with fixed support

It can be rewritten as
min
x∈RN

〈c, x〉+ δK (x)

s.t. Ax = b,
(3)

where

1 M :=
∑T

i=1 mi + T (m − 1) + 1,N := m
∑T

i=1 mi + m;K := RN
+;

2 x =
(
vec(X 1); . . . ; vec(XT ); ac

)
; b :=

(
a1; a2; . . . ; aT ; 0m−1; . . . ; 0m−1; 1

)
∈ RM ;

3 c =
(
vec(ω1D(Pc ,P1)); . . . ; vec(ωTD(Pc ,PT )); 0m

)
∈ RN ;

4 A :=

 A1 0
A2 A3

0 1>m

 ∈ RM×N is full row rank5, A1 = diag
(
Im1 ⊗ 1>m , . . . , ImT ⊗ 1>m

)
,

A2 = diag
(
1>m1
⊗ [0m−1, Im−1], . . . , 1>mt

⊗ [0m−1, Im−1]
)
, and A3 = −1T ⊗ [0m−1, Im−1].

The dual problem of (3) is

min
y∈RM ,s∈RN

{−〈b, y〉+ δ∗K (−s) | A∗y + s = c} , (4)

where δ∗K (·) is the support function of K .

5Ge, Dongdong, et al. ”Interior-point methods strike back: Solving the Wasserstein barycenter problem.” Advances in Neural
Information Processing Systems 32 (2019).
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Introduction

Computing Entropy Regularized WBP

Cuturi et al. added an entropic regularization to the objective function6:

T∑
t=1

ωt

(
〈D
(
Pc ,P t) ,X t〉 − γH(X t)

)
, (5)

where H(X t) := −
∑m

i=1

∑mt
j=1 X

t
ij

(
lnX t

ij − 1
)
. This is a strictly convex function. The

Sinkhorn method7 can be generalized to solve the WBP8.

Numerical issues occurs when the γ becomes small for obtaining more accurate solutions.

When the γ is small, the involved kernel ξt := e−D(Pc ,Pt)/γ , t = 1 . . . ,T can easily
exceed the machine’s precision.

6Cuturi, Marco, and Arnaud Doucet. Fast computation of Wasserstein barycenters. International conference on machine
learning. PMLR, 2014.

7Cuturi, Marco. ”Sinkhorn distances: Lightspeed computation of optimal transport.” Advances in neural information
processing systems 26 (2013).

8Benamou, Jean-David, et al. ”Iterative Bregman projections for regularized transportation problems.” SIAM Journal on
Scientific Computing 37.2 (2015): A1111-A1138.
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Introduction

Computing Wasserstein Barycenter Directly

The first-order splitting algorithms, in particular, the alternating direction method of
multipliers (ADMM) are very popular.

The computational challenge is to solve the following huge-scale linear system:

AA∗y = R,

where R ∈ RM and M :=
∑T

i=1 mi + T (m − 1) + 1.

Instead, Yang et al.9 proposed a symmetric Gauss-Seidel ADMM (sGS-ADMM) method
to solve the WBP by regarding it as a multi-block problem in an appropriate way.
sGS-ADMM avoids solving this linear system directly. As a price, an additional proximal
term is automatically generated, which may cost more iterations for solving the WBP.

9Yang, Lei, et al. ”A Fast Globally Linearly Convergent Algorithm for the Computation of Wasserstein Barycenters.” J. Mach.
Learn. Res. 22.21 (2021): 1-37.
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A Linear Time Complexity Procedure for Solving AA∗y = R

A Linear Time Complexity Procedure for Solving AA∗y = R

For notation convenience, we denote M1 :=
∑T

t=1 mt and M2 := T (m − 1). By direct
calculations, AA∗ can be written in the following form:

AA∗ =

 A1 0
A2 A3

0 1>m

[ A∗1 A∗2 0
0 A∗3 1m

]
=

 E1 E2 0
E∗2 E3 + E4 E5

0 E∗5 m

 , (6)

where

1 E1 := A1A
∗
1 = diag (mIm1 , . . . ,mImT ) ∈ RM1×M1 ,

2 E2 := A1A
∗
2 = diag

(
1m11

>
m−1, . . . , 1mT 1

>
m−1

)
∈ RM1×M2 ,

3 E3 := A2A
∗
2 = diag (m1Im−1, . . . ,mT Im−1) ∈ RM2×M2 ,

4 E4 := A3A
∗
3 = (1T1

>
T )⊗ Im−1 ∈ RM2×M2 ,

5 E5 := A31m = −1T ⊗ 1m−1 ∈ RM2 .
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A Linear Time Complexity Procedure for Solving AA∗y = R

A Linear Time Complexity Procedure for Solving AA∗y = R

AA∗y = R can be rewritten as

AA∗y =

 E1 E2 0
E∗2 E3 + E4 E5

0 E∗5 m

 y1

y2

y3

 =

 R1

R2

R3

 , (7)

where y := (y1; y2; y3) ∈ RM1 × RM2 × R and R := (R1;R2;R3) ∈ RM1 × RM2 × R.
Denote y1 := (y 1

1 ; . . . ; yT
1 ) ∈ Rm1 × · · · × RmT , y2 = (y 1

2 ; . . . ; yT
2 ) ∈ Rm−1 × · · · × Rm−1.

Correspondingly, R1 := (R1
1 ; . . . ;RT

1 ) and R2 := (R1
2 ; . . . ;RT

2 ).

Linear system (7) is equivalent to

y t
1 = (E−1

1 (R1 − E2y2))t =
R t

1

m
− 1>m−1y

t
2

m
1mt , t = 1, . . . ,T , (8)

y3 =
1

m
(R3 − E∗5 y2) =

1

m
(R3 + 1>M2

y2), (9)

(E3 − E∗2 E
−1
1 E2 + E4 −

1

m
E5E

∗
5 )y2 = R2 − E∗2 E

−1
1 R1 −

1

m
E5R3. (10)

Hence, the key is to solve y2.
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A Linear Time Complexity Procedure for Solving AA∗y = R

A Linear Time Complexity Procedure for Solving AA∗y = R

For convenience, denote Ê3 := E3 − E∗2 (E1)−1E2 and Ê4 := E4 − 1
m
E5E

∗
5 . Then, the linear

system (10) can be rewritten as

(Ê3 + Ê4)y2 = R̂2,

where R̂2 := R2 − E∗2 E
−1
1 R1 − 1

m
E5R3. Define Q := Im−1 − 1/m(1m−11

>
m−1). By some

simple calculations, we have
Ê4 = 1T1

>
T ⊗ Q, (11)

and
Ê3 = diag(m1Q, . . . ,mTQ).

Moreover, by the ShermanMorrison-Woodbury formula, we directly get

Ê−1
3 = diag(1/m1Q

−1, . . . , 1/mTQ
−1), (12)

where Q−1 = (Im−1 + 1m−11
>
m−1).

Using the ShermanMorrison-Woodbury formula for (Ê3 + Ê4)−1, we can get y2 in the
next Proposition.
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A Linear Time Complexity Procedure for Solving AA∗y = R

A Linear Time Complexity Procedure for Solving AA∗y = R

Proposition 1

Consider A ∈ RM×N defined in (3). Given R ∈ RM , the solution y to AA∗y = R in the
form (7) is given by

y t
2 =

1

mt

(
ŷ t

2 − ŷ a
2

)
, t = 1, . . . ,T , (13)

y t
1 =

R t
1

m
− 1>m−1y

t
2

m
1mt , t = 1, . . . ,T , (14)

y3 =
1

m
(R3 + 1>M2

y2), (15)

where

1 ŷ t
2 := R t

2 + (1>m−1R
t
2 − 1>mt

R t
1 + R3)1m−1, t = 1, . . . ,T ,

2 ŷ a
2 :=

∑T
t=1

m̄
mt

ŷ t
2 , and m̄ := (1 +

∑T
t=1

1
mt

)−1.

Defeng Sun (PolyU) Wasserstein Barycenter Problem Dec 5 12 / 44



A Linear Time Complexity Procedure for Solving AA∗y = R

A Linear Time Complexity Procedure for Solving AA∗y = R

Now, we can summarize the procedure for solving equation AA∗y = R in Algorithm 1.

Algorithm 1 A linear time complexity solver for the linear system AA∗y = R

Input: R ∈ RM .
Step 1. Compute y2 by (13).
Step 2. Compute y1 by (14).
Step 3. Compute y3 by (15).
Output: y = (y1, y2, y3) ∈ RM1 × RM2 × R.

Proposition 2

The computational complexity of Algorithm 1 in terms of flops is
7Tm + 3

∑T
t=1 mt + O(T ).

As a byproduct, we can also design a linear time complexity procedure for similar linear
systems involved in solving the OT problem.
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A Linear Time Complexity Procedure for Solving AA∗y = R

An ADMM algorithm for solving the WBP

Algorithm 2 A fast-ADMM10 algorithm for solving dual linear programming (4)

1: Input: x0 ∈ RN , y0 ∈ RM , τ ∈ (0, 2), and σ > 0.
2: For k = 0, 1, . . .
3: Step 1. Compute sk+1 = ΠK

(
c − A∗yk − xk/σ

)
.

4: Step 2. Compute yk+1 by applying Algorithm 1 to solve the following linear system:

AA∗y = b/σ − A(xk/σ + sk+1 − c). (16)

5: Step 4. Compute xk+1 = xk + τσ
(
sk+1 + A∗yk+1 − c

)
.

The ergodic convergence rate of ADMM with τ = 1 (regarding the KKT-type residual) is
O(1/k)11. The nonergodic convergence rate of ADMM with τ = 1 (regarding the primal
feasibility and the primal objective function value gap) is O(1/

√
k)12.

We will design an HPR algorithm with nonergodic convergence rate O(1/k) with respect
to KKT residual.

10Chen, Liang, Li, Xudong, Sun, Defeng and Toh, Kim-Chuan “On the equivalence of inexact proximal ALM and ADMM for a
class of convex composite programming”, Mathematical Programming 185 (2021) 111161

11Monteiro, Renato DC, and Benar F. Svaiter. ”Iteration-complexity of block-decomposition algorithms and the alternating
direction method of multipliers.” SIAM Journal on Optimization 23.1 (2013): 475-507.

12Davis, Damek, and Wotao Yin. ”Convergence rate analysis of several splitting schemes.” Splitting methods in
communication, imaging, science, and engineering. Springer, Cham, 2016. 115-163.
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A Halpern-Peaceman-Rachford Algorithm

A Halpern-Peaceman-Rachford Algorithm

Consider the following inclusion problem:

0 ∈ M1w + M2w , (17)

where M1 : X ⇒ X, M2 : X ⇒ X, and M1 + M2 are all maximal monotone operators.
We denote the zeros of M1 + M2 as Zer(M1 + M2).

For any given maximal monotone operator M : X ⇒ X, its resolvent JM := (I + M)−1 is
single-valued and firmly nonexpansive, where I is the identity operator. Moreover, the
reflected resolvent RM := 2JM − I of M is nonexpansive.

Let σ > 0 and η0 ∈ X. Then the Peaceman-Rachford (PR) splitting method13 solves (17)
iteratively as

ηk+1 = TPR
σ (ηk) := RσM1 ◦ RσM2 (ηk), ∀k ≥ 0, (18)

where “◦” is the operator composition. TPR
σ : X ⇒ X is nonexpansive.

A challenge: Do not know when the PR applied to the inclusion problem (17) converges.

13Lions, Pierre-Louis, and Bertrand Mercier. ”Splitting algorithms for the sum of two nonlinear operators.” SIAM Journal on
Numerical Analysis 16.6 (1979): 964-979.
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A Halpern-Peaceman-Rachford Algorithm

A Halpern-Peaceman-Rachford Algorithm

The Halpern iteration14 applying to the PR splitting method for solving (17) has the
following simple iterative scheme:

ηk+1 := λkη
0 + (1− λk)TPR

σ (ηk), ∀k ≥ 0, (19)

where η0 ∈ X is any given initial point and λk ∈ [0, 1] is a specified parameter.

Theorem 1 ([Wit92])

Let D be a nonempty closed convex subset of X, and let T : D → D be a nonexpansive operator such that
Fix(T) 6= ∅. Let {λk}∞k=0 be a sequence in [0, 1] such that the following hold:

λk → 0,
∞∑
k=0

λk = +∞,
∞∑
k=0

|λk+1 − λk | < +∞.

Let η0 ∈ D and set

η
k+1 := λkη

0 + (1− λk ) T(ηk ), ∀k ≥ 0.

Then ηk → ΠFix(T)(η0).

14Halpern, Benjamin. ”Fixed points of nonexpanding maps.” Bulletin of the American Mathematical Society 73.6 (1967):
957-961.
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A Halpern-Peaceman-Rachford Algorithm

A Halpern-Peaceman-Rachford Algorithm

Recently, Lieder15 showed that when λk = 1/(k + 2) for k ≥ 0, the Halpern iteration will
give the following best possible convergence rate regarding the residual:

‖ηk − TPR
σ (ηk)‖ ≤ 2‖η0 − η̄‖

k + 1
, ∀k ≥ 0 and η̄ ∈ Fix(TPR

σ ).

Thus, we take λk = 1/(k + 2) and introduce an HPR algorithm presented in Algorithm 3.

Algorithm 3 An HPR algorithm for the problem (17)

Input: η0 ∈ X. For k = 0, 1, . . .

w k+1 = JσM2 (ηk),

xk+1 = JσM1

(
2w k+1 − ηk

)
,

v k+1 = 2xk+1 −
(

2w k+1 − ηk
)
,

ηk+1 =
1

k + 2
η0 +

k + 1

k + 2
v k+1.

15Lieder, Felix. ”On the convergence rate of the Halpern-iteration.” Optimization Letters 15.2 (2021): 405-418.
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A Halpern-Peaceman-Rachford Algorithm

A Halpern-Peaceman-Rachford Algorithm

According to Theorem 1, we get the following corollary.

Corollary 2

Let M1, M2 and M1 + M2 be maximal monotone operators on X satisfying
Zer(M1 + M2) 6= ∅. Let {w k , xk , v k , ηk}∞k=1 be the sequence generated by Algorithm 3.
Let η∗ = ΠFix(TPR

σ )(η
0) and w∗ = JσM2 (η∗). Then we have

ηk → η∗, v k → η∗, xk → w∗, and w k → w∗,

and w∗ is a solution to the problem (17).
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A Halpern-Peaceman-Rachford Algorithm

An HPR Algorithm for the Two-block Convex Programming Problems

Now, consider the following two-block convex optimization problem with linear
constraints:

miny∈Y,s∈Z f1(y) + f2(s)
subject to B1y + B2s = c,

(20)

where f1 : Y→ (−∞,+∞] and f2 : Z→ (−∞,+∞] are proper closed convex functions,
which may take extended value; B1 : Y→ X and B2 : Z→ X are two given linear
mappings, and c ∈ X is a given vector. It is clear that the dual problem of the LP is a
special case of (20).

The Lagrange function corresponding to (20) is

l(y , s; x) := f1(y) + f2(s) + 〈x ,B1y + B2s − c〉,

where x ∈ X is the multiplier. The dual problem of (20) is

max
x∈X
{−f ∗1 (−B∗1 x)− f ∗2 (−B∗2 x)− 〈c, x〉} , (21)

where f ∗1 and f ∗2 are the Fenchel conjugate of f1 and f2, respectively; B∗1 : X→ Y and
B∗2 : X→ Z are the adjoint of B1 and B2, respectively.

Defeng Sun (PolyU) Wasserstein Barycenter Problem Dec 5 19 / 44



A Halpern-Peaceman-Rachford Algorithm

An HPR Algorithm for the Two-block Convex Programming Problems

Assumption 1

For i = 1, 2, the following conditions hold:

ri(dom f ∗i )
⋂

Range(B∗i ) 6= ∅,
ri (dom(f ∗1 ◦ (−B∗1 ))) ∩ ri (dom(f ∗2 ◦ (−B∗2 ))) 6= ∅.

The solution set of the optimization problem (20) is nonempty.

Under Assumption 1, (y∗, s∗) ∈ Y× Z is a solution to the optimization problem (20) and
x∗ ∈ X is a solution to the optimization problem (21) if and only if the following KKT
system is satisfied:

B1y
∗ + B2s

∗ = c, −B∗2 x∗ ∈ ∂f2(s∗), −B∗1 x∗ ∈ ∂f1(y∗). (22)

If we take M1 = ∂(f ∗1 ◦ (−B∗1 )) + c and M2 = ∂(f ∗2 ◦ (−B∗2 )), then, the inclusion
problem (17) is equivalent to the optimization problem (21). As a result, we can apply
Algorithm 3 to solve (21), which is presented in Algorithm 4.
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A Halpern-Peaceman-Rachford Algorithm

An HPR Algorithm for the Two-block Convex Programming Problems

Algorithm 4 An HPR algorithm for solving the convex optimization problem (20)

1: Input: y 0 ∈ dom(f1), x0 ∈ X, and σ > 0.
2: Initialization: x̂0 := x0, η0 := x̂0 + σ(B1y

0 − c).
3: For k = 0, 1, . . .
4: Step 1. sk+1 = arg min

s∈Z

{
f2(s) + 〈ηk ,B2s〉+ σ

2
‖B2s‖2

}
.

5: Step 2. w k+1 = ηk + σB2s
k+1.

6: Step 3. y k+1 = arg min
y∈Y

{
f1(y) + 〈ηk + 2σB2s

k+1,B1y − c〉+ σ
2
‖B1y − c‖2

}
.

7: Step 4. xk+1 = ηk + σ(B1y
k+1 − c) + 2σB2s

k+1.
8: Step 5. v k+1 = ηk + 2σ

(
B1y

k+1 + B2s
k+1 − c

)
.

9: Step 6. ηk+1 = 1
k+2

η0 + k+1
k+2

v k+1.
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A Halpern-Peaceman-Rachford Algorithm

An HPR Algorithm for the Two-block Convex Programming Problems

Given σ > 0, the augmented Lagrange function corresponding to (20) is

Lσ(y , s; x) := l(y , s; x) +
σ

2
‖B1y + B2s − c‖2.

Define
x̂k+1 := ηk+1 − σ(B1y

k+1 − c), ∀k ≥ 0. (23)

Algorithm 4 can be simplified to Algorithm 5.

Algorithm 5 An HPR algorithm for solving two-block convex optimization problem (20)

1: Input: y 0 ∈ dom(f1), x0 ∈ X, and σ > 0.
2: Initialization: x̂0 := x0.
3: For k = 0, 1, . . .
4: Step 1. sk+1 = arg min

s∈Z

{
Lσ(y k , s; x̂k)

}
.

5: Step 2. xk+ 1
2 = x̂k + σ(B1y

k + B2s
k+1 − c).

6: Step 3. y k+1 = arg min
y∈Y

{
Lσ(y , sk+1; xk+ 1

2 )
}

.

7: Step 4. xk+1 = xk+ 1
2 + σ(B1y

k+1 + B2s
k+1 − c).

8: Step 5. x̂k+1 =
(

1
k+2

x0 + k+1
k+2

xk+1
)

+ σ
k+2

[
(B1y

0 − c)− (B1y
k+1 − c)

]
.
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An HPR Algorithm for the Two-block Convex Programming Problems

Since f1 and f2 are proper closed convex functions, there exist two self-adjoint and
positive semidefinite operators Σf1 and Σf2 such that for all y , ŷ ∈ dom(f1), φ ∈ ∂f1(y),
and φ̂ ∈ ∂f1(ŷ),

f1(y) ≥ f1(ŷ) + 〈φ̂, y − ŷ〉+
1

2
‖y − ŷ‖2

Σf1
and 〈φ− φ̂, y − ŷ〉 ≥ ‖y − ŷ‖2

Σf1
,

and for all s, ŝ ∈ dom(f2), ϕ ∈ ∂f2(s), and ϕ̂ ∈ ∂f2(ŝ),

f2(s) ≥ f2(ŝ) + 〈ϕ̂, s − ŝ〉+
1

2
‖s − ŝ‖2

Σf2
and 〈ϕ− ϕ̂, s − ŝ〉 ≥ ‖s − ŝ‖2

Σf2
.

Assumption 2

Both Σf1 + B∗1 B1 and Σf2 + B∗2 B2 are positive definite.
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An HPR Algorithm for the Two-block Convex Programming Problems

Corollary 3

Assume that Assumption 1 and Assumption 2 hold. Let {y k , sk , xk}∞k=1 and

{x̂k , xk+ 1
2 }∞k=0 be the sequence generated by Algorithm 5. Then, we have

y k → y∗, sk → s∗, xk → x∗, xk+ 1
2 → x∗, and x̂k → x∗,

where (y∗, s∗) is a solution to the problem (20) and x∗ is a solution to the problem (21).

The KKT-residual associated with (20) and (21) is

R(y , s, x) =

 y − Proxf1 (y − B∗1 x)
s − Proxf2 (s − B∗2 x)

c − B1y − B2s

 , (y , s, x) ∈ Y× Z× X.

(y∗, s∗, x∗) satisfies the KKT system (22) if and only if R(y∗, s∗, x∗) = 0.
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A Halpern-Peaceman-Rachford Algorithm

An HPR Algorithm for the Two-block Convex Programming Problems

Theorem 4

Suppose that Assumption 1 and Assumption 2 hold. Take M1 = ∂(f ∗1 ◦ (−B∗1 )) + c and
M2 = ∂(f ∗2 ◦ (−B∗2 )). Let {y k+1, sk+1, xk+1}∞k=0 be the sequence generated by Algorithm
5. Let (y∗, x∗) be the limit point of {(y k+1, xk+1)}∞k=0. Then for all k ≥ 0, we have the
following bounds:

‖R(y k+1, sk+1, xk+1)‖ ≤ 1

k + 1

(
σ‖B∗2 ‖+ 1

σ

(∥∥∥x0 − x∗
∥∥∥+ σ

∥∥∥B1y
0 − B1y

∗
∥∥∥)) . (24)

We emphasize that ‖B∗2 ‖ is the spectral norm of B∗2 and ‖B∗2 ‖ = 1 for the WBP.

If all the subproblems in Algorithm 5 are solvable, the O(1/k) convergence rate in
terms of the KKT residual still holds true in the theorem without Assumption 2.
This assumption is only necessary for the convergence of the sequence {(y k , sk)}k≥1.

Kim16 proposed an accelerated ADMM and proved an O(1/k) convergence rate with
respect to the primal feasibility.

16Kim, Donghwan. ”Accelerated proximal point method for maximally monotone operators.” Mathematical Programming
190.1 (2021): 57-87.
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A Fast Implementation of the HPR for Solving the WBP

A Fast Implementation of the HPR for Solving the WBP

An HPR for solving the linear programming problem (4) is presented in Algorithm 6,
which is a direct application of Algorithm 5.

Algorithm 6 An HPR algorithm for solving dual linear programming (4)

1: Input: x0 ∈ RN , y 0 ∈ RM , and σ > 0.
2: Initialization: x̂0 := x0, s0 := c − A∗y 0.
3: For k = 0, 1, . . .
4: Step 1. Compute sk+1 = ΠK

(
c − A∗y k − x̂k/σ

)
.

5: Step 2. Compute xk+ 1
2 = x̂k + σ

(
sk+1 + A∗y k − c

)
.

6: Step 3. Compute y k+1 by applying Algorithm 1 to solve the following linear system:

AA∗y = b/σ − A(xk+ 1
2 /σ + sk+1 − c). (25)

7: Step 4. Compute xk+1 = xk+ 1
2 + σ

(
sk+1 + A∗y k+1 − c

)
.

8: Step 5. Compute x̂k+1 =
(

1
k+2

x0 + k+1
k+2

xk+1
)

+ σ
k+2

[
(A∗y 0 − c)− (A∗y k+1 − c)

]
.
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A Fast Implementation of the HPR for Solving the WBP

Lemma 5

The per-iteration computational complexity of Algorithm 6 in terms of flops is
26m

∑
t mt + O(Tm +

∑T
t=1 mt).

Theorem 6

Let {y k , sk , xk}∞k=0 be the sequence generated by Algorithm 6. For any given tolerance
ε > 0, HPR needs at most

1

ε

(
1 + σ

σ

(∥∥∥x0 − x∗
∥∥∥+ σ

∥∥∥s0 − s∗
∥∥∥))− 1

iterations to return a solution to WBP such that the KKT residual
‖R(y k+1, sk+1, xk+1)‖ ≤ ε, where (x∗, s∗) is the limit point of the sequence {xk , sk}∞k=0.
In particular, the overall computational complexity of HPR to achieve this accuracy in
terms of flops is

O

((
1 + σ

σ

(∥∥∥x0 − x∗
∥∥∥+ σ

∥∥∥s0 − s∗
∥∥∥)) m

∑T
t=1 mt

ε

)
.
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A Fast Implementation of the HPR for Solving the WBP

The Complexity Results of Entropic Regularization Type Algorithms

Algorithm ObjP Dgap RKKT Complexity Ergodic Non-ergodic

IBP
[BCC+15, KTD+19]

! Õ(C 2Tm2/ε2) !

PDAGD
[KTD+19]

! Õ(CTm5/2/ε) !

FastIBP
[LHC+20]

! Õ(C 4/3(Tm7/3/ε4/3)) !

Dual extrapolation with area-convexity
[DT21]

! Õ(CTm2/ε) !

Mirror-Prox
[DT21]

! Õ(CTm5/2/ε) !

Accelerated alternating minimization
[GDTG21]

! Õ(CTm5/2/ε) !

Accelerated Bergman primal-dual method
[CC22]

! Õ(CTm5/2/ε) !

Table: A summary of the known complexity of entropic regularization type algorithms for the
WBP with T sample distributions and m supports. In this table, ObjP, Dgap and RKKT mean
that the error ε > 0 is measured by the primal objective function value gap, the duality gap, and
the KKT residual, respectively. The constant C only depends on the infinity norm of the cost
matrices.
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A Fast Implementation of the HPR for Solving the WBP

The Complexity Results of HPR and sGS-ADMM

Algorithm ObjP ObjD RKKT Complexity Ergodic Non-ergodic

sGS-ADMM (for dual WBP)
[YLST21] + [CLST16]

! O((D1 + D2)Tm2/ε2) !

sGS-ADMM (for dual WBP)
[YLST21] + [CLST16]

! O((D2
1 + D2

2 )Tm2/ε) !

HPR (for primal or dual WBP)
(This paper)

! O(D1Tm
2/ε) !

HPR (for primal WBP)
(This paper)

! O(D2
1Tm

2/ε) !

HPR (for dual WBP)
(This paper)

! O(D2
1Tm

2/ε) !

Table: A summary of the complexity of the HPR algorithm and the sGS-ADMM algorithm for the
WBP with T sample distributions and m supports. In the table, ObjP, ObjD, and RKKT mean
that the error ε > 0 is measured by the primal objective function value gap, the dual objective
function value gap, and the KKT residual, respectively. The constants D1 and D2 only depend on
the distance of the initial point to the solution set. The additional constant D2 in the complexity
bound of the sGS-ADMM comes from the additional proximal term, which is automatically
generated by the algorithm. We regard the LP reformulation of the WBP and its dual problem as
the primal WBP and the dual WBP, respectively.
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Numerical Experiments

Numerical Experiments

Under the 2-Wasserstein distance, we will compare the performance of the HPR
algorithm with the fast-ADMM, IBP [BCC+15, Sch19], and the commercial software
Gurobi in MATLAB.

We stop fast-ADMM and HPR based on the following relative KKT residual:

KKTres = max

{
‖b − Ax‖
1 + ‖b‖ ,

‖min(x , 0)‖
1 + ‖x‖ ,

∥∥AT y + s − c
∥∥

1 + ‖c‖+ ‖s‖ ,
‖s − ΠK (s − x)‖

1 + ‖x‖+ ‖s‖

}
≤ 10−5.

Also, we consider a hybrid of HPR and fast-ADMM called HPR-hybrid.

For real data with the same {D
(
Pc ,P t

)
}Tt=1, we run the best possible public code of

IBP implemented in the POT toolbox17. For synthetic data with different
{D
(
Pc ,P t

)
}Tt=1, we run the Matlab code of the IBP implemented by [YLST21].

17https://pythonot.github.io
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Numerical Experiments

Experiments on Synthetic Data

Table: Numerical results on Gaussian mixture distributions18

Gurobi fast-ADMM HPR HPR-hybrid IBP(0.01) IBP(0.001) Gurobi fast-ADMM HPR HPR-hybrid IBP(0.01) IBP(0.001)
m mt T relative obj gap relative primal feasibility error

100 100 100 0 4.4E-05 9.3E-05 6.7E-05 3.3E-01 1.6E-02 1.76E-09 9.7E-06 9.7E-06 8.6E-06 5.9E-08 5.7E-07
100 100 200 0 5.8E-05 1.1E-04 8.4E-05 4.1E-01 1.9E-02 1.70E-09 9.7E-06 9.6E-06 8.0E-06 3.6E-08 6.6E-07
100 100 400 0 6.8E-05 1.3E-04 9.6E-05 4.8E-01 2.2E-02 1.07E-09 9.6E-06 9.4E-06 8.4E-06 3.5E-08 6.8E-07
100 100 800 0 8.0E-05 1.3E-04 1.1E-04 5.3E-01 2.4E-02 3.88E-09 9.4E-06 8.7E-06 8.5E-06 2.1E-08 1.2E-06
200 100 100 0 6.1E-05 1.1E-04 9.8E-05 3.6E-01 2.3E-02 1.54E-09 9.4E-06 9.7E-06 8.8E-06 1.4E-09 4.9E-07
400 100 100 0 8.3E-05 1.4E-04 1.3E-04 3.8E-01 3.1E-02 1.57E-09 9.3E-06 9.8E-06 8.4E-06 1.8E-09 3.3E-07
800 100 100 0 1.6E-04 1.9E-04 2.1E-04 4.1E-01 4.1E-02 1.57E-09 9.2E-06 9.4E-06 8.8E-06 6.4E-08 2.7E-07
100 200 100 0 5.8E-05 1.4E-04 1.2E-04 3.8E-01 1.6E-02 1.52E-09 9.8E-06 8.9E-06 8.3E-06 2.7E-09 5.7E-07
100 400 100 0 6.0E-05 1.7E-04 1.6E-04 4.2E-01 1.8E-02 1.37E-09 9.9E-06 9.1E-06 8.0E-06 4.2E-09 5.2E-07
100 800 100 0 7.5E-05 1.7E-04 1.9E-04 4.4E-01 1.8E-02 2.62E-12 9.7E-06 9.2E-06 7.9E-06 7.9E-10 4.2E-07
m mt T iter time(s)

100 100 100 39 3558 1515 1320 190 3060 7.33 14.7 5.5 5.2 1.0 16.3
100 100 200 54 3978 1615 1340 200 4220 23.23 36.7 13.7 12.0 2.2 46.6
100 100 400 48 4368 1748 1395 210 6120 40.71 81.5 30.7 25.4 4.6 130.7
100 100 800 45 4743 1988 1423 210 7530 70.43 176.8 70.1 52.5 8.7 310.6
200 100 100 49 3270 1713 1363 200 2110 20.20 29.6 14.2 11.9 2.2 22.9
400 100 100 51 3253 1860 1403 200 1490 44.74 59.6 32.2 24.8 4.2 31.3
800 100 100 55 3070 2455 1560 170 1270 202.25 111.5 83.9 55.0 7.0 51.7
100 200 100 36 3473 1565 1303 200 2440 12.77 31.1 12.7 11.1 2.1 24.7
100 400 100 47 3030 1465 1255 200 2400 34.27 54.7 24.8 22.0 4.2 49.9
100 800 100 49 2485 1605 1250 210 2070 224.91 90.4 56.1 44.5 8.7 85.9

18The code of data generating is provided by [YLST21].
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Numerical Experiments

Experiments on Real Data

Our experiments include MNIST data set [LBBH98], Coil20 data set [NNM+96], and Yale
Face B data set [GBK01]. A summary of each data set is shown in the following table.

Table: Summary of Real Data set

Dataset m mt T
MNIST 3136 3136 50

Car 4096 4096 10
Duck 4096 4096 10
Pig 4096 4096 10

YaleB01 8064 8064 5
YaleB02 8064 8064 5

Recall that M :=
∑T

t=1 mt + T (m − 1) + 1,N := m
∑T

t=1 mt + m. Gurobi is out of
memory for this experiment.
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Experiments on Real Data
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Figure: Barycenters obtained by running different methods for 50s, 100s, respectively.

HPR and HPR-hybrid can provide a clear smooth barycenter just like POT with
regularization parameter 0.001 within a fixed time.
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Numerical Experiments

Experiments on Real Data

How many iterations of fast-ADMM, HPR, and HPR-hybrid are needed to reach the
quality of the best solution returned by POT?
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Figure: Barycenters obtained by running different methods on the Coil20 data set for the 100th,
200th, and 300th iterations.
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Numerical Experiments

Experiments on Real Data
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Figure: Barycenters obtained by running different methods on the Yale Face B data set for the
100th, 200th, and 300th iterations.
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Numerical Experiments

Experiments on Real Data

Table: The computational time of different methods for computing the Wasserstein barycenter on
the Coil20 data set and the Yale B face data set. (Unit: s)

POT(0.0005) fast-ADMM HPR HPR-hybrid
iter - 100 200 300 100 200 300 100 200 300
Car 44.59 27.61 55.22 82.82 25.60 51.20 76.81 25.79 51.58 77.38

YaleB02 153.86 178.52 357.04 535.57 176.35 352.70 529.06 177.34 354.68 532.03

HPR-hybrid can return a better result than POT in the 100th iteration, whose
computational time is comparable to the time of POT.
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Conclusion

Conclusion

1 We introduce an efficient HPR algorithm for solving the two-block convex
optimization problems, which enjoys an appealing O(1/ε) non-ergodic iteration
complexity with respect to the KKT residual.

2 We also proposed a linear time complexity procedure to solve the linear system
involved in the HPR algorithm for solving the WBP.

3 The HPR algorithm enjoys an O(Dim(P)/ε) computational complexity in terms of
flops to obtain an ε-optimal solution to the WBP measured by the KKT residual.

4 Extensive numerical experiments demonstrate the superior performance of the HPR
algorithm for obtaining high-quality solutions to the WBP on both synthetic
datasets and real image datasets.
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Conclusion

Thanks for listening!
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Matrix-based Adaptive Alternating Interior-point Method

By exploring the structure of A, Ge et al.19 improved the computational complexity of
solving the Newton direction from O((

∑T
t=1 mt + T (m − 1) + 1)3) to

O
(

min(m2∑T
t=1 mt + Tm3,m

∑T
t=1 m

2
t +

∑T
t=1 m

3
t )
)

.

Table: Numerical results on the Coil20 data set and Yale B face data set

Dataset MAAIPM fast-ADMM HPR HPR-hybrid MAAIPM fast-ADMM HPR HPR-hybrid MAAIPM fast-ADMM HPR HPR-hybrid
iter relative primal feasibility error time(s)

car 51 2200 2175 1825 5.93E-02 8.93E-06 8.60E-06 8.69E-06 468.26 585.17 550.05 459.79
cup 54 2025 900 950 1.31E-02 9.98E-06 9.86E-06 9.67E-06 1009.64 1291.43 550.16 575.31

duck 56 2150 975 1075 5.64E-06 9.40E-06 7.20E-06 6.98E-06 1242.35 2170.08 926.53 932.25
pig 51 2175 1925 1750 1.24E-02 8.63E-06 8.70E-06 8.92E-06 915.86 1337.50 1129.19 949.79

YaleB01 51 2001 1250 1100 2.35E-07 1.93E-05 9.89E-06 9.74E-06 24559.52 3610.81 2162.19 1861.78
YaleB02 44 2027 925 900 2.09E-07 1.79E-05 9.90E-06 9.39E-06 21243.81 3606.58 1675.45 1507.91

The stopping criterion of MAAIPM is that the relative duality gap is less than 5 ∗ 10−5.
The stopping criterion of other methods is that KKTres ≤ 10−5.

19Ge, Dongdong, et al. ”Interior-point methods strike back: Solving the Wasserstein barycenter problem.” Advances in Neural
Information Processing Systems 32 (2019).
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sGS-ADMM

Let ∆m :=
{
ac ∈ Rm : 1>mac = 1, ac ≥ 0

}
and δt+ be the indicator function over{

X t ∈ Rm×mt : X t ≥ 0
}

for each t = 1, · · · ,T . WBP can be equivalently written as

min
ac ,{X t}Tt=1

δ∆m (ac) +
T∑
t=1

δt+
(
X t)+

T∑
t=1

ωt〈D
(
Pc ,P t) ,X t〉

s.t.
(
X t)> 1m = at ,X t1mt = ac , t = 1, · · · ,T .

The dual problem is

min
u,{V t},{ỹ t1}Tt=1

,{ỹ t2}Tt=1

δ∗∆m
(u) +

T∑
t=1

δt+
(
V t)+

T∑
t=1

〈
ỹ t

1 , a
t〉

s.t.
T∑
t=1

ỹ t
2 − u = 0,

V t − Dt − ỹ t
21
>
mt
− 1m

(
ỹ t

1

)>
= 0, t = 1, · · · ,T ,

where δ∗∆m
is the conjugate of δ∆m and Dt := ωtD

(
Pc ,P t

)
.

In the sGS-ADMM iteration, one can fix ỹ2 and update ỹ1; then fix ỹ1 and update ỹ2;
finally, fix ỹ2 again and update ỹ1.
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