HOT: An Efficient Halpern Accelerating Algorithm for Optimal Transport $${\rm Problems}^{1}$$

Yancheng Yuan

Department of Applied Mathematics The Hong Kong Polytechnic University

May 2025, Shanghai

Based on the joint work with Guojun Zhang, Zhexuan Gu, and Defeng Sun

¹Zhang, G., Gu, Z., Yuan, Y., & Sun, D. (2025). HOT: An efficient Halpern accelerating algorithm for optimal transport problems. IEEE Transactions on Pattern Analysis and Machine Intelligence.

HOT: A Halpern Accelerating Algorithm for the Optimal Transport Problem
 A Halpern Accelerating Algorithm

• A fast implementation

Oumerical Results

э

< □ > < □ > < □ > < □ > < □ >

Probability distribution:

$$\mathcal{P} := \left\{ (\mu_i, \boldsymbol{q}_i) \in \mathbb{R}_+ imes \mathbb{R}^d : i = 1, \cdots, M
ight\}$$

with support point \boldsymbol{q} and associated probability μ satisfying $\sum_{i=1}^{M} \mu_i = 1$.

The Optimal Transport (OT) problem between \mathcal{P}^1 and \mathcal{P}^2 :

$$\min_{\pi} \quad \langle \boldsymbol{c}, \pi \rangle \\ \pi^{\top} \mathbf{1}_{M} = \mu^{1},$$
s.t.
$$\pi \mathbf{1}_{M} = \mu^{2},$$

$$\pi \geq 0.$$

$$(1)$$

э

3/27

イロト イヨト イヨト イヨト

Applications of Optimal Transport

(a) Color transfer².

(b) Shape matching³.

Yancheng Yuan (PolyU)

Optimal Transport

May 17 2025

²F. Pitie and A. Kokaram, "The linear Monge-Kantorovitch linear colour mapping for example-based colour transfer." 4th European Conference on Visual Media Production, London, 2007, pp. 1-9, doi: 10.1049/cp:20070055.

³Ling, H., & Okada, K. (2007). "An efficient earth mover's distance algorithm for robust histogram comparison." IEEE transactions on pattern analysis and machine intelligence, 29(5), 840-853.

Introduction

Algorithmic challenges in solving the OT problem

Entropy-Regularized approach:

Objective:
$$\langle c, \pi \rangle - \gamma H(\pi)$$
 (2)

with the entropy $H(\pi) = -\sum_{i,j}^{M} \pi_{ij} \log \pi_{ij}$.

- Method:
 - Sinkhorn algorithm⁴
- Advantages: Low per-iteration cost, easy to implement.
- Challenges: Small γ for high-accuracy results in numerical instability and slow convergence.

Linear Programming (LP) Approach:

- Methods:
 - Interior Point Method⁵: Robust, high computational complexity.
 - Network Simplex Method⁶: Robust, not efficiently parallelizable.

⁴Cuturi, Marco. "Sinkhorn distances: Lightspeed computation of optimal transport." Advances in neural information processing systems 26 (2013).

⁵Pele, O., & Werman, M. (2009, September). "Fast and robust earth mover's distances." In 2009 IEEE 12th International Conference on Computer Vision (pp. 460-467). IEEE.

⁶Goldberg, A. V., Tardos, É., & Tarjan, R. (1989). "Network flow algorithm." Cornell University Operations Research and Industrial Engineering.

Introduction

A reduced OT model I

Dimensions of variables in OT model: $O(M^2)$. e.g., 256 × 256 gray-scale image, Double type, 32GB!

Challenges: high memory and computational cost!

Considering the ground distance $c_{i,j;k,l}$ for supports in \mathbb{R}^2 :

$$c_{i,j;k,l} = \|(i,j)^{\top} - (k,l)^{\top}\|_{p}^{p} = (|i-k|^{p} + |j-l|^{p}).$$
(3)

For both the L_1^1 distance⁷ and the L_2^2 distance⁸, the following property holds:

$$c_{i,j;k,l} = c_{i,j;k,j} + c_{k,j;k,l}.$$
 (4)

Figure: A nice property of L_1^1 and L_2^2 distance.

Yancheng Yuan (PolyU)

6/27

⁷Ling, Haibin, and Kazunori Okada. "An efficient earth mover's distance algorithm for robust histogram comparison." IEEE Transactions on Pattern Analysis and Machine Intelligence 29.5 (2007): 840-853.

⁸Auricchio, G., Bassetti, F., Gualandi, S., & Veneroni, M. (2018). "Computing Kantorovich-Wasserstein distances on *d*-dimensional histograms using (*d* + 1)-partite graphs." Advances in Neural Information Processing Systems, 31: • • = • •

Introduction

A reduced OT model II

Auricchio et al. proposed an equivalent reduced OT model⁹ under L_2^2 distance:

$$\begin{array}{ll} \min_{f^{(1)}, f^{(2)}} & \sum_{(i,j) \in \mathcal{I}} \left[\sum_{k=1}^{m} c_{i,k,j}^{(1)} f_{i,k,j}^{(1)} + \sum_{l=1}^{n} c_{k,j,l}^{(2)} f_{k,j,l}^{(2)} \right] \\ & \sum_{i=1}^{m} f_{i,k,j}^{(1)} = \sum_{l=1}^{n} f_{k,j,l}^{(2)}, \qquad \forall (k,j) \in \mathcal{I}, \\ & \sum_{k=1}^{m} f_{i,k,j}^{(1)} = \mu_{i,j}^{1}, \qquad \forall (i,j) \in \mathcal{I}, \\ & \sum_{j=1}^{n} f_{k,j,l}^{(2)} = \mu_{k,l}^{2}, \qquad \forall (k,l) \in \mathcal{I}, \\ & f_{i,k,j}^{(1)} \ge 0, f_{k,j,l}^{(2)} \ge 0, \qquad \forall (i,j), (k,l) \in \mathcal{I}, \\ & \end{array}$$
(5)

where $\mathcal{I} = \{(i,j) \mid 1 \le i \le m, 1 \le j \le n\}$, $c_{i,k,j}^{(1)} := (k-i)^2$, $k = 1, ..., m, \forall (i,j) \in \mathcal{I}$, and $c_{k,j,l}^{(2)} := (j-l)^2$, $j = 1, ..., n, \forall (k, l) \in \mathcal{I}$. Dimension of variables: from $(mn)^2$ to $(mn^2 + m^2n)$.

 $^{^{9}}$ Auricchio, G., Bassetti, F., Gualandi, S., & Veneroni, M. (2018). "Computing Kantorovich-Wasserstein Distances on d-dimensional histograms using (d + 1)-partite graphs." Advances in Neural Information Processing Systems, 31: \Rightarrow = $\Rightarrow \circ$

A standard LP form of the reduced model

The reduced model can be further written as:

$$\min_{\substack{x \in \mathbb{R}^N \\ \text{s.t.}}} \quad \langle c, x \rangle + \delta_{\mathbb{R}^N_+}(x)$$

$$\text{s.t.} \quad Ax = b,$$
(6)

where

•
$$M_{3} = 3M - 1, N = m^{2}n + mn^{2};$$

• $x = [f^{(1)}; f^{(2)}] \in \mathbb{R}^{m^{2}n} \times \mathbb{R}^{mn^{2}};$
• $c = [c^{1}; c^{2}] \in \mathbb{R}^{m^{2}n} \times \mathbb{R}^{mn^{2}};$
• $b = [0_{M}; \mu^{1}; \overline{I}_{M}\mu^{2}] \in \mathbb{R}^{M_{3}}$ with $\overline{I}_{m} = [I_{m-1}, \mathbf{0}_{m-1}] \in \mathbb{R}^{(m-1) \times m};$
• $A = \begin{bmatrix} A_{1} & A_{2} \\ A_{3} & \mathbf{0} \\ \mathbf{0} & A_{4} \end{bmatrix} \in \mathbb{R}^{M_{3} \times N}$ has full row rank with
 $A_{1} = I_{M} \otimes \mathbf{1}_{m}^{\top} \in \mathbb{R}^{M \times m^{2}n}, A_{2} = -\mathbf{1}_{n}^{\top} \otimes I_{M} \in \mathbb{R}^{M \times mn^{2}}, A_{3} = I_{n} \otimes (\mathbf{1}_{m}^{\top} \otimes I_{m}) \in \mathbb{R}^{M \times m^{2}n},$
 $A_{4} = \operatorname{diag} \left(\mathbf{1}_{n}^{\top} \otimes I_{m}, \dots, \mathbf{1}_{n}^{\top} \otimes I_{m}, \mathbf{1}_{n}^{\top} \otimes \overline{I}_{m}\right) \in \mathbb{R}^{(M-1) \times mn^{2}}.$

Yancheng Yuan (PolyU)

・ロト ・回ト ・ヨト ・ヨト

8/27

2

Reconstruct the transport plan

Algorithm A fast algorithm for reconstructing transport plan π from the network flows $f^{(1)}$ and $f^{(2)}$.

1: Input: An optimal flow $(f^{(1)}, f^{(2)})$ of problem (5). **Output:** An optimal transport mapping π of problem (1). 2: for $(k, j) \in \mathcal{I}$ do 3: 4: for i = 1, ..., m do for l = 1, ..., n do 5: $\pi_{i,j;k,l} = \min\{f_{i,k,l}^{(1)}, f_{k,l,l}^{(2)}\}$ 6: $f_{i,k,i}^{(1)} = f_{i,k,i}^{(1)} - \pi_{i,j;k,l}$ 7: $f_{k,i,l}^{(2)} = f_{k,i,l}^{(2)} - \pi_{i,j;k,l}$ 8: 9: end for 10: end for 11: end for

9/27

イロト イヨト イヨト

A Halpern accelerating method for solving the OT problem

The dual problem of (6):

$$\min_{y \in \mathbb{R}^{M_3}, z \in \mathbb{R}^N} \left\{ -\langle b, y \rangle + \delta_{\mathbb{R}^N_+}(z) \mid A^\top y + z = c \right\}.$$
(7)

The augmented Lagrange function to (7):

$$L_{\sigma}(y,z;x) := -\langle b,y
angle + \delta_{\mathbb{R}^N_+}(z) + rac{\sigma}{2} \|A^ op y + z - c + rac{1}{\sigma} x\|^2 - rac{1}{\sigma} \|x\|^2.$$

A fast Halpern accelerating method¹⁰ for solving dual problem (7):

Algorithm HOT: A Halpern accelerating method for solving the reduced OT problem.

1: Input: Choose $w^0 = (y^0, z^0, x^0) \in \mathbb{R}^{M_3} \times \mathbb{R}^N \times \mathbb{R}^N$ and $\sigma > 0$. For k = 0, 1, ...,perform the following steps in each iteration. 2: Step 1. $\bar{y}^k = \arg\min_{y \in \mathbb{Y}} \{L_{\sigma}(y, z^k; x^k)\}.$ 3: Step 2. $\bar{x}^k = x^k + \sigma(A^\top \bar{y}^k + z^k - c).$ 4: Step 3. $\bar{z}^k = \arg\min_{z \in \mathbb{Z}} \{L_{\sigma}(\bar{y}^k, z; \bar{x}^k)\}.$ 5: Step 4. $w^{k+1} = \frac{1}{k+2}w^0 + \frac{k+1}{k+2}(2\bar{w}^k - w^k).$ [Halpern's iteration with stepsize $\frac{1}{k+2}$]

10/27

¹⁰Sun, D., Yuan, Y., Zhang, G., & Zhao, X. (2024). "Accelerating preconditioned ADMM via degenerate proximal point mappings." arXiv preprint arXiv:2403.18618, SIAM J. Optim. 35 (2025) XXX, in print.

The iteration complexity of HOT algorithm

Proposition 1 ([SYZZ24])

The sequence $\{\bar{w}^k\} = \{(\bar{y}^k, \bar{z}^k, \bar{x}^k)\}$ generated by the HOT algorithm in Algorithm 2 converges to the point $w^* = (y^*, z^*, x^*)$, where (y^*, z^*) is a solution to problem (7) and x^* is a solution to problem (6).

The Karush-Kuhn-Tucker (KKT) residual mapping:

$$\mathcal{R}(w) = \begin{pmatrix} b - Ax \\ z - \prod_{\mathbb{R}^{N}_{+}} (z - x) \\ c - A^{\top}y - z \end{pmatrix}$$

Proposition 2 ([SYZZ24])

Let $\{(\bar{y}^k, \bar{z}^k, \bar{x}^k)\}$ be the sequence generated by Algorithm 2, and let $w^* = (y^*, z^*, x^*)$ be the limit point of the sequence $\{(\bar{y}^k, \bar{z}^k, \bar{x}^k)\}$ and $R_0 = ||x^0 - x^* + \sigma(z^0 - z^*)||$. For all $k \ge 0$, we have the following bounds:

$$\|\mathcal{R}(\bar{w}^k)\| \le \left(\frac{\sigma+1}{\sigma}\right) \frac{R_0}{(k+1)}.$$
(8)

Computational bottleneck of HOT

The major computational bottleneck of HOT is to solve the linear system:

$$AA^{\top}\bar{y}^{k} = \frac{b}{\sigma} - A\left(\frac{x^{k}}{\sigma} + z^{k} - c\right), \qquad (9)$$

A fast implementation

where $A \in \mathbb{R}^{M_3 \times N}$.

The sparse Cholesky decomposition for large-scale reduced OT problems encounters memory and computational efficiency challenges in general (for 256×256 gray-scale image, $M_3 = 196, 607$).

We propose a linear time complexity procedure to solve the linear system (9).

イロト 不得 トイヨト イヨト

The structure of AA^{\top}

The matrix AA^{\top} has the following structure:

$$AA^{\top} = \begin{bmatrix} E_1 & E_2 & E_3 \\ E_2^{\top} & E_4 & \mathbf{0} \\ E_3^{\top} & \mathbf{0} & E_5 \end{bmatrix},$$
 (10)

where

•
$$E_1 = (m+n)I_M \in \mathbb{R}^{M \times M};$$

• $E_2 = \text{diag} \left(\mathbf{1}_m \mathbf{1}_m^\top, \dots, \mathbf{1}_m \mathbf{1}_m^\top, \mathbf{1}_m \mathbf{1}_m^\top\right) \in \mathbb{R}^{M \times M};$
• $E_3 = -\mathbf{1}_n \otimes (I_m, \dots, I_m, \overline{I}_m^\top) \in \mathbb{R}^{M \times (M-1)};$
• $E_4 = mI_M \in \mathbb{R}^{M \times M};$
• $E_5 = A_4 A_4^\top = nI_{M-1} \in \mathbb{R}^{(M-1) \times (M-1)}.$

To better explore the structure of the linear system $AA^{\top}y = R$, we rewrite it equivalently as

$$AA^{\top}y = \begin{bmatrix} E_1 & E_2 & E_3 \\ E_2^{\top} & E_4 & \mathbf{0} \\ E_3^{\top} & \mathbf{0} & E_5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix}, \qquad (11)$$

where $y := (y_1; y_2; y_3) \in \mathbb{R}^M \times \mathbb{R}^M \times \mathbb{R}^{M-1}$ and $R := (R_1; R_2; R_3) \in \mathbb{R}^M \times \mathbb{R}^M \times \mathbb{R}^{M-1}$.

A linear time complexity procedure for solving $AA^{\top}y = R$

Proposition 3

Consider $A \in \mathbb{R}^{M_3 \times N}$ defined in (6). Given $R \in \mathbb{R}^{M_3}$, the solution y to $AA^\top y = R$ is given by:

$$y_2^j = \frac{1}{m} (R_2^j - \mathbf{1}_m^\top y_1^j), \quad j = 1, \dots, n,$$
 (12)

$$y_3^j = \frac{1}{n} (R_3^j + \sum_{j=1}^n y_1^j), \quad j = 1, \dots, n-1,$$
 (13)

$$y_3^n = \frac{1}{n} (R_3^n + \bar{l}_m \sum_{j=1}^n y_1^j), \tag{14}$$

$$y_1^j = \hat{y}_1^j - \hat{y}_1^a, \quad j = 1, \dots, n,$$
 (15)

where

$$\begin{aligned} \hat{y}_{1}^{j} &= \frac{1}{m+n} \left(\hat{R}_{1}^{j} + \hat{R}_{2}^{j} + \tilde{R}_{3} \right), \quad j = 1, \dots, n, \text{ with } \hat{R}_{1}^{j} = R_{1}^{j} + \frac{1}{n} \mathbf{1}_{m}^{\top} R_{1}^{j}, \quad \tilde{R}_{2}^{j} = -\left(\frac{1}{m} + \frac{1}{n}\right) \mathbf{1}_{m}^{\top} R_{2}^{j}, \text{ and } \\ \hat{R}_{3} &= \frac{1}{n} \left(\sum_{j=1}^{n-1} R_{3}^{j} + \tilde{I}_{m}^{\top} R_{3}^{n} \right) + \frac{1}{n^{2}} \mathbf{1}_{M-1}^{\top} R_{3}; \\ \hat{\mathcal{G}} \quad \hat{y}_{1}^{3} &= \left(I_{m} + \frac{1}{n} \mathbf{1}_{m} \mathbf{1}_{m}^{\top} \right) \hat{W} \sum_{j=1}^{n} \hat{y}_{1}^{j}; \\ \hat{\mathcal{G}} \quad \hat{W} &= \left(-\operatorname{diag} \left(\frac{1}{m} I_{m-1}, \frac{1}{m+1} \left(1 - \frac{1}{n} \right) \right) - \frac{1}{w} dd^{\top} \right), \text{ with } d = \left[\frac{1}{m} \mathbf{1}_{m-1}; \frac{1}{m+1} \left(1 - \frac{1}{n} \right) \right] \in \mathbb{R}^{m} \text{ and } \\ &= \frac{1}{m} - \frac{1}{(m+1)} \left(1 - \frac{1}{n} \right). \end{aligned}$$

Yancheng Yuan (PolyU)

イロン イロン イヨン イヨン

The complexity of HOT for solving the OT problem

Corollary 1

The linear system (9) can be solved in $O(M_3)$ flops.

Theorem 2

Let $\{\bar{y}^k, \bar{z}^k, \bar{x}^k\}$ be the sequence generated by the HOT algorithm in Algorithm 2. For any given tolerance $\varepsilon > 0$, the HOT algorithm needs at most

$$\frac{1}{\varepsilon} \left(\frac{1+\sigma}{\sigma} \left(\left\| x^{0} - x^{*} \right\| + \sigma \left\| z^{0} - z^{*} \right\| \right) \right) - 1$$

iterations to return a solution to the equivalent OT problem (6) such that the KKT residual $\|\mathcal{R}(\bar{w}^k)\| \leq \varepsilon$, where (x^*, z^*) is the limit point of the sequence $\{\bar{x}^k, \bar{z}^k\}$. In particular, the overall computational complexity of the HOT algorithm in Algorithm 2 to achieve this accuracy in terms of flops is

$$O\left(\left(\frac{1+\sigma}{\sigma}\left(\left\|x^{0}-x^{*}\right\|+\sigma\left\|s^{0}-s^{*}\right\|\right)\right)\frac{m^{2}n+mn^{2}}{\varepsilon}\right)$$

Yancheng Yuan (PolyU)

May 17 2025

< □ > < 同 > < 回 > < 回 >

A fast implementation

The explicit solution of the linear system for the original OT problem

The structure of AA^{\top} in the original OT problem:

$$AA^{\top} = \begin{bmatrix} MI_M & \mathbf{1}_M \mathbf{1}_{M-1}^{\top} \\ \mathbf{1}_{M-1} \mathbf{1}_M^{\top} & MI_{M-1} \end{bmatrix}.$$
 (16)

The solution of the linear system for the original OT $\mathsf{problem}^{11,\ 12}$

$$AA^{\top} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$

can be obtained by

$$y_{1} = \frac{R_{1}}{M} + \frac{1}{M} \left(\frac{M-1}{M} \mathbf{1}_{M}^{\top} R_{1} - \mathbf{1}_{M-1}^{\top} R_{2} \right) \mathbf{1}_{M},$$

$$y_{2} = \frac{R_{2}}{M} + \frac{1}{M} \left(\mathbf{1}_{M-1}^{\top} R_{2} - \mathbf{1}_{M}^{\top} R_{1} \right) \mathbf{1}_{M-1}.$$
(17)

16 / 27

¹¹Zhang, G., Yuan, Y., & Sun, D. (2022). An Efficient HPR Algorithm for the Wasserstein Barycenter Problem with $O(Dim(P)/\varepsilon)$ Computational Complexity. arXiv preprint arXiv:2211.14881.

Complexity bounds of different algorithms for the OT problem

Table: Selected known complexity results for solving OT problem (C represents the largest elements of the cost matrix, while R denotes the distance between the initial point and the solution set.)

Algorithm	Complexity result
Sinkhorn [DGK18]	$\widetilde{O}(M^2C^2/\varepsilon^2)$
APDAGD [DGK18, LHJ22]	$\widetilde{O}(M^{2.5}C/\varepsilon)$
Greenkhorn [LHJ22]	$\widetilde{O}(M^2C^2/\varepsilon^2)$
Accelerated Sinkhorn [LHJ22]	$\widetilde{O}(M^{7/3}C^{4/3}/\varepsilon^{4/3})$
AAM [GDTG21]	$\widetilde{O}(M^{2.5}C/\varepsilon)$
Dual extrapolation [JST19]	$\widetilde{O}(M^2C/\varepsilon)$
HPD [CC22]	$\widetilde{O}(M^{2.5}C/\varepsilon)$
HPR [ZYS22]	$O(M^2 R/\varepsilon)$
HOT (Ours)	${\sf O}({\sf M}^{{\sf 1}.{\sf 5}}{\sf R}/arepsilon)$

Data and baselines

Dataset: DOTmark¹³.

Figure: Upper row: Classic Images category, bottom row: Shapes category.

Baselines:

- Interior Point Method in Gurobi [Gur24];
- Output: Network Simplex in Lemon C++ library¹⁴;

ADMM;

Sinkhorn in POT library¹⁵;

(a) Improved Sinkhorn (also explores the property of L_2^2 ground distance).

¹³Schrieber, J., Schuhmacher, D., & Gottschlich, C. (2016). "Dotmark-a benchmark for discrete optimal transport." IEEE Access, 5, 271-282.

¹⁴https://lemon.cs.elte.hu/

¹⁵Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Boisbunon, A., Chambon, S., ... & Vayer, T. (2021). "Pot: Python optimal transport." Journal of Machine Learning Research, 22(78), 1-8.

Yancheng Yuan (PolyU)

Optimal Transport

May 17 2025

Environment:

- Ubuntu server equipped with Intel(R) Xeon(R) Platinum 8480C processor;
- Ividia GeForce RTX 4090 GPU (24GB).

Stopping criterion:

HOT & ADMM:

$$\mathrm{KKT}_{\mathrm{res}} = \max\left\{\frac{\|A^{\top}y + z - c\|}{1 + \|c\|}, \frac{\|\min(x, z)\|}{1 + \|x\| + \|z\|}, \frac{\|Ax - b\|}{1 + \|b\|}\right\} \le 10^{-6}; \quad (18)$$

Other baselines: Default stopping criterion.

Evaluations of solution quality:

- relative primal feasibility error: feaserr = max $\left\{ \frac{\|\min(x,0)\|}{1+\|x\|}, \frac{\|Ax-b\|}{1+\|b\|} \right\}$;
- relative objective gap: $gap = \frac{|\langle c, x \rangle \langle c, x_b \rangle|}{|\langle c, x_b \rangle| + 1}$, where x_b is the solution obtained using Gurobi with the tolerance set to 10^{-8} .

イロト イヨト イヨト イヨト

Numerical results

Category	Resolution		HOT (Reduced)	HOT (Original)	Sinkhorn (0.01%)
		time (s)	0.64	28.43	103.74
		gap	3.78E-04	8.14E-04	6.07E-05
	64 imes 64	feaserr	5.77E-07	9.73E-07	9.68E-07
Shapes		iter	1610	3080	37077
		time (s)	1.68	286.20	1616.34
		gap	2.51E-03	2.60E-03	3.09E-04
	128×128	feaserr	1.01E-06	9.58E-07	9.83E-07
		iter	1240	3220	35009

Table: Numerical results on Shapes category.

Numerical results

Category	Resolution		HOT (reduced)	Network Simplex	Gurobi	ADMM	Improved Sinkhorn (0.01%)	Sinkhorn (0.01%)
		time (s)	0.67	2.73	2.16	1.77	16.18	174.82
	64 × 64	gap	8.26E-04	3.46E-10	1.20E-04	2.67E-04	1.69E-04	2.12E-04
	04 × 04	feaserr	4.58E-07	4.88E-32	2.55E-11	3.09E-07	7.90E-07	9.75E-07
		iter	1700	-	13	3420	64126	62474
		time (s)	1.58	36.18	29.15	3.53	39.40	2632.17
128 Classic	129 \(\col_129)	gap	6.24E-03	8.74E-10	1.07E-04	1.72E-03	6.98E-04	6.35E-04
	120 × 120	feaserr	7.27E-07	9.67E-32	7.24E-12	3.73E-07	8.34E-07	9.87E-07
		iter	1170	-	14	3240	58446	57010
		time (s)	12.98	2562.92	Memory Overflow	20.80		
	256×256	feaserr	8.05E-07	1.35E-31		Memory Overflow	6.04E-07	Overflow
		iter	1140	-		2250		
		time (s)	81.02	Over Maximum	Memory Overflow	116.92		
	512×512	feaserr	3.28E-07	Running		Overflow 4.32E-07 Overflow	Overflow	Overflow
		iter	900	rime		1610		

Table: Numerical results on Classic Images category.

Yancheng Yuan (PolyU)

Optimal Transport

< □ > < □ > < □ > < □ > < □ > < □ >
 May 17 2025

21 / 27

2

Table: Numerical results on Shapes cate	gory.
---	-------

Category	Resolution		HOT (reduced)	Network Simplex	Gurobi	ADMM	Improved Sinkhorn (0.01%) Sinkhorn (0.		
		time (s)	0.64	1.48	1.33	3.92	9.60	103.74	
	64 64	gap	3.78E-04	1.81E-10	2.28E-05	5.85E-05	4.86E-05	6.07E-05	
	04 × 04	feaserr	5.77E-07	7.24E-32	1.88E-10	2.58E-07	7.95E-07	9.68E-07	
		iter	1610	-	15	10430	37986	37077	
		time (s)	1.68	20.70	22.46	2.32	24.32	1616.34	
Shapes -	100 - 100	gap	2.51E-03	2.46E-09	2.19E-05	4.11E-04	3.28E-04	3.09E-04	
	120 × 120	feaserr	1.01E-06	1.16E-31	2.01E-10	7.74E-07	8.01E-07	9.83E-07	
		iter	1240	-	18	2130	36080	35009	
		time (s)	14.87	959.77		23.30			
	256×256	feaserr	6.68E-07	1.59E-31	Memory Overflow	7.17E-07 Memory Overflow	Memory Overflow	Memory Overflow	
		iter	1310	-		2530			
	512 × 512	time (s)	87.12	Over Maximum		118.10			
		feaserr	3.54E-07	Running	Memory Overflow	5.71E-07	Overflow	Memory Overflow	
		iter	970	i ime		1630			

 128×128 case:

HOT VS Gurobi, 15.83× faster, Network Simplex, 17.44× faster, Improved Sinkhorn, 19.54× faster.

May 17 2025

<ロ> <四> <ヨ> <ヨ>

22 / 27

2

Numerical results

Table: The comparison of HOT's performance on CPU and GPU.

Category	Resolution		GPU	CPU	Ratio (t_{CPU}/t_{GPU})	Best Baseline
	128×128	time (s)	1.58	5.91	3.74	29.15
Classic	256 × 256	time (s)	12.98	108.98	8.40	2562.92
	512 × 512	time (s)	81.02	764.22	9.43	\
	128×128	time (s)	1.68	6.15	3.66	20.70
Shapes	256 × 256	time (s)	14.87	130.81	8.80	959.77
	512 × 512	time (s)	87.12	812.82	9.33	\ \

Findings:

- Acceleration ratio gets larger as the dimension of the problem increases.
- Output Boundary Hot Can be a seline methods (excluding ADMM) even without GPU acceleration.

イロト イボト イヨト イヨト

23 / 27

A comparison of sparse Cholesky decomposition and Proposition 3

Figure: Comparison of solving the linear system (9) using Proposition 3 and the sparse Cholesky decomposition¹⁶.

¹⁰ https://github.com/rgl-epfl/cho	lespy	◆ ヨト ◆ ヨト	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Yancheng Yuan (PolyU)	Optimal Transport	May 17 2025		24 / 27

Color transfer

Figure: More examples on color transfer.

Yancheng Yuan	(PolyU))
---------------	---------	---

Optimal Transport

May 17 2025 25 / 27

・ロト ・四ト ・ヨト ・ヨト 三日

- We proposed an efficient HOT algorithm for solving the OT problem.
- We designed a linear time complexity procedure to solve the linear system involved in the HOT algorithm.
- We designed an efficient algorithm to recover an optimal transport map from a solution to the reduced OT model.
- **O** Extensive numerical results demonstrated the superiority of the HOT algorithm.

An implementation of HPR for solving general large-scale LP problems can be found in

Chen, Kaihuang, Defeng Sun, Yancheng Yuan, Guojun Zhang, and Xinyuan Zhao. "HPR-LP: An implementation of an HPR method for solving linear programming." arXiv preprint arXiv:2408.12179 (2024).

26 / 27

イロト 不得 トイヨト イヨト

Thanks for listening!

2

< □ > < □ > < □ > < □ > < □ >

References I

 [CC22] Antonin Chambolle and Juan Pablo Contreras. Accelerated Bregman primal-dual methods applied to optimal transport and Wasserstein barycenter problems. *arXiv preprint arXiv:2203.00802*, 2022.
 [DGK18] Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin.

Computational optimal transport: Complexity by accelerated gradient descent is better than by Sinkhorn's algorithm.

In *International conference on machine learning*, pages 1367–1376. PMLR, 2018.

[GDTG21] Sergey Guminov, Pavel Dvurechensky, Nazarii Tupitsa, and Alexander Gasnikov.

On a combination of alternating minimization and Nesterov's momentum. In *International Conference on Machine Learning*, pages 3886–3898. PMLR, 2021.

[Gur24] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024.

イロト イボト イヨト イヨト

Conclusion

References II

- [JST19] Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct $\tilde{O}(1/\epsilon)$ iteration parallel algorithm for optimal transport. Advances in Neural Information Processing Systems, 32, 2019.
- [LHJ22] Tianyi Lin, Nhat Ho, and Michael I Jordan. On the efficiency of entropic regularized algorithms for optimal transport. *Journal of Machine Learning Research*, 23(137):1–42, 2022.
- [SYZZ24] Defeng Sun, Yancheng Yuan, Guojun Zhang, and Xinyuan Zhao. Accelerating preconditioned ADMM via degenerate proximal point mappings. arXiv preprint arXiv:2403.18618, 2024. SIAM J. Optim. 35 (2025) XXX, in print.
- [ZYS22] Guojun Zhang, Yancheng Yuan, and Defeng Sun. An efficient HPR algorithm for the Wasserstein barycenter problem with $O(Dim(P)/\varepsilon)$ computational complexity. arXiv preprint arXiv:2211.14881, 2022.

27 / 27

イロト イヨト イヨト イヨト