
1

HOT: An Efficient Halpern Accelerating Algorithm
for Optimal Transport Problems

Guojun Zhang, Zhexuan Gu, Yancheng Yuan, Defeng Sun

Abstract—This paper proposes an efficient HOT algorithm
for solving the optimal transport (OT) problems with finite
supports. We particularly focus on an efficient implementation
of the HOT algorithm for the case where the supports are in R2

with ground distances calculated by L2
2-norm. Specifically, we

design a Halpern accelerating algorithm to solve the equivalent
reduced model of the discrete OT problem. Moreover, we derive
a novel procedure to solve the involved linear systems in the HOT
algorithm in linear time complexity. Consequently, we can obtain
an ε-approximate solution to the optimal transport problem with
M supports in O(M1.5/ε) flops, which significantly improves the
best-known computational complexity. We further propose an
efficient procedure to recover an optimal transport plan for the
original OT problem based on a solution to the reduced model,
thereby overcoming the limitations of the reduced OT model in
applications that require the transport plan. We implement the
HOT algorithm in PyTorch and extensive numerical results show
the superior performance of the HOT algorithm compared to
existing state-of-the-art algorithms for solving the OT problems.

Index Terms—Optimal transport, Kantorovich-Wasserstein
distance, Halpern iteration, Acceleration, Computational com-
plexity.

I. INTRODUCTION

THE Kantorovich-Wasserstein (KW) distance has become
a prime choice for measuring the similarity between

two probability distributions. It has demonstrated remarkable
success in various applications, including color transfer [1]–
[3], texture synthesis and mixing [4], registration and warping
[5], transport-based morphometry [6], and hypothesis testing
[7], among others. Despite its powerful geometric framework
for comparing probabilities, the KW distance is computa-
tionally expensive in general [8], [9]. Specifically, it requires
solving an optimal transport (OT) problem, which is a (large-
scale) linear programming (LP) in a discrete setting. Standard
methods, such as the simplex method and the interior point
method, suffer from high computational complexity relative to
the problem size. Furthermore, these methods are difficult to
parallelize, which can hardly benefit from the modern powerful
graphics processing units (GPUs). Consequently, solving the
LP problem of the discrete OT problem remains daunting in
modern data-driven applications due to high computational and
memory costs. This paper addresses these two challenges by
proposing an efficient and easily parallelizable algorithm for
solving an equivalent reduced model of the OT problem.

Guojun Zhang and Zhexuan Gu contribute equally to this manuscript.
Corresponding author: Yancheng Yuan.
The authors are with The Hong Kong Polytechnic University. E-

mail: guojun.zhang@connect.polyu.hk, zhexuan.gu@connect.polyu.hk,
yancheng.yuan@polyu.edu.hk, defeng.sun@polyu.edu.hk.

A. Related work and existing challenges

When it comes to computing the KW distance between two
discrete probability distributions with M supports, there are
mainly two popular approaches: (i) Computing an approxi-
mated KW distance by solving the optimal transport problem
with an additional entropy regularization [10]; (ii) Computing
the KW distance via solving the corresponding LP problem
[11]. The readers can refer to [9] and the references therein for
a more detailed discussion of the algorithms for solving OT
problems. Before introducing our new algorithm, we briefly
discuss the challenges of the aforementioned approaches.

Challenges with the Entropy-regularized approach: Due
to its scalability, the Sinkhorn algorithm and its improved
versions have been widely adopted to compute an approxi-
mation of the KW distance in applications [10], [12]–[14].
In particular, the Sinkhorn algorithm can efficiently solve the
regularized OT problem when the regularization parameter is
moderate (i.e., no less than 10−2). However, a high-quality
approximation of the KW distance is important for better
performance in many applications, which requires solving the
regularized OT problem with a small regularization parameter.
Unfortunately, a small regularization parameter will usually
cause numerical issues and a slower convergence for the
Sinkhorn algorithm. Some stabilized and rescaling techniques
[15] have been proposed to improve the robustness of solving
the regularized OT problems, but the efficiency of the stabi-
lized algorithms is unsatisfactory compared to the Sinkhorn
algorithm.

Challenges with the LP approach: Along this line, the
interior point method [16] and the network simplex method
[17], [18] are popular choices for obtaining solutions with
high accuracy to the moderate scale LP problem. Recently,
a semismooth Newton based inexact proximal augmented
Lagrangian method [19] has been proposed for solving linear
programming problems which can solve the OT problem
as a special case. The semismooth Newton based algorithm
can exploit the sparsity of the solution by the generalized
Jacobian and show superior numerical performance compared
to Gurobi in some examples. However, these solvers are not
applicable for solving the problem on a very large scale
due to the high computational complexity. The urgent need
to solve large-scale OT problems in applications inspires
extensive research in designing first-order methods, such as
the Douglas-Rachford splitting algorithm [20] and primal-dual
hybrid gradient method (PDHG) [21]–[24]. Jambulapati et
al. [25] proposed an algorithm based on a dual-extrapolation
algorithm to achieve an Õ(M2/ε) computational complexity

ar
X

iv
:s

ub
m

it/
63

67
39

7 
 [

m
at

h.
O

C
] 

 1
6 

A
pr

 2
02

5



2

Fig. 1: Selected examples of color transfer based on the reduced optimal transport model with the optimal transport plan
recovered by Algorithm 1.

bound, where M is the number of supports, for obtaining
an ε-approximate solution (in terms of objective function
value)1. Recently, Zhang et al. [26] proposed an efficient
Halpern-Peaceman-Rachford (HPR) algorithm for solving the
OT model and the Wasserstein barycenter problem, which can
obtain an ε-approximate solution (in terms of the Karush-
Kuhn-Tucker (KKT) residual) of the OT model in O(M2/ε)
flops. We summarize some known complexity results for
solving the OT problem in Table I. Readers can refer to [26]–
[28] and the references therein for a more detailed discussion.

TABLE I: Selected known complexity results for solving OT
problem (C represents the largest elements of the cost matrix, while
R denotes the distance between the initial point and the solution set.)

Algorithm Time complexity result Space complexity result

Sinkhorn [13] Õ(M2C2/ε2) O(M2)

APDAGD [13], [29] Õ(M2.5C/ε) O(M2)

Greenkhorn [29] Õ(M2C2/ε2) O(M2)

Accelerated Sinkhorn [29] Õ(M7/3C4/3/ε4/3) O(M2)

AAM [14] Õ(M2.5C/ε) O(M2)

Dual extrapolation [25] Õ(M2C/ε) O(M2)

HPD [30] Õ(M2.5C/ε) O(M2)

HPR [26]2 O(M2R/ε) O(M2)

HOT (Ours) O(M1.5R/ε) O(M1.5)

Beyond the challenges above in computational efficiency, all
these algorithms for the original OT problem with M supports
require at least a memory cost of O(M2). This memory
cost makes it forbidden to compute the KW distance of two

1Despite its better complexity bound, the empirical performance of this
algorithm is not as efficient as other algorithms, such as accelerated gradient
method [13], [14].

distributions with massive supports (i.e., the OT problem for
computing the KW distance of two 512 × 512 grey images
has more than 6.8 × 1010 variables). To address this issue,
researchers have proposed some approximate models for the
OT problem, such as the linear OT framework [31], the sliced
Wasserstein distance [32], and the approximated earth mover’s
distance [33]–[35]. While these approaches alleviate memory
issues and simplify computations, they inevitably introduce
a loss of exactness. This limitation has motivated further
research into equivalent reduced models for the OT problem.
When the ground distances between supports in Rd are cal-
culated by L1-norm, Ling and Okada proposed an equivalent
reduced model with O(dM) memory cost to calculate the earth
mover distance (equivalent to the KW distance) [36]. Recently,
Auricchio et al. [37] extended the idea to the case where the
ground distances between supports are calculated by L2

2-norm
and proposed an equivalent reduced model with O(dM

d+1
d )

memory cost. The authors in [37] adopted the Network Sim-
plex method to solve the reduced model and demonstrated
superior performance in terms of computational and memory
efficiency compared to the Sinkhorn and the convolutional
Sinkhorn method [3], [38] on examples of moderate scale.
Unfortunately, the efficiency becomes unsatisfactory for very
large-scale problems (see Section IV for details). Moreover,
the transport plan is not available if we solve the reduced
model, which is critical for a wide class of applications, such
as color transfer [1], [39], texture synthesis [4], and domain
adaptation [40].

B. Contributions
Motivated by the recent advancements in the accelerated

algorithms based on Halpern iteration [26], [41]–[45], we



3

propose an efficient Halpern accelerating method for solving
the reduced OT problem, which is abbreviated as “HOT” for
convenience, to address the challenges in computing the KW
distance with a finite number of supports. We particularly
focus on an efficient implementation of the HOT algorithm
for the case where the supports are in R2 with ground
distances calculated by L2

2-norm, which includes a wide
class of applications as aforementioned. Specifically, HOT
adopts a first-order algorithm with Halpern acceleration to
solve the equivalent reduced OT model, which can obtain
an ε-approximate solution in O(1/ε) iterations [26], [41].
More importantly, we design a fast procedure for solving the
subproblems with linear time complexity by fully exploiting
the problem structure. This also makes the popular alternating
direction method of multipliers (ADMM) [46], [47] scalable
for solving the reduced OT model. Overall, our proposed
HOT algorithm can compute an ε-approximation of the KW
distance between two histograms supported on M = m × n
bins within O((m2n+n2m)/ε) flops. This is the best-known
computational complexity for computing an approximate KW
distance to our knowledge. Moreover, we propose an efficient
algorithm to recover a transport plan based on the obtained
solution of the reduced model, which releases the power of the
reduced model in applications. We implement HOT in PyTorch
and extensive numerical results will be shown in Section IV
to demonstrate the superior and robust performance of HOT
for computing the KW distance, compared to state-of-the-art
algorithms, including Sinkhorn [10], convolutional Sinkhorn
[3], [38], Network Simplex method [17], [18], ADMM [46],
[47], interior point method (in Gurobi).

We summarize the main contributions of this paper as
follows:

1) We propose an efficient HOT algorithm for solving the
reduced model of the OT problem with an attractive
O(1/ε) iteration complexity guarantee with respect to the
KKT residual.

2) We designed a highly efficient algorithm for solving
the subproblems of the HOT algorithm with linear time
complexity.

3) We propose an efficient algorithm to recover a transport
plan based on the obtained solution of the reduced model,
which removes the restriction of the reduced model in
applications requiring a transport plan.

4) We implement the HOT algorithm in PyTorch, which
supports both CPU and GPU computation and is user-
friendly for researchers in the machine learning commu-
nity.

5) Extensive numerical testings are conducted and presented
to demonstrate the efficiency of the HOT algorithm.

The rest of the paper is organized as follows. We introduce
the equivalent reduced OT model in Section II. This section
also includes an efficient procedure for recovering the transport
plan from a solution to the reduced OT problem. The HOT
algorithm and its computational complexity guarantees will
be presented in Section III. We present extensive numerical
results in Section IV and conclude the paper in Section V.

Notation. We denote the n-dimensional real Euclidean

space as Rn and the nonnegative orthant of Rn as Rn
+. For

any x ∈ Rn and y ∈ Rn, we define ⟨x, y⟩ :=
∑n

i=1 xiyi
and ∥x∥ :=

√∑n
i=1 x

2
i , respectively. Additionally, let 1m

(resp. 0m) denote the m-dimensional vector with all entries
being 1 (resp. 0). For a given matrix A ∈ Rm×n, we
denote A⊤ ∈ Rn×m as its transpose. For a collection of
matrices {A1, . . . , Am}, we denote the block diagonal matrix
with diagonal blocks Ai as diag(A1, . . . , Am). A1 ⊗ A2

stands for the Kronecker product of matrices A1 and A2.
Moreover, for a closed convex set C, we denote the indicator
function of C and the Euclidean projector over C as δC and
ΠC(x) := argminz∈C ∥x− z∥, respectively.

II. KANTOROVICH-WASSERSTEIN DISTANCES

In this section, we first introduce an equivalent reduced
model of the OT problem for computing the KW distance be-
tween two-dimensional histograms. Subsequently, we present
a fast and easily implementable algorithm to reconstruct the
optimal transport plan of the original OT model from a
solution of this reduced model.

A. An equivalent reduced model of the OT problem

In the following discussion, we assume two-dimensional
histograms for simplicity. As previously mentioned, these
histograms are widely used in applications as shape and image
descriptors. Without loss of generality, we adopt the following
assumptions and notations:

1) Histograms have supports in M = m × n bins with m
rows and n columns;

2) The index set for bins is defined as I = {(i, j) | 1 ≤ i ≤
m, 1 ≤ j ≤ n}. We use (i, j) to denote a bin or a node
corresponding to it;

3) µ1 and µ2 are the two histograms to be compared, where
each histogram µk is defined as {µk

i,j | µk
i,j ≥ 0, (i, j) ∈

I,
∑

(i,j)∈I
µk
i,j = 1} for k = 1, 2.

With these notations and assumptions, the discrete OT
problem for computing the KW distance between histograms
µ1 and µ2 can be defined as follows:

min
π

∑
(i,j)∈I

∑
(k,l)∈I

ci,j;k,lπi,j;k,l

s.t.



∑
(k,l)∈I

πi,j;k,l = µ1
i,j , ∀(i, j) ∈ I,

∑
(i,j)∈I

πi,j;k,l = µ2
k,l, ∀(k, l) ∈ I,

πi,j;k,l ≥ 0, ∀(i, j) ∈ I, ∀(k, l) ∈ I,

(1)

where π is the transport plan between histograms µ1 and µ2.
The ground distance ci,j;k,l is commonly defined by the Lp

p

distance:

ci,j;k,l = ∥(i, j)⊤ − (k, l)⊤∥pp = (|i− k|p + |j − l|p). (2)

In this paper, we focus on the case where p = 2. By exploiting
the separable structure of the ground distance, Auricchio et al.



4

[37] proposed the following equivalent model in terms of the
optimal objective function value:

min
f(1),f(2)

∑
(i,j)∈I

[
m∑

k=1

(k − i)2f
(1)
i,k,j +

n∑
l=1

(j − l)2f
(2)
k,j,l

]

s.t.



m∑
i=1

f
(1)
i,k,j =

n∑
l=1

f
(2)
k,j,l, ∀(k, j) ∈ I,

m∑
k=1

f
(1)
i,k,j = µ1

i,j , ∀(i, j) ∈ I,

n∑
j=1

f
(2)
k,j,l = µ2

k,l, ∀(k, l) ∈ I,

f
(1)
i,k,j ≥ 0, f

(2)
k,j,l ≥ 0, ∀(i, j), (k, l) ∈ I,

(3)
where f

(1)
i,k,j denotes the input flow from bin (i, j) to (k, j) and

f
(2)
k,j,l denotes the output flow from bin (k, j) to (k, l). Com-

pared to formulation (1), the formulation (3) offers substantial
computational benefits. Specifically, the reduced problem (3)
only has mn2 + m2n variables, whereas the original model
has m2n2 variables. Moreover, the reduced model remains
an LP problem. Consequently, popular algorithms for LP
problems can be applied to solve this reduced model, such
as the network-simplex method and the interior point method.
Although the computation and memory costs of these men-
tioned algorithms are lower for the reduced model, it remains
a challenge for solving large-scale problems. In this paper,
we focus on addressing the challenges by designing a fast
algorithm to solve the reduced model (3).

To facilitate the design of the algorithm, we reformulate
the model (3) into the following standard form of linear
programming:

min
x∈RN

⟨c, x⟩+ δRN
+
(x)

s.t. Âx = b̂,
(4)

where
1) M3 = 3M − 1, N = m2n+mn2;
2) x = [f (1); f (2)] ∈ Rm2n × Rmn2

with{
f (1) = {f (1)

i,k,j , ∀(i, j) ∈ I, k = 1, . . . ,m},
f (2) = {f (2)

k,j,l, ∀(k, l) ∈ I, j = 1, . . . , n};

3) c = [c1; c2] ∈ Rm2n × Rmn2

with{
c1 = {c(1)i,k,j = (k − i)2, ∀(i, j) ∈ I, k = 1, . . . ,m},
c2 = {c(2)k,j,l = (j − l)2, ∀(k, l) ∈ I, j = 1, . . . , n};

4) b̂ = [0M ;µ1;µ2] ∈ RM × RM × RM ;

5) Â =


A1 A2

A3 0

0 Â4

 ∈ R(M3+1)×N with


A1 = IM ⊗ 1⊤

m ∈ RM×m2n,

A2 = −1⊤
n ⊗ IM ∈ RM×mn2

,

A3 = In ⊗ (1⊤
m ⊗ Im) ∈ RM×m2n,

Â4 = In ⊗ (1⊤
n ⊗ Im) ∈ RM×mn2

.

(5)

For notational convenience, let Īm = [Im−1,0m−1] ∈
R(m−1)×m. We define

A :=


A1 A2

A3 0

0 A4

 ∈ RM3×N , b := [0M ;µ1; ĪMµ2] ∈ RM3 .

(6)
with

A4 = diag
(
1⊤
n ⊗ Im, . . . ,1⊤

n ⊗ Im,1⊤
n ⊗ Īm

)
∈ R(M−1)×mn2

.
(7)

Similar to [48, Lemma 7.1], we can obtain that A defined in
(6) has full row rank, and

{x ∈ RN | Ax = b} = {x ∈ RN | Âx = b̂}.

As a result, the linear programming problem (4) is equivalent
to

min
x∈RN

⟨c, x⟩+ δRN
+
(x)

s.t. Ax = b.
(8)

Furthermore, the dual problem of (8) takes the form:

min
y∈RM3 ,z∈RN

{
−⟨b, y⟩+ δRN

+
(z) | A⊤y + z = c

}
. (9)

The KKT conditions associated with (8) and (9) can be given
by

A∗y + z = c, Ax = b, RN
+ ∋ x ⊥ z ∈ RN

+ , (10)

where x ⊥ z means x is perpendicular to z, i.e., ⟨x, z⟩ = 0.

B. Reconstruct the transport plan from the reduced model

The absence of the transport plan π makes the reduced
OT model less favorable in applications where the transport
plan is necessary (i.e., color transfer [1]–[3]). We address this
issue by proposing a fast algorithm (shown in Algorithm 1)
to reconstruct an optimal transport plan of the original model
from an optimal solution of the reduced model (3).

Algorithm 1 A fast algorithm for reconstructing transport plan π from
the network flows f (1) and f (2).

Input: An optimal flow (f (1), f (2)) of problem (3).
Output: An optimal transport plan π of problem (1).
for (k, j) ∈ I do

for i = 1, . . . ,m do
for l = 1, . . . , n do

πi,j;k,l = min{f (1)
i,k,j , f

(2)
k,j,l}

f
(1)
i,k,j = f

(1)
i,k,j − πi,j;k,l

f
(2)
k,j,l = f

(2)
k,j,l − πi,j;k,l

end for
end for

end for

The following proposition shows that the output of Algo-
rithm 1 is an optimal transport plan for the original OT model.

Proposition 1. Given an optimal solution (f (1), f (2)) to
problem (3), the output π of Algorithm 1 is an optimal solution
to the optimal transport problem (1).



5

Proof. Since (f (1), f (2)) is an optimal solution to problem (3),
we have

f
(1)
i,k,j ≥ 0, f

(2)
k,j,l ≥ 0, ∀(i, j) ∈ I, ∀(k, l) ∈ I,

which implies

πi,j;k,l ≥ 0, ∀(i, j), ∀(k, l) ∈ I. (11)

Fix i, j, k. For convenience, let f (1)−l
i,k,j denote the value of

f
(1)
i,k,j at the l-th iteration before updating. According to the

update formula of f (1)
i,k,j , there must exist an index 1 ≤ l∗ ≤ n

such that f (1)−l∗

i,k,j ≤ f
(2)
k,j,l∗ . Otherwise, we would have

f
(1)
i,k,j >

n∑
l=1

f
(2)
k,j,l,

which contradicts the feasibility of (f (1), f (2)):

f
(1)
i,k,j ≤

m∑
i=1

f
(1)
i,k,j =

n∑
l=1

f
(2)
k,j,l.

Therefore, after n iterations, the final value of f
(1)
i,k,j must be

zero, which leads to
n∑

l=1

πi,j;k,l = f
(1)
i,k,j . (12)

Similarly, by fixing j, k, l, we also obtain
m∑
i=1

πi,j;k,l = f
(2)
k,j,l. (13)

Hence, according to the constraints in problem (3), we have
∑

(k,l)∈I
πi,j;k,l =

m∑
k=1

f
(1)
i,k,j = µ1

i,j ,∑
(i,j)∈I

πi,j;k,l =
n∑

j=1

f
(2)
k,j,l = µ2

k,l,

which, together with (11), shows that π is a feasible solution to
problem (1). Furthermore, from (12), (13), and the definition
of c in (2), we can obtain∑

((i,j),(k,l))

ci,j;k,lπi,j;k,l

=
∑

(i,j)∈I
[
m∑

k=1

(k − i)2f
(1)
i,k,j +

n∑
l=1

(j − l)2f
(2)
k,j,l].

According to [37, Theorem 1], we know that the optimal ob-
jective function values of problems (1) and (3) are equivalent.
Therefore, π is an optimal solution to problem (1).

Remark 1. The worst-case computational complexity of re-
constructing the transport plan via Algorithm 1 is 3M2.
In practice, we can efficiently parallelize the (k, j) loop to
leverage the significant benefits of GPU acceleration, enabling
an efficient reconstruction of the transport plan from a solution
to the reduced OT model. Furthermore, in many applications,
such as image retrieval [33] and shape matching [36], only the
KW distance is required. In these scenarios, the reconstruction
of the transport plan is not necessary.

III. A HALPERN ACCELERATING ALGORITHM FOR
SOLVING OT PROBLEM

In this section, we first introduce an efficient Halpern
accelerating method for solving problem (9), which includes
the equivalent reduced OT problem (8) as a special case.
Subsequently, we present an efficient implementation of the
proposed algorithm by designing a novel procedure to solve
the involved linear system in linear time complexity.

A. HOT: A Halpern accelerating method for solving OT
problem

Given σ > 0, the augmented Lagrange function corre-
sponding to the dual problem (9) is defined by, for any
(y, z, x) ∈ RM3 × RN × RN ,

Lσ(y, z;x) := −⟨b, y⟩+δRN
+
(z)+

σ

2
∥A⊤y+z−c+

1

σ
x∥2− 1

σ
∥x∥2.

For ease of notation, denote w := (y, z, x). A fast Halpern
accelerating method [41], [49] for solving OT problems is
presented in Algorithm 2. A detailed derivation of the algo-
rithm in its current form and more discussions can be found
in [41] and the references therein.

Algorithm 2 HOT: A Halpern accelerating method for solving
the OT problem (9).

1: Input: Choose an initial point w0 = (y0, z0, x0) ∈ RM3 ×
RN × RN . Set parameters σ > 0. For k = 0, 1, . . . ,
perform the following steps in each iteration.

2: Step 1. ȳk = argmin
y∈Y

{
Lσ

(
y, zk;xk

)}
.

3: Step 2. x̄k = xk + σ(A⊤ȳk + zk − c).
4: Step 3. z̄k = argmin

z∈Z

{
Lσ

(
ȳk, z; x̄k

)}
.

5: Step 4. wk+1 = 1
k+2w

0 + k+1
k+2 (2w̄

k − wk).

Note that Step 4 in Algorithm 2 is from the Halpern iteration
with a stepsize of 1

k+2 . Without Step 4, the HOT algorithm
reduces to the ADMM with a unit step size. According to [41,
Corollary 3.5], we can obtain the global convergence of the
HOT algorithm in the following proposition. The proof can be
found in Appendix B.

Proposition 2. The sequence {w̄k} = {(ȳk, z̄k, x̄k)} gen-
erated by the HOT algorithm in Algorithm 2 converges to
the point w∗ = (y∗, z∗, x∗), where (y∗, z∗) is a solution to
problem (9) and x∗ is a solution to problem (8).

Next, we analyze the iteration complexity of the HOT
algorithm for obtaining an ε-approximate solution, where an
appropriate measure for the quality of the solution is crucial.
In this paper, we consider the residual mapping associated with
the KKT system (10):

R(w) =


b−Ax

z −ΠRN
+
(z − x)

c−A⊤y − z


for any w = (y, z, x) ∈ RM3 × RN × RN . Note that
R(w∗) = 0 is equivalent to the facts that x∗ ∈ RN and



6

(y∗, z∗) ∈ RM3 × RN are the solution to problems (8) and
(9), respectively. The KKT residual ∥R(·)∥ is a commonly
used and practical measure for the quality of the approxima-
tion solution to (8). It follows from [41, Theorem 3.7] that
the HOT algorithm enjoys an appealing O(1/k) nonergodic
convergence rate in terms of the KKT residual for solving (8),
which is summarized in the following proposition. The proof
can be found in Appendix C.

Proposition 3. Let {(ȳk, z̄k, x̄k)} be the sequence generated
by Algorithm 2, and let w∗ = (y∗, z∗, x∗) be the limit point of
the sequence {(ȳk, z̄k, x̄k)} and R0 = ∥x0−x∗+σ(z0−z∗)∥.
For all k ≥ 0, we have the following bounds:

∥R(w̄k)∥ ≤
(
σ + 1

σ

)
R0

(k + 1)
(14)

and

−∥z∗∥ R0

(k + 1)
≤ ⟨c, x̄k − x∗⟩ ≤ (σ∥z∗∥+R0)

R0

σ(k + 1)
.

Remark 2. Note that, without acceleration, the ADMM has
an O(1/

√
k) non-ergodic rate in terms of both the objective

function value gap and feasibility violations [50], [51]. In con-
trast, the HOT algorithm in Algorithm 2 achieves an O(1/k)
non-ergodic convergence rate, offering significant advantages
for solving large-scale OT problems.

B. A fast implementation of the HOT algorithm
In this section, we present a fast implementation of the

HOT algorithm. Through direct calculations, we obtain the
following updates of z̄k and ȳk for any k ≥ 0:

1) Update of z̄k:

z̄k = ΠRN
+

(
c−A⊤ȳk − x̄k/σ

)
;

2) Update of ȳk:

AA⊤ȳk =
b

σ
−A

(
xk

σ
+ zk − c

)
. (15)

Therefore, the main computational bottleneck of the HOT
algorithm for solving (8) is solving the linear system (15).
Note that the dimension of the matrix AA⊤ is M3 × M3

with M3 defined in (4). In applications, M3 is usually a
huge number. As an illustrative example, for an image with
256 × 256 pixels, M3 = 196, 607. As a result, it is not
computationally affordable for computing a (sparse) Cholesky
decomposition for the matrix AA⊤ or solving the linear system
(15) with standard direct solvers. Indeed, it is computationally
expensive even for computing the matrix AA⊤. Instead, in
the remaining part of this subsection, we will derive a linear
time complexity procedure for solving the linear equation
AA⊤y = R with a given vector R ∈ RM3 . It is worthwhile
mentioning that our procedure does not require calculating nor
storing the matrix AA⊤. Note that AA⊤ can be written in the
following form:

AA⊤ =


E1 E2 E3

E⊤
2 E4 0

E⊤
3 0 E5

 , (16)

where
1) E1 = (m+ n)IM ∈ RM×M ;
2) E2 = diag

(
1m1⊤

m, . . . ,1m1⊤
m,1m1⊤

m

)
∈ RM×M ;

3) E3 = −1n ⊗ (Im, . . . , Im, Ī⊤m) ∈ RM×(M−1);
4) E4 = mIM ∈ RM×M ;
5) E5 = A4A

⊤
4 = nIM−1 ∈ R(M−1)×(M−1).

To better explore the structure of the linear system AA⊤y =
R, we rewrite it equivalently as

AA⊤y =


E1 E2 E3

E⊤
2 E4 0

E⊤
3 0 E5




y1

y2

y3

 =


R1

R2

R3

 , (17)

where y := (y1; y2; y3) ∈ RM × RM × RM−1 and R :=
(R1;R2;R3) ∈ RM × RM × RM−1. To further explore
the block structure of the linear system, we can denote
yi := (y1i ; . . . ; y

n
i ) ∈ Rm × · · · × Rm for i = 1, 2, and

y3 = (y13 ; . . . ; y
n
3 ) ∈ Rm×· · ·×Rm×Rm−1. Correspondingly,

we write Ri = (R1
i ; . . . ;R

n
i ) for i = 1, 2, 3. The next

proposition gives an explicit formula of the solution to the
linear equation in (17).

Proposition 4. Consider A ∈ RM3×N defined in (6). Given
R ∈ RM3 , the solution y to AA⊤y = R in the form (17) is
given by:

yj2 =
1

m
(Rj

2 − 1⊤
myj1), j = 1, . . . , n, (18)

yj3 =
1

n
(Rj

3 +

n∑
j=1

yj1), j = 1, . . . , n− 1, (19)

yn3 =
1

n
(Rn

3 + Īm

n∑
j=1

yj1), (20)

yj1 = ŷj1 − ŷa1 , j = 1, . . . , n, (21)

where
1) ŷj1 = 1

m+n

(
R̃j

1 + R̃j
2 + R̃3

)
, j = 1, . . . , n, with

R̃j
1 = Rj

1 + 1
n1

⊤
mRj

1, R̃j
2 = −

(
1
m + 1

n

)
1⊤
mRj

2, and

R̃3 = 1
n

(∑n−1
j=1 Rj

3 + Ī⊤mRn
3

)
+ 1

n21
⊤
M−1R3;

2) ŷa1 =
(
Im + 1

n1m1⊤
m

)
Ŵ

∑n
j=1 ŷ

j
1;

3) Ŵ =
(
−diag

(
1
mIm−1,

1
m+1

(
1− 1

n

))
− 1

wdd⊤
)
, with

d =
[

1
m1m−1;

1
m+1

(
1− 1

n

)]
∈ Rm and w = 1

m −
1

(m+1)

(
1− 1

n

)
.

Proof. By some direct calculations, we can solve (17) equiv-
alently as:

y2 =
R2 − E⊤

2 y1
m

, (22)

y3 =
R3 − E⊤

3 y1
n

, (23)

Ẽ1y1 = R1 −
1

m
E2R2 −

1

n
E3R3, (24)

where Ẽ1 =
(
E1 − 1

mE2E
⊤
2 − 1

nE3E
⊤
3

)
. As a result, the key

is to obtain y1 by solving (24). Let Ê1 := E1 − 1
mE2E

⊤
2 . By

direct calculations, we have:

Ê1 = diag
(
Ê1

1 , . . . , Ê
n
1

)
(25)



7

with Êj
1 = (m + n)Im − 1m1⊤

m, j = 1, . . . , n. By the
Sherman–Morrison-Woodbury formula, we directly get:

Ê−1
1 = diag

(
(Ê1

1)
−1, . . . , (Ên

1 )
−1

)
(26)

with (Êj
1)

−1 = 1
m+n

(
Im + 1

n1m1⊤
m

)
, j = 1, . . . , n. On the

other hand, let:

Q =
n− 1

n
Im +

1

n
Ī⊤mĪm ∈ Rm×m.

Denote Q̂ := Q1/2 such that Q̂Q̂ = Q, and Q̄ := 1n⊗ Q̂. We
can obtain:

Ẽ1 =

(
Ê1 −

1

n
E3E

⊤
3

)
= Ê1 − Q̄Q̄⊤.

Hence, by the Sherman–Morrison-Woodbury formula, we can
derive:

Ẽ−1
1 =

(
Ê1 − 1

nE3E
⊤
3

)−1

= Ê−1
1 − Ê−1

1 Q̄W−1Q̄⊤Ê−1
1

(27)

with W = −Im + Q̄⊤Ê−1
1 Q̄. Note that:

W = −Im +
∑n

j=1 Q̂(Ej
1)

−1Q̂

= 1
m+n

(
diag (−mIm−1,−(m+ 1)) + d0d

⊤
0

)
,

where d0 = [1m−1;
√

1− 1
n ] ∈ Rm. Applying the

Sherman–Morrison-Woodbury formula to W , we can obtain:

W−1 = (m+ n)
(
diag(− 1

mIm−1,− 1
m+1 )−

1
wd1d

⊤
1

)
with d1 = [ 1m1m−1;

1
m+1

√
1− 1

n ]. It follows that

Q̄W−1Q̄⊤ = 1n1
⊤
n ⊗ (Q̂W−1Q̂)

= 1n1
⊤
n ⊗ (m+ n)Ŵ .

(28)

To explore the block structure of R, we denote:

R̂1 = R1−
1

m
E2R2−

1

n
E3R3 = (R̂1

1; . . . ; R̂
n
1 ) ∈ Rm×· · ·×Rm,

which implies

R̂j
1 = Rj

1−
1

m
1⊤
mRj

2+
1

n

n−1∑
j=1

Rj
3 + Ī⊤mRn

3

 , j = 1, . . . , n.

Then, for j = 1, . . . , n,

ŷj1 = (Ê−1
1 R̂1)

j

= 1
m+n

(
R̃j

1 + R̃j
2 + R̃3

)
.

Define

ŷa1 :=

(
Im +

1

n
1m1⊤

m

)
Ŵ

n∑
j=1

ŷj1.

From (24), (27), and (28), we have:

yj1 = ŷj1 − ŷa1 , j = 1, . . . , n.

Substituting y1 into (22) and (23), we can obtain the results
for y2 and y3. This completes the proof.

According to the explicit formula in Proposition 4, we can
immediately derive the complexity result for solving the linear
equation in (17).

Corollary 1. Consider A ∈ RM3×N defined in (6). The linear
system AA⊤y = R in the form (17) can be solved in O(M3)
flops.

Based on this corollary, we can determine the per-iteration
computational cost of the HOT algorithm in Algorithm 2 for
each iteration.

Corollary 2. The per-iteration computational complexity of
the HOT algorithm in Algorithm 2 in terms of flops is O(N).

Proof. Since A has at most 2N nonzero elements, the compu-
tational cost for calculating Ax and A⊤y is only O(N). Except
for solving linear systems, which can be done in O(M3) from
Corollary 1, Algorithm 2 primarily involves matrix-vector
multiplications and vector additions. Hence, the computational
cost of Algorithm 2 for each iteration is O(N).

Remark 3. Leveraging the sparsity of A, we can compute Ax
and A⊤y with linear space complexity O(N). Furthermore,
according to Proposition 4, the linear system AA⊤y = R can
be solved with a memory cost of O(M3). Hence, Algorithm
2 can be implemented with linear space complexity O(N).
When m = n, this corresponds to O(M1.5).

Combining the iteration complexity in Proposition 3 and the
computational cost for each iteration in Corollary 2, we can
derive the following overall computational complexity result
of the HOT algorithm for solving problem (3).

Theorem 1. Let
{
ȳk, z̄k, x̄k

}
be the sequence generated by

the HOT algorithm in Algorithm 2. For any given tolerance
ε > 0, the HOT algorithm needs at most

1

ε

(
1 + σ

σ

(∥∥x0 − x∗∥∥+ σ
∥∥z0 − z∗

∥∥))− 1

iterations to return a solution to the equivalent OT problem (8)
such that the KKT residual

∥∥R (
w̄k

)∥∥ ≤ ε, where (x∗, z∗) is
the limit point of the sequence

{
x̄k, z̄k

}
. In particular, the

overall computational complexity of the HOT algorithm in
Algorithm 2 to achieve this accuracy in terms of flops is

O

((
1 + σ

σ

(∥∥x0 − x∗∥∥+ σ
∥∥z0 − z∗

∥∥)) m2n+mn2

ε

)
.

Remark 4. Note that the complexity of the Sinkhorn method
for solving the original OT problem (1) is O

(
m2n2

ε2

)
to

achieve an ε-accuracy solution in terms of objective func-
tion value [13]. Even by leveraging the separable struc-
ture of the cost function c defined in (2), the convolutional
Sinkhorn method, as mentioned in [3] and [37], still requires
O
(

m2n+mn2

ε2 +m2n2
)

to compute the KW distance. In con-
trast, the HOT algorithm exhibits lower overall computational
complexity, offering a significant advantage in calculating the
KW distance between large-scale histograms.

Remark 5. Assume that m = n. Blanchet et al. [52] demon-
strated that a running time of Õ(M2/ε) is a bottleneck in their
approach by reducing an instance of the bipartite matching



8

Fig. 2: A visualization of the selected images from the DOTmark Dataset is presented. The upper row features images from
the Classic Images category, while the bottom row contains images from the Shapes category.

problem (BMP) to an OT problem. While HOT achieves a
complexity of O(M1.5/ε), it cannot be directly applied to
solve the maximum cardinality BMP. This is because, in the
reduction from BMP to the OT problem, the ground distance
used in [52] differs from the one in our paper. Consequently,
the hardness result in [52] does not directly contradict our
complexity bound.

IV. EXPERIMENTS

In this section, we comprehensively compare the HOT algo-
rithm with five other state-of-the-art methods on the popular
DOTmark dataset [53]. Additionally, employing the transport
plan derived from Algorithm 1, we test the performance of the
reduced OT model on the color transfer task. The numerical
results reveal that HOT provides significant advantages over
state-of-the-art methods in both memory and computational ef-
ficiency, particularly for large-scale problems. More numerical
results to compare the HOT algorithm to the W2NeuralDual
method implemented in the OTT-JAX library [54] can be
found in Appendix E. We also present an additional application
of HOT for domain adaptation in Appendix F.

A. Numerical comparison on the DOTmark dataset

The DOTmark dataset [53] is a comprehensive collection of
benchmark instances for evaluating and comparing algorithms
in the field of optimal transport. It consists of a variety of
instances categorized into different classes, such as Classic
Images, Shapes, and Gaussian Distributions. In this experi-
ment, we selected eight images each from the Classic Images
and Shapes categories, as illustrated in Fig. 2. These selected
images were resized to four different resolutions: 64 × 64,
128 × 128, 256 × 256, and 512 × 512. Finally, we randomly
selected 10 pairs from each category and computed the KW
distance for each pair.

To exhibit the superiority of HOT, we compare it with the
following five state-of-the-art methods:

• Sinkhorn [10] is a widely used algorithm for computing
an approximate KW distance by solving an entropy-
regularized OT problem. As the Introduction Section dis-
cusses, its performance is sensitive to the regularization
parameter, denoted as λ. To achieve varying levels of
solution accuracy, we selected the λ to be 1%, 0.1%,
and 0.01% of the median transport cost, following the
setup from [3]. Due to the potential numerical instability
caused by small λ values, we employed the Log-domain

Sinkhorn algorithm implemented by POT [55] as the
baseline method.

• Convolutional Sinkhorn [3], [38] is an improved ver-
sion of the Sinkhorn algorithm, optimized for computing
distances over regular two-dimensional grids. Specifi-
cally, since the kernel matrix used by the Sinkhorn
algorithm can be constructed using a Kronecker product
of two smaller matrices, a matrix-vector product using
a matrix of dimension M × M can be replaced by
two matrix-matrix products over matrices of dimension√
M ×

√
M , resulting in a significant improvement

in computational efficiency. In our experiment, based
on the MATLAB implementation of the convolutional
Sinkhorn in [37], we further developed the Log-domain
convolutional Sinkhorn using PyTorch. The regularization
parameter λ is kept the same as that of the original
Sinkhorn method.

• Gurobi (11.0.1) is a popular optimization solver designed
to address a wide range of mathematical programming
problems, including linear and quadratic programming.
In our experiment, we employ the interior point method
(IPM) implemented in Gurobi to solve the reduced model
(8). Since it is unnecessary to obtain a basic solution, we
disable the cross-over strategy.

• Network Simplex implemented in the Lemon C++
graph library 3, is a highly efficient algorithm for solv-
ing uncapacitated minimum cost flow problems [56]. It
has demonstrated the computational advantages over the
Sinkhorn type methods in [37] for small size images by
solving the reduced model (8).

• ADMM [46], [47] is a popular first-order primal-dual
method for solving large-scale optimization problems. It
has shown great potential in solving large-scale optimal
transport problems (1) in a GPU setting [20]. In this
numerical experiment, we use a generalized ADMM [57],
[58] to solve the equivalent model (8) (replacing Step 4
in Algorithm 2 with wk+1 = (1−ρ)wk+ρw̄k and setting
ρ = 1.7) as the baseline to evaluate the acceleration effect
of the Halpern iteration.

All experiments are conducted on an Ubuntu 22.04 server
equipped with an Intel(R) Xeon(R) Platinum 8480C processor
and an Nvidia GeForce RTX 4090 GPU with 24 GB of
RAM. Due to hardware specifications, we limit the maximum
memory usage of each algorithm to 24 GB. Additionally, we

3https://lemon.cs.elte.hu/

https://lemon.cs.elte.hu/


9

set the maximum one-call running time of each algorithm to
3600 seconds. For the HOT and ADMM methods, we adopt
a stopping criterion based on the relative KKT residual:

KKTres = max

{
∥A⊤y + z − c∥

1 + ∥c∥ ,
∥min(x, z)∥
1 + ∥x∥+ ∥z∥ ,

∥Ax− b∥
1 + ∥b∥

}
.

(29)
Other methods use their default stopping criteria. We terminate
all tested algorithms, except for Network Simplex which is an
exact algorithm with a stopping tolerance of 1E-6. Finally,
since different methods have varying stopping criteria, we
use the following metrics to fairly evaluate the quality of the
solutions: the ‘relative objective gap’ (gap) and the ‘relative
primal feasibility error’ (feaserr). These metrics are defined as
follows:

gap = |⟨c,x⟩−⟨c,xb⟩|
|⟨c,xb⟩|+1 ,

feaserr = max
{

∥min(x,0)∥
1+∥x∥ , ∥Ax−b∥

1+∥b∥

}
,

where xb is the solution obtained using Gurobi with the
tolerance set to 1E-8.

We present the average results of 10 pairs within each
category for all tested algorithms in Table II. Since Gurobi
runs out of memory for images sized from 256 × 256 to
512 × 512, we only report the feaserr for the HOT, Network
Simplex, and ADMM. Additionally, Table II only shows the
results of Sinkhorn-type methods with λ = 0.01% of the
median transport cost, as this parameter returns a solution of
comparable quality to other methods. For more results of the
convolutional Sinkhorn with different regularization parame-
ters, refer to Table III. Due to space constraints, we omit the
results of the Sinkhorn with varying parameters, which exhibit
similar performance to the convolutional Sinkhorn in terms of
the gap.

We summarized some key findings in Table II from the
perspective of computational efficiency and memory cost:

1) Computational efficiency: HOT can return a comparable
solution in terms of the gap and feaserr in the shortest
time. Although the Network Simplex and Gurobi have
computational advantages for computing the KW distance
for small-scale images, these methods cannot handle
large-scale problems effectively. IPM implemented in
Gurobi requires solving a linear equation that relies
heavily on Cholesky decomposition, causing the com-
putational cost of each iteration to increase rapidly with
image size. Additionally, the inherent sequential nature of
the Network Simplex algorithm makes it challenging to
parallelize effectively. In contrast, HOT and convolutional
Sinkhorn benefit from low per-iteration costs and are eas-
ily parallelizable. However, the convolutional Sinkhorn
needs to recover the solution to the original problem (1) to
compute the KW distance, making it unsuitable for large-
scale problems. As a result, for images sized 128× 128,
HOT achieves a 17.44x speedup over Network Simplex,
a 15.83x speedup over Gurobi, and a 19.54x speedup
over convolutional Sinkhorn. Additionally, compared to
ADMM, HOT benefits from a superior O(1/k) iteration
complexity and saves 40% of iterations for images sized
512× 512.

Fig. 3: Comparison of solving the linear system (17) using
Proposition 4 and the sparse Cholesky decomposition. The
time for solving the linear system using Cholesky decompo-
sition is divided into two parts: the time for Cholesky de-
composition (orange part) and the time for forward-backward
substitution (blue part). For the 256×256 and 512×512 cases,
Cholesky decomposition is out-of-memory in the test.

2) Memory cost: HOT demonstrates a significant advantage
in memory efficiency by exploiting the sparse struc-
ture of A in (5) and utilizing the explicit solution of
the linear equation presented in Proposition 4 to avoid
sparse Cholesky decomposition. In contrast, Sinkhorn-
type methods need to recover the solution to the orig-
inal OT problem (1) and maintain the transport cost to
calculate the KW distance, which involves M2 variables.
Given that these variables are stored using 64-bit floating-
point representation, the Sinkhorn-based methods require
at least 32 GB of memory for images sized 256 × 256,
which far exceeds the available 24 GB. While the IPM
in Gurobi solves the reduced model (8), each iteration
requires performing a sparse Cholesky decomposition,
making it unsuitable for images sized 256×256 or larger.

To further illustrate the benefit of the explicit solution of
the linear system presented in Proposition 4, we conduct a
comparison between solving the linear equation using Propo-
sition 4 and sparse Cholesky decomposition. Given that the
average iteration number of HOT is around 1500, we solve
the linear system (17) 1500 times for different image sizes.
The results are shown in Fig. 3. It is clear that the com-
putational costs of Cholesky decomposition increase rapidly
as image size increases. Additionally, the forward-backward
substitution method used to solve the linear system is also
time-consuming because it cannot be efficiently parallelized.
In contrast, solving linear systems using Proposition 4 can
be easily parallelized. It consumes significantly less time and
remains constant as the size varies because it only requires
O(M3) flops, as shown in Corollary 1. Additional numerical
results on transport plan recovery time, GPU vs. CPU com-
parisons, and the acceleration effects of Halpern iteration for
high-accuracy solutions can be found in Appendix D.



10

TABLE II: The numerical results of different algorithms on the DOTmark dataset.

Category Resolution HOT Network Simplex Gurobi ADMM Convolutional Sinkhorn Sinkhorn

Classic

64× 64

time(s) 0.67 2.73 2.16 1.77 16.18 174.82
gap 8.26E-04 3.46E-10 1.20E-04 2.67E-04 1.69E-04 2.12E-04

feaserr 4.58E-07 4.88E-32 2.55E-11 3.09E-07 7.90E-07 9.75E-07
iter 1700 - 13 3420 64126 62474

128× 128

time(s) 1.58 36.18 29.15 3.53 39.40 2632.17
gap 6.24E-03 8.74E-10 1.07E-04 1.72E-03 6.98E-04 6.35E-04

feaserr 7.27E-07 9.67E-32 7.24E-12 3.73E-07 8.34E-07 9.87E-07
iter 1170 - 14 3240 58446 57010

256× 256

time(s) 12.98 2562.92
Memory
Overflow

20.80
Memory
Overflow

Memory
Overflowfeaserr 8.05E-07 1.35E-31 6.04E-07

iter 1140 - 2250

512× 512

time(s) 81.02 Over Maximum
Running

Time

Memory
Overflow

116.92
Memory
Overflow

Memory
Overflowfeaserr 3.28E-07 4.32E-07

iter 900 1610

Shapes

64× 64

time(s) 0.64 1.48 1.33 3.92 9.60 103.74
gap 3.78E-04 1.81E-10 2.28E-05 5.85E-05 4.86E-05 6.07E-05

feaserr 5.77E-07 7.24E-32 1.88E-10 2.58E-07 7.95E-07 9.68E-07
iter 1610 - 15 10430 37986 37077

128× 128

time(s) 1.68 20.70 22.46 2.32 24.32 1616.34
gap 2.51E-03 2.46E-09 2.19E-05 4.11E-04 3.28E-04 3.09E-04

feaserr 1.01E-06 1.16E-31 2.01E-10 7.74E-07 8.01E-07 9.83E-07
iter 1240 - 18 2130 36080 35009

256× 256

time(s) 14.87 959.77
Memory
Overflow

23.30
Memory
Overflow

Memory
Overflowfeaserr 6.68E-07 1.59E-31 7.17E-07

iter 1310 - 2530

512× 512

time(s) 87.12 Over Maximum
Running

Time

Memory
Overflow

118.10
Memory
Overflow

Memory
Overflowfeaserr 3.54E-07 5.71E-07

iter 970 1630

TABLE III: The numerical results of the convolutional Sinkhorn method with different λ.

Solver Category Resolution λ = 0.01% λ = 0.1% λ = 1%

Convolutional Sinkhorn Classic

64× 64

time(s) 16.18 1.60 0.19
gap 1.69E-04 2.43E-02 3.29E-01

feaserr 7.90E-07 8.15E-07 7.10E-07
iter 64126 6400 650

128× 128

time(s) 39.40 3.94 0.39
gap 6.98E-04 3.34E-02 3.51E-01

feaserr 8.34E-07 8.29E-07 7.29E-07
iter 58446 5850 594

B. An application in color transfer

Color transfer [1]–[3] based on the OT model has found
important applications in various fields, including digital im-
age processing, computer graphics, and visual arts. It involves
transferring the color characteristics from a target image to a
source image to achieve a desired visual effect. Inspired by its
convincing performance in color grading and color histogram
manipulation [2], [3], we conduct the color transfer over the
CIE-Lab domain by applying the optimal transport model to
the 1D luminance channel and the 2D chrominance channel
independently. Note that the 1D optimal transport plan can
be found efficiently [8]. To efficiently conduct the optimal
transport over the 2D chrominance channel, we first solve the

equivalent reduced OT model using the HOT Algorithm 2 and
then recover an optimal transport plan using Algorithm 1. To
construct the supports of the two-dimensional histograms used
in the reduced OT model, we apply the K-means algorithm
with K = 128 to all chrominance values in the CIE-Lab
color space that appear in the source image or the target
image. For each resulting centroid, we draw a vertical and
a horizontal line. The intersections of these lines form a set
of (non-uniform) bins, which serve as the histogram supports.
The performance of color transfer for selected image pairs can
be found in Fig. 1. More results about color transfer can be
found in Appendix G.



11

V. CONCLUSION

In this paper, we proposed an efficient and scalable HOT
algorithm for computing the KW distance with finite supports.
In particular, the HOT algorithm solves an equivalent reduced
OT model where the involved linear systems are solved by a
novel procedure in linear time complexity. Consequently, we
can obtain an ε-approximate solution to the OT problem with
M supports in R2 in O(M1.5/ε) flops, significantly enhancing
the best-known computational complexity. Additionally, we
have designed an efficient algorithm to recover an optimal
transport plan from a solution to the reduced OT model,
thereby overcoming the limitations of the reduced OT model
in applications that require the transport plan. The extensive
numerical results presented in this paper demonstrated the su-
perior performance of the HOT algorithm. For future research
directions, we aim to design an efficient implementation of the
HOT algorithms for solving the OT problems with discrete
supports in the more general Rd space. We also consider
designing an efficient algorithm for solving the Wasserstein
barycenter problem with discrete supports.

ACKNOWLEDGMENT

The research of Yancheng Yuan was supported by the
Research Center for Intelligent Operations Research and The
Hong Kong Polytechnic University under the grant P0045485.
The research of Defeng Sun was supported by grants from
the Research Grants Council of the Hong Kong Special
Administrative Region, China (GRF Project No. 15303720)
and the Research Center for Intelligent Operations Research.

REFERENCES

[1] F. Pitié and A. Kokaram, “The linear Monge-Kantorovitch linear colour
mapping for example-based colour transfer,” 4th European Conference
on Visual Media Production, 2007.

[2] N. Bonneel, K. Sunkavalli, S. Paris, and H. Pfister, “Example-based
video color grading,” ACM Transactions on Graphics (ToG), vol. 32,
no. 4, pp. 1–12, 2013.

[3] J. Solomon, F. De Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen,
T. Du, and L. Guibas, “Convolutional Wasserstein distances: Efficient
optimal transportation on geometric domains,” ACM Transactions on
Graphics (ToG), vol. 34, no. 4, pp. 1–11, 2015.

[4] A. Dominitz and A. Tannenbaum, “Texture mapping via optimal mass
transport,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 3, pp. 419–433, 2009.

[5] S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass
transport for registration and warping,” International Journal of Com-
puter Vision, vol. 60, pp. 225–240, 2004.

[6] S. Basu, S. Kolouri, and G. K. Rohde, “Detecting and visualizing cell
phenotype differences from microscopy images using transport-based
morphometry,” Proceedings of the National Academy of Sciences, vol.
111, no. 9, pp. 3448–3453, 2014.

[7] E. Del Barrio, J. A. Cuesta-Albertos, C. Matrán, and J. M. Rodrı́guez-
Rodrı́guez, “Tests of goodness of fit based on the L2-Wasserstein
distance,” Annals of Statistics, pp. 1230–1239, 1999.

[8] C. Villani, “Topics in optimal transportation,” Graduate Studies in
Mathematics, 2003.

[9] G. Peyré, M. Cuturi et al., “Computational Optimal Transport: With
applications to data science,” Foundations and Trends® in Machine
Learning, vol. 11, no. 5-6, pp. 355–607, 2019.

[10] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” Advances in Neural Information Processing Systems, vol. 26,
2013.

[11] J. Orlin, “A faster strongly polynomial minimum cost flow algorithm,”
in Proceedings of the Twentieth Annual ACM Aymposium on Theory of
Computing, 1988, pp. 377–387.

[12] T. Lin, N. Ho, and M. Jordan, “On efficient optimal transport: An analy-
sis of greedy and accelerated mirror descent algorithms,” in International
Conference on Machine Learning. PMLR, 2019, pp. 3982–3991.

[13] P. Dvurechensky, A. Gasnikov, and A. Kroshnin, “Computational op-
timal transport: Complexity by accelerated gradient descent is better
than by Sinkhorn’s algorithm,” in International Conference on Machine
Learning. PMLR, 2018, pp. 1367–1376.

[14] S. Guminov, P. Dvurechensky, N. Tupitsa, and A. Gasnikov, “On a
combination of alternating minimization and Nesterov’s momentum,”
in International Conference on Machine Learning. PMLR, 2021, pp.
3886–3898.

[15] B. Schmitzer, “Stabilized sparse scaling algorithms for entropy regular-
ized transport problems,” SIAM Journal on Scientific Computing, vol. 41,
no. 3, pp. A1443–A1481, 2019.

[16] O. Pele and M. Werman, “Fast and robust earth mover’s distances,” in
2009 IEEE 12th International Conference on Computer Vision. IEEE,
2009, pp. 460–467.

[17] A. V. Goldberg, É. Tardos, and R. Tarjan, “Network flow algorithm,”
Cornell University Operations Research and Industrial Engineering,
Tech. Rep., 1989.

[18] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for general
graph matching problems,” Journal of the ACM (JACM), vol. 38, no. 4,
pp. 815–853, 1991.

[19] X. Li, D. F. Sun, and K.-C. Toh, “An asymptotically superlinearly
convergent semismooth Newton augmented Lagrangian method for
linear programming,” SIAM Journal on Optimization, vol. 30, no. 3,
pp. 2410–2440, 2020.

[20] V. V. Mai, J. Lindbäck, and M. Johansson, “A fast and accurate
splitting method for optimal transport: Analysis and implementation,”
International Conference on Learning Representations, 2022.

[21] M. Zhu and T. Chan, “An efficient primal-dual hybrid gradient algorithm
for total variation image restoration,” UCLA Cam Report, vol. 34, no. 2,
2008.

[22] E. Esser, X. Zhang, and T. F. Chan, “A general framework for a class
of first order primal-dual algorithms for convex optimization in imaging
science,” SIAM Journal on Imaging Sciences, vol. 3, no. 4, pp. 1015–
1046, 2010.

[23] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathematical
Imaging and Vision, vol. 40, pp. 120–145, 2011.

[24] D. Applegate, M. Dı́az, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue,
and W. Schudy, “Practical large-scale linear programming using primal-
dual hybrid gradient,” Advances in Neural Information Processing
Systems, vol. 34, pp. 20 243–20 257, 2021.

[25] A. Jambulapati, A. Sidford, and K. Tian, “A direct Õ(1/ϵ) iteration par-
allel algorithm for optimal transport,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[26] G. Zhang, Y. Yuan, and D. F. Sun, “An efficient HPR algorithm for
the Wasserstein barycenter problem with O(Dim(P)/ε) computational
complexity,” arXiv preprint arXiv:2211.14881, 2022.

[27] N. Tupitsa, P. Dvurechensky, D. Dvinskikh, and A. Gasnikov, “Nu-
merical methods for large-scale optimal transport,” arXiv preprint
arXiv:2210.11368, 2022.

[28] A. Khamis, R. Tsuchida, M. Tarek, V. Rolland, and L. Petersson,
“Scalable optimal transport methods in machine learning: A contem-
porary survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[29] T. Lin, N. Ho, and M. I. Jordan, “On the efficiency of entropic regu-
larized algorithms for optimal transport,” Journal of Machine Learning
Research, vol. 23, no. 137, pp. 1–42, 2022.

[30] A. Chambolle and J. P. Contreras, “Accelerated Bregman primal-dual
methods applied to optimal transport and Wasserstein barycenter prob-
lems,” SIAM Journal on Mathematics of Data Science, vol. 4, no. 4, pp.
1369–1395, 2022.

[31] W. Wang, D. Slepčev, S. Basu, J. A. Ozolek, and G. K. Rohde, “A
linear optimal transportation framework for quantifying and visualizing
variations in sets of images,” International Journal of Computer Vision,
vol. 101, pp. 254–269, 2013.

[32] N. Bonneel, M. Van De Panne, S. Paris, and W. Heidrich, “Displacement
interpolation using Lagrangian mass transport,” in Proceedings of the
2011 SIGGRAPH Asia Conference, 2011, pp. 1–12.

[33] P. Indyk and N. Thaper, “Fast color image retrieval via embeddings,”
in Workshop on Statistical and Computational Theories of Vision (at
ICCV), 2003.



12

[34] S. Shirdhonkar and D. W. Jacobs, “Approximate earth mover’s distance
in linear time,” in 2008 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2008, pp. 1–8.

[35] W. Leeb and R. Coifman, “Hölder–Lipschitz norms and their duals on
spaces with semigroups, with applications to earth mover’s distance,”
Journal of Fourier Analysis and Applications, vol. 22, pp. 910–953,
2016.

[36] H. Ling and K. Okada, “An efficient earth mover’s distance algorithm for
robust histogram comparison,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 5, pp. 840–853, 2007.

[37] G. Auricchio, F. Bassetti, S. Gualandi, and M. Veneroni, “Computing
Kantorovich-Wasserstein distances on d-dimensional histograms using
(d + 1)-partite graphs,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[38] J. Solomon, “Optimal transport on discrete domains,” AMS Short Course
on Discrete Differential Geometry, 2018.

[39] S. Ferradans, N. Papadakis, G. Peyré, and J.-F. Aujol, “Regularized
discrete optimal transport,” SIAM Journal on Imaging Sciences, vol. 7,
no. 3, pp. 1853–1882, 2014.

[40] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal
transport for domain adaptation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 9, pp. 1853–1865, 2016.

[41] D. F. Sun, Y. Yuan, G. Zhang, and X. Zhao, “Accelerating precondi-
tioned ADMM via degenerate proximal point mappings,” arXiv preprint
arXiv:2403.18618, 2024, SIAM Journal on Optimization 35 (2025)
XXX, in print.

[42] D. Kim, “Accelerated proximal point method for maximally monotone
operators,” Mathematical Programming, vol. 190, no. 1, pp. 57–87,
2021.

[43] Q. Tran-Dinh and Y. Luo, “Halpern-type accelerated and splitting
algorithms for monotone inclusions,” arXiv preprint arXiv:2110.08150,
2021.

[44] F. Lieder, “On the convergence rate of the Halpern-iteration,” Optimiza-
tion Letters, vol. 15, no. 2, pp. 405–418, 2021.

[45] B. Yang, X. Zhao, X. Li, and D. Sun, “An accelerated proximal
alternating direction method of multipliers for optimal decentralized
control of uncertain systems,” Journal of Optimization Theory and
Applications, vol. 204, no. 1, p. 9, 2025.

[46] R. Glowinski and A. Marroco, “Sur l’approximation, par éléments finis
d’ordre un, et la résolution, par pénalisation-dualité d’une classe de
problèmes de dirichlet non linéaires,” Revue française d’automatique, in-
formatique, recherche opérationnelle. Analyse numérique, vol. 9, no. R2,
pp. 41–76, 1975.

[47] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,” Computers &
Mathematics with Applications, vol. 2, no. 1, pp. 17–40, 1976.

[48] G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and
Extensions. Springer, 2003.

[49] B. Halpern, “Fixed points of nonexpanding maps,” Bulletin of the
American Mathematical Society, vol. 73, no. 6, pp. 957–961, 1967.

[50] D. Davis and W. Yin, “Convergence rate analysis of several splitting
schemes,” in Splitting Methods in Communication, Imaging, Science,
and Engineering. Springer, 2016, pp. 115–163.

[51] Y. Cui, X. Li, D. F. Sun, and K.-C. Toh, “On the convergence properties
of a majorized alternating direction method of multipliers for linearly
constrained convex optimization problems with coupled objective func-
tions,” Journal of Optimization Theory and Applications, vol. 169, pp.
1013–1041, 2016.

[52] J. Blanchet, A. Jambulapati, C. Kent, and A. Sidford, “Towards optimal
running times for optimal transport,” Operations Research Letters,
vol. 52, p. 107054, 2024.

[53] J. Schrieber, D. Schuhmacher, and C. Gottschlich, “Dotmark–a bench-
mark for discrete optimal transport,” IEEE Access, vol. 5, pp. 271–282,
2016.

[54] M. Cuturi, L. Meng-Papaxanthos, Y. Tian, C. Bunne, G. Davis, and
O. Teboul, “Optimal transport tools (OTT): A JAX Toolbox for all things
Wasserstein,” arXiv preprint arXiv:2201.12324, 2022.

[55] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon,
S. Chambon, L. Chapel, A. Corenflos, K. Fatras, N. Fournier, L. Gau-
theron, N. T. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet,
A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and
T. Vayer, “Pot: Python optimal transport,” Journal of Machine Learning
Research, vol. 22, no. 78, pp. 1–8, 2021.

[56] P. Kovács, “Minimum-cost flow algorithms: An experimental evalua-
tion,” Optimization Methods and Software, vol. 30, no. 1, pp. 94–127,
2015.

[57] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone oper-
ators,” Mathematical Programming, vol. 55, no. 1, pp. 293–318, 1992.

[58] Y. Xiao, L. Chen, and D. Li, “A generalized alternating direction method
of multipliers with semi-proximal terms for convex composite conic
programming,” Mathematical Programming Computation, vol. 10, pp.
533–555, 2018.

Guojun Zhang is a Ph.D. candidate in the Depart-
ment of Applied Mathematics at Hong Kong Poly-
technic University. His research focuses on optimiza-
tion theory and complexity analysis, computational
optimal transport, and software development.

Zhexuan Gu is currently a Ph.D. student at The
Hong Kong Polytechnic University. He received his
Master’s degree in the Department of Applied Math-
ematics at The Hong Kong Polytechnic University.
His current research interests include computational
optimal transport, the foundations of artificial intelli-
gence, and its applications in healthcare and beyond.

Yancheng Yuan is an Assistant Professor at the
Department of Applied Mathematics, The Hong
Kong Polytechnic University. He received his PhD in
Mathematics from the National University of Singa-
pore. He was a research fellow at the NExT Research
Center, National University of Singapore, mentored
by Prof. Tat-Seng Chua. His research focuses on
optimization theory, algorithm design and software
development, the mathematical foundation of data
science, and data-driven applications. His research
has been published in prestigious academic journals

and conferences, including Journal of Machine Learning Research, SIAM
Journal on Optimization, IEEE Transactions on Neural Networks and Learning
Systems, NeurIPS, ICML, WWW, SIGIR, ACL.

Defeng Sun is currently Chair Professor of Applied
Optimization and Operations Research at the Hong
Kong Polytechnic University. He was the President
of the Hong Kong Mathematical Society. He mainly
publishes in continuous optimization and machine
learning. Together with Professor Kim-Chuan Toh
and Dr Liuqin Yang, he was awarded the triennial
2018 Beale–Orchard-Hays Prize for Excellence in
Computational Mathematical Programming by the
Mathematical Optimization Society. In 2020, he was
elected as a Fellow of the societies CSIAM and

SIAM. In 2022, he received the RGC Senior Research Fellow Scheme award.



1

SUPPLEMENTARY MATERIALS FOR HOT: AN EFFICIENT
HALPERN ACCELERATING ALGORITHM FOR OPTIMAL

TRANSPORT PROBLEMS

In the appendix, we first establish the equivalence between
the HOT algorithm and the accelerated degenerate proximal
point algorithm (dPPA) [1] in Appendix A. Then, by analyzing
the convergence and iteration complexity of the accelerated
dPPA, we derive the global convergence result (Proposition
2) and the complexity result (Proposition 3) for the HOT
algorithm in Appendices B and C, respectively. Additional
numerical results, including transport plan recovery time, GPU
vs. CPU comparisons, and the acceleration effects of Halpern
iteration for high-accuracy solutions, are provided in Appendix
D. Further comparisons between the HOT algorithm and the
W2NeuralDual method from the OTT-JAX library [2] can
be found in Appendix E. Moreover, we also present an
application of HOT for domain adaptation in Appendix F.
Finally, additional examples of color transfer are included in
Appendix G.

APPENDIX A
EQUIVALENCE BETWEEN THE HOT AND THE

ACCELERATED DPPA

Let NRN
+
(·) denote the normal cone of RN

+ . Note that
solving problems (8) and (9) is equivalent to finding a w∗ ∈
W = RM3×RN×RN such that 0 ∈ T w∗, where the maximal
monotone operator T is defined by

T w =


−b+Ax

NRN
+
(z) + x

c−A⊤y − z

 , ∀w = (y, z, x) ∈ W. (30)

Consider the following self-adjoint linear operator M : W →
W,

M =


0 0 0

0 σIN IN

0 IN
1
σ IN

 , (31)

where IN denotes the identity matrix in RN×N . We can
establish the equivalence between the HOT algorithm and the
accelerated dPPA [1] in the following proposition.

Proposition 5. Consider the operators T defined in (30) and
M defined in (31). Then the sequence

{
wk

}
generated by the

HOT algorithm in Algorithm 2 coincides with the sequence{
wk

}
generated by the following accelerated dPPA for any

k ≥ 0, 
w̄k = T̂ wk = (M+ T )−1Mwk,

ŵk = F̂wk = 2w̄k − wk,

wk+1 =
1

k + 2
w0 +

k + 1

k + 2
ŵk,

(32)

with the same initial point w0 ∈ W. Additionally, M is an
admissible preconditioner4 such that (M+ T )−1 is Lipschitz
continuous.

Proof. We establish that (M + T )−1 is single-valued by
contradiction. Suppose, for the sake of contradiction, that
(M + T )−1 is not single-valued. Then, there exist distinct
points w̄1 = (ȳ1, z̄1, x̄1) ∈ W and w̄2 = (ȳ2, z̄2, x̄2) ∈ W
such that

w̄1, w̄2 ∈ (M+ T )−1v

for some v = (vy, vz, vx) ∈ W. This implies that for i = 1, 2,
the following conditions hold:

vy = −b+Ax̄i, (33)
vz ∈ NRN

+
(z̄i) + σz̄i + 2x̄i, (34)

vx = c−A⊤ȳi + σ−1x̄i. (35)

By direct calculations, we obtain:

A(x̄1 − x̄2) = 0, (36)
⟨−σ(z̄1 − z̄2)− 2(x̄1 − x̄2), z̄1 − z̄2⟩ ≥ 0, (37)
σA⊤(ȳ1 − ȳ2) = x̄1 − x̄2, (38)

where inequality (37) follows from the monotonicity of
NRN

+
(·). Substituting (38) into (36), we obtain

σAA⊤(ȳ1 − ȳ2) = 0.

Since AA⊤ is invertible, it follows that

ȳ1 − ȳ2 = 0. (39)

Substituting (39) into (38), we deduce that

x̄1 − x̄2 = 0. (40)

Similarly, we conclude from (37) and (40) that

z̄1 − z̄2 = 0. (41)

Thus, equations (39), (40), and (41) imply that w̄1 = w̄2,
contradicting our assumption. Therefore, we conclude that
(M+ T )−1 is single-valued.

To establish the Lipschitz continuity of (M + T )−1, con-
sider w̄i = (ȳi, z̄i, x̄i) ∈ W such that

w̄i = (M+T )−1vi, where vi = (viy, viz, vix), i = 1, 2.

4In [3], an admissible preconditioner for the operator T : W → 2W is a
linear, bounded, self-adjoint, and positive semidefinite operator M : W → W
such that (M+ T )−1M is single-valued and has full domain.



2

Following the derivations in (33)–(35), we obtain for i = 1, 2:

viy = −b+Ax̄i, (42)
viz ∈ NRN

+
(z̄i) + σz̄i + 2x̄i, (43)

vix = c−A⊤ȳi + σ−1x̄i. (44)

Substituting (44) into (42) and applying [4, Corollary 23.5.1],
we obtain:

ȳi = (AA⊤)−1

(
viy + b

σ
−A(vix − c)

)
,

z̄i = (NRN
+
(·) + σIN )−1(viz − 2x̄i).

Thus, there exists a positive constant L1 such that

∥ȳ1 − ȳ2∥ =
∥∥∥(AA⊤)−1

(v1y − v2y
σ

−A(v1x − v2x)
)∥∥∥

≤ L1(∥v1y − v2y∥+ ∥v1x − v2x∥).
(45)

It follows from (44) and (45) that there exists a positive
constant L2 such that

∥x̄1 − x̄2∥ = ∥σ(v1x − v2x +A⊤(ȳ1 − ȳ2))∥
≤ L2(∥v1x − v2x∥+ ∥v1y − v2y∥).

(46)

Similarly, since the resolvent (NRN
+
(·) + σIN )−1 is non-

expansive [5], there also exists a positive constant L3 such
that

∥z̄1−z̄2∥ ≤ L3(∥v1y−v2y∥+∥v1z−v2z∥+∥v1x−v2x∥). (47)

Hence, combining (45), (46), and (47), we conclude that there
exists a positive constant L such that

∥w̄1 − w̄2∥ ≤ L∥v1 − v2∥,

which establishes the Lipschitz continuity of (M+ T )−1.
Finally, following the proof establishing the equivalence

between the semi-proximal alternating direction method of
multipliers (spADMM) and the (partial) PPA, as outlined
in Appendix B of [6], we obtain that the sequence {wk}
generated by Algorithm 2 coincides with the sequence {wk}
produced by the following scheme:

Mwk ∈ (M+T )w̄k, wk+1 =
1

k + 2
w0+

k + 1

k + 2
(2w̄k−wk).

Since (M+T )−1 is single-valued from the previous proof, it
follows that

w̄k = (M+T )−1Mwk, wk+1 =
1

k + 2
w0+

k + 1

k + 2
(2w̄k−wk).

For an arbitrary choice of wk ∈ W, each step in Algorithm 2 is
well-defined. Thus, based on the established equivalence, we
conclude that (M+T )−1M has full domain. Combining this
result with the Lipschitz continuity proven earlier, we deduce
that M is an admissible preconditioner such that (M+T )−1

is Lipschitz continuous, completing the proof.

Let C⊤ := (0,
√
σIN , 1√

σ
IN ). It is straightforward to verify

that M = CC⊤. Define

T̃ := C⊤(M+ T )−1C, F̃ := 2T̃ − IW, (48)

where IW denotes the identity operator on W. The following
proposition summarizes some key properties of T̃ and F̃ .

Proposition 6. Consider the operators T defined in (30) and
M defined in (31). Then, the operator T̃ in (48) is everywhere
well-defined and firmly nonexpansive. Moreover, the operator
F̃ = 2T̃ − IW is nonexpansive. Furthermore, we have the
equivalence

C⊤T −1(0) = C⊤ Fix T̂ = Fix T̃ = Fix F̃ ,

where Fix T̂ denotes the set of fixed points of the operator T̂ .

Proof. The firm nonexpansiveness of T̃ follows from Theo-
rem 2.13 in [3]. Furthermore, by [7, Proposition 4.4], F̃ is
nonexpansive. Finally, from the proof of Theorem 2.14 in [3],
we obtain

C⊤ Fix T̂ = Fix T̃ .

Since T −1(0) = Fix T̂ , the result follows.

To analyze the global convergence and iteration complexity
of the HOT algorithm (Algorithm 2), we introduce two shadow
sequences {uk} and {ūk}, defined as

uk := C⊤wk, ūk := C⊤w̄k, ∀k ≥ 0, (49)

where {wk} and {w̄k} are the sequences generated by Al-
gorithm 2. Applying Proposition 5, we obtain the following
identity:

uk+1 =
1

k + 2
u0 +

k + 1

k + 2
F̃uk, ∀k ≥ 0. (50)

We are now ready to prove Proposition 2.

APPENDIX B
PROOF OF PROPOSITION 2

Proof. Note that the scheme in (50) is the Halpern iteration
applied to the nonexpansive operator F̃ . It follows from the
global convergence of the Halpern iteration in [8, Theorem 2]
that

uk → u∗, (51)

where u∗ is a point in Fix F̃ . By utilizing Proposition 6, we
have

C⊤T −1(0) = C⊤ Fix T̂ = Fix T̃ = Fix F̃ ,

which implies that there exists a w∗ in T −1(0) such that
C⊤w∗ = u∗. Consequently, by the relationship between {uk}
and {wk} in (49), and (51), we can obtain

w̄k = (M+ T )−1CC∗wk = (M+ T )−1Cuk

→ (M+ T )−1CC⊤w∗ = (M+ T )−1Mw∗ = w∗,
(52)

where the continuity of (M + T )−1C is derived from the
composition of a continuous function (M+ T )−1 showed in
Proposition 5 and a linear operator C. Hence, {w̄k} converges
to w∗, which completes the proof.



3

APPENDIX C
PROOF OF PROPOSITION 3

Proof. The shadow sequence {uk} satisfying (50) corresponds
exactly to the Halpern iteration. By Proposition 6, we know
that F̃ is nonexpansive. Applying [9, Theorem 2.1], we obtain

∥uk − F̃uk∥ ≤ 2∥u0 − u∗∥
k + 1

, ∀k ≥ 0, u∗ ∈ Fix F̃ . (53)

Furthermore, by Proposition 6, we have Fix F̃ = C∗T −1(0).
Thus, for any u∗ ∈ Fix F̃ , there exists a point w∗ ∈ T −1(0)
such that C∗w∗ = u∗. Substituting this into (53), we obtain,
for all k ≥ 0 and w∗ ∈ T −1(0),

∥C∗wk − C∗F̂wk∥ ≤ 2∥C∗w0 − C∗w∗∥
k + 1

,

which implies

∥wk − ŵk∥M = ∥wk − F̂wk∥M ≤ 2∥w0 − w∗∥M
k + 1

(54)

with the seminorm defined by ∥w∥M :=
√
⟨w,w⟩M =√

⟨w,Mw⟩.
We now estimate the convergence rate of R(w̄k) for any

k ≥ 0. From (54), we obtain

∥ŵk − wk∥2M ≤ 4∥w0 − w∗∥2M
(k + 1)2

, ∀k ≥ 0.

By the definition of M in (31), this can be rewritten as

1

σ
∥σ(ẑk − zk) + (x̂k − xk)∥2 ≤ 4R2

0

σ(k + 1)2
, ∀k ≥ 0. (55)

From Step 2 of the accelerated dPPA scheme in (32), we
obtain, for any k ≥ 0,

ŷk − yk = 2(ȳk − yk),

ẑk − zk = 2(z̄k − zk),

x̂k − xk = 2(x̄k − xk).

Thus, we can rewrite (55) as

1

σ
∥σ(z̄k − zk) + (x̄k − xk)∥2 ≤ R2

0

σ(k + 1)2
, ∀k ≥ 0. (56)

From Step 2 of Algorithm 2, we deduce that for any k ≥ 0,

∥σ(z̄k − zk) + (x̄k − xk)∥
= ∥σ(z̄k − zk) + σ(A⊤ȳk + zk − c)∥
= σ∥A⊤ȳk + z̄k − c∥,

which, combined with (56), yields

∥A⊤ȳk + z̄k − c∥ ≤ R0

σ(k + 1)
, ∀k ≥ 0. (57)

Moreover, from the optimality conditions of the subproblems
in Algorithm 2, we obtain, for any k ≥ 0,AA⊤ȳk = b

σ −A
(

xk

σ + zk − c
)
,

z̄k = ΠRN
+

(
z̄k − x̄k − σ(A⊤ȳk + z̄k − c)

)
.

(58)

Thus, from Step 2 of Algorithm 2 and (58), we have

∥b−Ax̄k∥
= ∥b−A(xk + σ(A⊤ȳk + zk − c))∥
= ∥b−A(xk + σ(zk − c))− (b−A(xk + σ(zk − c)))∥
= 0.

(59)
Similarly, from (57) and (58), we obtain, for any k ≥ 0,

∥z̄k −ΠRN
+
(z̄k − x̄k)∥ ≤ σ∥A⊤ȳk + z̄k − c∥

≤ R0

(k+1) .
(60)

Therefore, by (57), (59), and (60), we conclude that for any
k ≥ 0,

∥R(w̄k)∥ ≤ σ + 1

σ

R0

(k + 1)
.

We now estimate the objective errors. For any k ≥ 0, define

x̃k = x̄k + σ(A⊤ȳk + z̄k − c). (61)

From the second equation in (58), it follows that

x̃k ∈ RN
+ , and ⟨x̃k, z̄k⟩ = 0. (62)

Thus, by the convexity of δRN
+
(·) and the KKT system (10),

we obtain

δRN
+
(x̃k) ≥ δRN

+
(x∗) + ⟨−z∗, x̃k − x∗⟩.

Adding ⟨c, x̄k−x∗⟩ to both sides and applying (57), (59), and
(61), we derive

⟨c, x̄k − x∗⟩ ≥ ⟨c, x̄k − x∗⟩+ ⟨−z∗, x̃k − x∗⟩
= ⟨c− z∗, x̄k − x∗⟩+ ⟨−z∗, σ(A⊤ȳk + z̄k − c)⟩
= ⟨A⊤y∗, x̄k − x∗⟩+ ⟨−z∗, σ(A⊤ȳk + z̄k − c)⟩
= ⟨−z∗, σ(A⊤ȳk + z̄k − c)⟩

≥ −∥z∗∥ R0

k + 1
.

Similarly, from the second equation in (58), we obtain

−z̄k ∈ NRN
+
(x̃k),

which implies

δRN
+
(x∗) ≥ δRN

+
(x̃k) + ⟨−z̄k, x∗ − x̃k⟩.

Adding ⟨c, x∗ − x̄k⟩ to both sides and using (62), we obtain

⟨c, x∗ − x̄k⟩ ≥ ⟨−z̄k, x∗ − x̃k⟩+ ⟨c, x∗ − x̄k⟩
= ⟨−z̄k, x∗⟩+ ⟨c, x∗ − x̄k⟩
= ⟨c− z̄k, x∗⟩ − ⟨c, x̄k⟩.

(63)

For convenience, let

∆k = c− (A⊤ȳk + z̄k).

Using (63) and (59), we obtain

⟨c, x̄k − x∗⟩ ≤ −⟨∆k +A⊤ȳk, x∗⟩+ ⟨∆k + (A⊤ȳk + z̄k), x̄k⟩
= ⟨∆k, x̄k − x∗⟩+ ⟨z̄k, x̄k⟩.



4

TABLE 1: Numerical results of various algorithms on the DOTmark Dataset: Total time as the sum of solve time and transport
plan recovery time.

Category Resolution HOT Network Simplex Gurobi ADMM Improved Sinkhorn Sinkhorn

Classic
64× 64 time(s) 0.67+0.17 2.73 2.16+0.17 1.77+0.17 16.18 174.82

128× 128 time(s) 1.58+0.67 36.18 29.15+0.67 3.53+0.67 39.40 2632.17

Shapes
64× 64 time(s) 0.64+0.17 1.48 1.33+0.17 3.92+0.17 9.60 103.74

128× 128 time(s) 1.68+0.67 20.70 22.46+0.67 2.32+0.67 24.32 1616.34

By (61) and (62), we further derive

⟨c, x̄k − x∗⟩ ≤ ⟨∆k, x̄k − x∗⟩+ σ⟨z̄k,∆k⟩
= ⟨∆k, x̄k − x∗ + σ(z̄k − z∗)⟩+ σ⟨z∗,∆k⟩
≤ ∥∆k∥∥x̄k − x∗ + σ(z̄k − z∗)∥+ σ∥z∗∥∥∆k∥.

(64)
By the definition of M in (31) and the M-nonexpansiveness
of T̂ [3], we have

∥x̄k − x∗ + σ(z̄k − z∗)∥2 = σ∥w̄k − w∗∥2M
≤ σ∥w0 − w∗∥2M
= ∥x0 − x∗ + σ(z0 − z∗)∥2 = R2

0.
(65)

Therefore, combining (57), (64), and (65), we conclude that

⟨c, x̄k − x∗⟩ ≤ ∥∆k∥R0 + σ∥z∗∥∥∆k∥

≤ (σ∥z∗∥+R0)
R0

σ(k + 1)
.

This completes the proof.

APPENDIX D
MORE NUMERICAL RESULTS ON THE DOTMARK DATASET

Note that the worst-case computational complexity of re-
constructing the transport plan via Algorithm 1 is 3M2.
In practice, we can efficiently parallelize the (k, j) loop to
leverage the significant benefits of GPU acceleration, enabling
an efficient reconstruction of the transport plan from a solu-
tion to the reduced OT model. We provide some additional
numerical experiment results in Table 1 to better demonstrate
the efficiency of the transport plan recovery with the GPU
acceleration. The results shown in Table 1 demonstrate that
our approach outperforms other popular algorithms, even when
accounting for the plan recovery time. We have also considered
the sparsity in the transport plan recovery, which facilitates
handling large-scale problems.

The numerical comparison of the HOT algorithm on GPU
and CPU is presented in Table 2. The results demonstrate
that the GPU’s acceleration is substantial, and the acceleration
effect becomes more significant as the problem’s dimension
increases.

To better demonstrate the significance of the Halpern accel-
eration, we conduct additional numerical testing by changing
the stopping criterion of the algorithm from relative KKT
residual to absolute KKT residual and setting the maximum
number of iterations to 1E6. The results are shown in Table 3
below.

TABLE 2: The comparison of HOT’s performance on CPU
and GPU.

Category Resolution GPU CPU Ratio (tCPU/tGPU)

Classic
128× 128 time(s) 1.58 5.91 3.74
256× 256 time(s) 12.98 108.98 8.40
512× 512 time(s) 81.02 764.22 9.43

Shapes
128× 128 time(s) 1.68 6.15 3.66
256× 256 time(s) 14.87 130.81 8.80
512× 512 time(s) 87.12 812.82 9.33

TABLE 3: The numerical results of HOT and ADMM using
absolute KKT residual as the stopping criterion (1E-6).

Category Resolution HOT ADMM

Classic

64 × 64

time(s) 6.39 406.94
gap 6.93E-10 1.58E-6

feaserr 3.12E-13 4.51E-10
iter 17680 1000000

128 × 128

time(s) 76.36 1093.10
gap 8.10E-10 4.69E-6

feaserr 2.82E-14 6.11E-10
iter 57300 1000000

256 × 256

time(s) 3774.04 9135.66
feaserr 3.96E-15 9.31E-11

iter 338240 1000000

Shapes

64 × 64

time(s) 6.34 404.29
gap 2.29E-10 6.48E-7

feaserr 3.62E-13 8.78E-10
iter 17660 991730

128 × 128

time(s) 54.86 1087.06
gap 2.47E-9 2.43E-6

feaserr 2.33E-14 1.01E-9
iter 41190 1000000

256 × 256

time(s) 2519.99 9101.29
feaserr 3.24E-15 1.10E-10

iter 226020 1000000

APPENDIX E
COMPARE WITH W2NEURALDUAL

In this section, we compare HOT with the W2NeuralDual
method implemented in OTT-JAX [2]. We first sample some
data using a built-in OTT-JAX random dataset generator in two
different settings, visualized in Fig. 1. For the Circle Gaussian
and the CheckerBoard dataset, we generate 128 data points
for both the source and target measures, respectively. Then we



5

compare the performance of the HOT algorithm and the neural
network dual method with default parameters in the OTT-
JAX library5. Specifically, we train the network using a batch
size of 2048 and utilize the “W2NeuralDual” API without
modifying any parameters (e.g., 20000 training epochs, Adam
optimizers). Note that the ICNN potential, as the default
parameter, is not suitable for training the CheckerBoard dataset
(see Fig. 2). We manually modify it to MLP potential as
suggested by OTT-JAX documentation6. Here, we also use
the 2D non-uniform bins constructed from the union of the
supports in the source and target measure samples. We report
the numerical results in Table 4. From the results, we can
see that, even though the W2NeuralDual is computationally
efficient in the inference stage and is memory efficient, the
training phase is computationally expensive. Moreover, the
quality of the solution obtained by the HOT algorithm can be
much better than the ones obtained from the W2NeuralDual.
We further visualize the transport plans obtained by the HOT
algorithm and the W2NeuralDual in Fig. 3.

(a) Circle Gaussian.

(b) CheckerBoard.

Fig. 1: A visualization of the sample dataset.

APPENDIX F
DOMAIN ADAPTATION

Optimal transport has a wide range of applications in do-
main adaptation and data alignment. Inspired by [10], we apply
the HOT algorithm for domain adaptation in unsupervised
classification. We first sample test data from the target domain
and perform optimal transport between the source domain

5https://ott-jax.readthedocs.io/en/latest/neural/ autosummary/ott.neural.
methods.neuraldual.W2NeuralDual.html

6https://ott-jax.readthedocs.io/en/latest/tutorials/neural/000 neural dual.
html

Fig. 2: W2NeuralDual on CheckerBoard Using ICNN Poten-
tial with default parameter settings.

W2NeuralDual

HOT tol=1E-6

HOT tol=1E-7

(a) Comparison on Circle
Gaussian dataset.

W2NeuralDual

HOT tol=1E-6

HOT tol=1E-7

(b) Comparison on Checker-
Board dataset.

Fig. 3: A visualization of the transport plans on different
datasets.

Dataset HOT W2NeuralDual
tol=1E-6 tol=1E-7 training inference

Circle Gaussian

objective 22.3634 22.3601 \ 22.2784
gap 1.54E-4 1.32E-5 \ 3.49E-3

time(s) 51.73 262.78 4466.61 5.21
memory(GB) 2.72 2.72 0.65 \

CheckerBoard

objective 21.5437 21.5348 \ 23.6818
gap 4.09E-4 1.46E-5 \ 9.53E-2

time(s) 62.51 272.29 3029.24 3.58
memory(GB) 2.72 2.72 0.65 \

TABLE 4: Numerical results of HOT and W2NeuralDual on
the sample dataset.

https://ott-jax.readthedocs.io/en/latest/neural/_autosummary/ott.neural.methods.neuraldual.W2NeuralDual.html
https://ott-jax.readthedocs.io/en/latest/neural/_autosummary/ott.neural.methods.neuraldual.W2NeuralDual.html
https://ott-jax.readthedocs.io/en/latest/tutorials/neural/000_neural_dual.html
https://ott-jax.readthedocs.io/en/latest/tutorials/neural/000_neural_dual.html


6

and the sampled test data. We then train a classifier on the
transported data, which retains the source domain labels, and
evaluate it on the target domain. Again, we apply the non-
uniform 2D grids construction method here.

Fig. 4: Optimal transport based domain adaptation for unsu-
pervised classification.

From Table 5, we can conclude that optimal transport-
based domain adaptation significantly increases classification
accuracy.

TABLE 5: Influence of optimal transport based domain adap-
tation on unsupervised classification accuracy.

Rotation Angle 10◦ 20◦ 40◦ 50◦ 70◦ 90◦

SVM 100% 100% 76.5% 40.4% 26.2% 18.7%

OTDA-SVM 100% 100% 92.6% 82.8% 68.4% 59.0%

APPENDIX G
MORE EXAMPLES OF COLOR TRANSFER

We present additional examples of color transfer by the
HOT algorithm, as shown in Fig. 5.

REFERENCES

[1] D. F. Sun, Y. Yuan, G. Zhang, and X. Zhao, “Accelerating precondi-
tioned ADMM via degenerate proximal point mappings,” arXiv preprint
arXiv:2403.18618, 2024, SIAM Journal on Optimization 35 (2025)
XXX, in print.

[2] M. Cuturi, L. Meng-Papaxanthos, Y. Tian, C. Bunne, G. Davis, and
O. Teboul, “Optimal transport tools (OTT): A JAX Toolbox for all things
Wasserstein,” arXiv preprint arXiv:2201.12324, 2022.

[3] K. Bredies, E. Chenchene, D. A. Lorenz, and E. Naldi, “Degenerate pre-
conditioned proximal point algorithms,” SIAM Journal on Optimization,
vol. 32, no. 3, pp. 2376–2401, 2022.

[4] R. T. Rockafellar, Convex Analysis. Princeton University Press,
Princeton, NJ, 1970.

[5] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Springer,
New York, 1998.

[6] B. Yang, X. Zhao, X. Li, and D. Sun, “An accelerated proximal
alternating direction method of multipliers for optimal decentralized
control of uncertain systems,” Journal of Optimization Theory and
Applications, vol. 204, no. 1, p. 9, 2025.

[7] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces,2nd edn. Springer, New York, 2017.

[8] R. Wittmann, “Approximation of fixed points of nonexpansive map-
pings,” Archiv der Mathematik, vol. 58, pp. 486–491, 1992.

[9] F. Lieder, “On the convergence rate of the Halpern-iteration,” Optimiza-
tion Letters, vol. 15, no. 2, pp. 405–418, 2021.

[10] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal
transport for domain adaptation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 9, pp. 1853–1865, 2016.



7

Fig. 5: More examples of color transfer.


	Introduction
	Related work and existing challenges
	Contributions

	Kantorovich-Wasserstein distances
	An equivalent reduced model of the OT problem
	Reconstruct the transport plan from the reduced model

	A Halpern accelerating algorithm for solving OT problem
	HOT: A Halpern accelerating method for solving OT problem
	A fast implementation of the HOT algorithm

	Experiments
	Numerical comparison on the DOTmark dataset
	An application in color transfer

	Conclusion
	References
	Biographies
	Guojun Zhang
	Zhexuan Gu
	Yancheng Yuan
	Defeng Sun

	Appendix A: Equivalence between the HOT and the accelerated dPPA
	Appendix B: Proof of Proposition 2
	Appendix C: Proof of Proposition 3
	Appendix D: More numerical results on the DOTmark dataset
	Appendix E: Compare with W2NeuralDual
	Appendix F: Domain adaptation
	Appendix G: More examples of color transfer
	References

