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Higham (2002, IMA J. Numer. Anal., 22, 329–343) considered two types of nearest correlation ma-
trix problems, namely theW-weighted case and theH -weighted case. While theW-weighted case has
since been well studied to make several Lagrangian dual-based efficient numerical methods available, the
H -weighted case remains numerically challenging. The difficulty of extending those methods from the
W-weighted case to theH -weighted case lies in the fact that an analytic formula for the metric projec-
tion onto the positive semidefinite cone under theH -weight, unlike the case under theW-weight, is not
available. In this paper we introduce an augmented Lagrangian dual-based approach that avoids the ex-
plicit computation of the metric projection under theH -weight. This method solves a sequence of uncon-
strained convex optimization problems, each of which can be efficiently solved by an inexact semismooth
Newton method combined with the conjugate gradient method. Numerical experiments demonstrate that
the augmented Lagrangian dual approach is not only fast but also robust.

Keywords: augmented Lagrangian; semismooth Newton method; conjugate gradient method; nearest cor-
relation matrix.

1. Introduction

In Higham(2002) the author considered two types ofnearest correlation matrixproblems. One is under
theW-weighting:

min 1
2‖W1/2(X − G)W1/2‖2

such that Xii = 1, i = 1, . . . , n,

X ∈ Sn
+,

(1.1)

whereSn andSn
+ are the space ofn × n symmetric matrices and the cone of positive semidefinite

matrices inSn, respectively,‖∙‖ is the Frobenius norm induced by the standard trace inner product in
Sn and the matrixG ∈ Sn is given. The positive-definite matrixW ∈ Sn is known as theW-weight to
the problem andW1/2 is the positive square root ofW.
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The constraints in (1.1), collectively known as thecorrelation constraints, specify that any feasible
matrix to (1.1) is a correlation matrix. Solving theW-weighted problem (1.1) is equivalent to solving a
problem of the following type (cf.Qi & Sun, 2006, Section 4.1):

min 1
2‖X − G‖2

such that diag(W−1/2XW−1/2) = e,

X ∈ Sn
+,

(1.2)

wheree ∈ Rn is the vector of all ones. We often useX � 0 to denoteX ∈ Sn
+. The metric projection of

X ∈ Sn ontoSn
+ under the Frobenius norm‖ ∙ ‖ is often denoted byX+ and sometimes byΠSn

+
(X) to

highlight its dependence onSn
+.

The other type of nearest correlation problem that was considered by Higham is under theH -
weighting:

min 1
2‖H ◦ (X − G)‖2

such that Xii = 1, i = 1, . . . , n,

X ∈ Sn
+,

(1.3)

where the weighting is now in the sense of Hadamard, i.e.,(A ◦ B)i j = Ai j Bi j . Here the matrixH
is symmetric and each of its entries is non-negative, i.e.,Hi j > 0 for all i, j = 1, . . . , n (in Higham
(2002), eachHi j was assumed to be positive.) We refer the reader toBhansali & Wise(2001) for concrete
examples in finance to see howH was constructed, whereH is known as a confidence matrix. We note
that, in the special case thatH = E, the matrix of all ones, (1.3) turns out to be (1.2) with W = I , the
identity matrix.

TheW-weighted problem (1.1) has been well studied sinceHigham(2002) and now there are sev-
eral good methods for it, including the alternating projection method (Higham, 2002), the gradient and
quasi-Newton methods (Malick, 2004; Boyd & Xiao, 2005), the inexact semismooth Newton method
combined with the conjugate gradient (CG) solver (Qi & Sun, 2006) and its modified version with
several (preconditioned) iterative solvers (Borsdorf, 2007; Borsdorf & Higham, 2009) and the inexact
interior-point methods (IPMs) with iterative solvers (Toh et al., 2007; Toh, 2008). All of these meth-
ods, except the inexact IPMs, crucially rely on the fact that the projection of a given matrixX ∈ Sn

ontoSn
+ under theW-weighting, denoted byΠW

Sn
+
(X), which is the optimal solution of the following

problem:

min 1
2‖W1/2(Y − X)W1/2‖2

such that Y ∈ Sn
+,

is given by the formula (seeHigham, 2002, Theorem 3.2)

ΠW
Sn

+
(X) = W1/2(W1/2XW1/2)+W1/2.

It has long been known by statisticians that, for anyA ∈ Sn, its metric projectionA+ overSn
+, which

also equalsΠ I
Sn

+
(A), admits an explicit formula (Schwertman & Allen, 1979). This means that, for any

X ∈ Sn, one can computeΠW
Sn

+
(X) explicitly.
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To simplify the subsequent discussions we assume, without loss of generality, thatW ≡ I (for
reasons for this seeQi & Sun, 2006, Section 4.1). We note that(∙)+ = ΠSn

+
(∙). To see how the metric

projection operatorΠSn
+
(∙) is involved in the derivation of these methods mentioned above and also to

motivate our method for theH -weighted case, let us consider the Lagrangian function of problem (1.2),

l (X, y) :=
1

2
‖X − G‖2 + yT(b − diag(X)), (X, y) ∈ Sn

+ × Rn, (1.4)

whereb := e. Since problem (1.2) automatically satisfies the generalized Slater constraint qualification,
from the duality theory developed byRockafellar(1974), we know that problem (1.2) can be equiva-
lently solved by its Lagrangian dual problem

max
y∈Rn

{

min
X∈Sn

+

l (X, y)

}

, (1.5)

which, via the metric projector(∙)+, can be equivalently reformulated as the following unconstrained
optimization problem (seeRockafellar(1974), Malick (2004), andBoyd & Xiao (2005) for details):

min
y∈Rn

θ(y) :=
1

2
‖(G + diag(y))+‖2 − bT y −

1

2
‖G‖2, (1.6)

in the sense that, if̄y ∈ Rn is an optimal solution to (1.6), thenX := (G + diag(ȳ))+ solves (1.2). Here
diag(y) is the diagonal matrix whose diagonal entries are the components ofy.

The objective functionθ(∙) in (1.6) is known to be once continuously differentiable and convex
(Rockafellar, 1974), despite the fact that the projection operator(∙)+ is not differentiable everywhere.
Therefore the gradient method and quasi-Newton methods can be developed to solve (1.6) directly.
Malick (2004) remarked that the alternating projection method is actually the gradient method for (1.6)
with a constant step length of 1. These methods converge, at best, linearly. Becauseθ(∙) is convex
and coercive (Rockafellar, 1974), solving (1.6) is equivalent to finding a point̄y ∈ Rn satisfying its
optimality condition

∇θ(y) = diag(G + diag(y))+ − b = 0.

We define

F(y) := diag(G + diag(y))+, y ∈ Rn.

The functionF(∙) is Lipschitz continuous and thus the generalized Jacobian∂F(∙) in the sense ofClarke
(1983) is well defined. For anyy ∈ Rn let ∂2θ(y) := ∂F(y). The generalized Newton method takes the
following form:

yk+1 = yk − V−1
k (∇θ(yk)), Vk ∈ ∂2θ(yk), k = 0, 1, . . . . (1.7)

A formula for calculatingV ∈ ∂2θ(y) can be found in Qi & Sun (2006, p. 378). Clarke’s Jacobian-based
generalized Newton method (1.7) was thoroughly analysed byQi & Sun (2006) and was proven to be
quadratically convergent. Numerical experiments conducted inQi & Sun (2006), Borsdorf(2007) and
Borsdorf & Higham(2009) seem to confirm that the generalized Newton method (1.7), combined with
iterative solvers, is the most effective one available so far.

 at N
ational U

niversity of S
ingapore on A

pril 1, 2010 
http://im

ajna.oxfordjournals.org
D

ow
nloaded from

 

http://imajna.oxfordjournals.org
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For theH -weighted problem (1.3) all of those Lagrangian dual-based methods mentioned above are
not applicable, mainly due to the lack of a computable formula for the projection ofX ∈ Sn ontoSn

+
under theH -weighting, that is, the optimal solution, denotedΠ H◦

Sn
+

(X), to the following problem:

min
1

2
‖H ◦ (Y − X)‖2, such thatY ∈ Sn

+

is not known to have an explicit formula.1 For this reason the Lagrangian dual problem, which takes the
following form for theH -weighted case:

max
y∈Rn

{

min
X∈Sn

+

l (X, y) :=
1

2
‖H ◦ (X − G)‖2 + yT(b − diag(X))

}

, (1.8)

cannot be reduced to an unconstrained smooth optimization problem in the dual space similar to (1.6)
for theW-weighted case. Consequently, compared to the original problem, the Lagrangian dual problem
(1.8) does not provide us with a better choice in terms of algorithmic design. This implies, in partic-
ular, that the Newton method for theW-weighted case cannot be straightforwardly extended to the
H -weighted case.

A natural question then arises: Can we still expect an efficient dual approach for theH -weighted
case? This paper will provide an affirmative answer to this question by exploiting the augmented La-
grangian dual approach—the augmented Lagrangian method, developed byRockafellar(1976a,b) in his
pioneering work on convex optimization problems. Letc > 0 be a parameter. By using the fact thatSn

+
is a self-dual convex cone, we know fromWierzbicki & Kurcyusz(1977) that the augmented Lagrangian
function for theH -weighted problem (1.3) takes the following form:

Lc(X, y, Z) :=
1

2
‖H ◦ (X − G)‖2 + yT(b − diag(X)) +

c

2
‖b − diag(X)‖2

+
1

2c
(‖(Z − cX)+‖2 − ‖Z‖2), (1.9)

where(X, y, Z) ∈ Sn × Rm × Sn and b = e. The augmented Lagrangian dual problem takes the
following form:

min
y∈Rn,Z∈Sn

{
νc(y, Z) := − min

X∈Sn
Lc(X, y, Z)

}
. (1.10)

The major computational task in the augmented Lagrangian dual approach, as outlined in (3.1)–(3.3), at
each step for a given(y, Z) ∈ Rn × Sn, is to solve the following unconstrained optimization problem:

min
X∈Sn

Lc(X, y, Z). (1.11)

1It was stated inJohnsonet al. (1998, Corollary 2.2) that, whenH is positive definite,Π H◦
Sn

+
(X) is uniquely determined by the

equation
H ◦ Π H◦

Sn
+

(X) = (H ◦ X)+.

This does not seem to be true even for this special case. A counterexample is

H =

[
1 ε

ε 1

]

, X =

[
1 2

2 1

]

, 0 < ε 6 1/2.
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Note that, for any(y, Z) ∈ Rn ×Sn, we have thatL(∙, y, Z) is a convex and continuously differentiable
function. Therefore the gradient method and quasi-Newton methods can be developed in theory for
solving (1.11). However, our numerical experiments show that the gradient method is extremely slow
and hence disregarded. The size of the variableX in (1.11) is n̄ := n(n + 1)/2. Maintaining ann̄ × n̄
positive-definite matrix is extremely expensive due to memory problems, even whenn is small, sayn =
100. This rules out the quasi-Newton methods in which ann̄ × n̄ positive-definite matrix is maintained
and updated at each iteration (limited memory quasi-Newton methods may still be exploited, but their
convergence analysis is hardly satisfactory).

The main purpose of this paper is to show that Newton’s method is an efficient method for solv-
ing (1.11). The Newton method that we are going to use is quite similar to (1.7) with the difference
that the number of the unknowns in the Newton equation here isn̄, which isO(n2), instead ofn.
These equations, even whenn is relatively large, sayn = 1,000, do not create too much difficulty
when the CG method is employed to solve them. The major reason behind this is that theH -weighted
problem (1.3) may satisfy two important mathematical properties, namely,constraint nondegeneracy
and the strong second-order sufficientcondition (SSOSC) (see Section2). These two properties not
only ensure that the Newton equations encountered in the Newton method are well conditioned, but
also guarantee that the augmented Lagrangian method possesses a fast linear convergence, a property
established byRockafellar(1976a,b) for general convex optimization problems. We will confirm all of
those results in the main body of the paper.

Before commenting on other approaches, we would like to emphasize why a semismooth Newton
method is possible for the augmented Lagrangian dual problem (1.10), while it is not for the Lagrangian
dual problem (1.8). The major reason is that the inner optimization problem in (1.10) is unconstrained
and convex. Solving this inner optimization problem is equivalent to solving the semismooth equation
(3.8). Moreover, the second-order information (i.e., the generalized Hessian∂2θ(X)) can be completely
calculated by (3.9). Therefore Newton’s method can be developed. However, such calculations are not
available for the inner optimization problem of the Lagrangian dual problem (1.8).

We note that a similar approach was also conducted inQi & Sun (2009), where the problem con-
sidered was of theW-weighted type with a background in correlation stress testing, which required
a large number of correlations to be fixed beforehand. Theoretically, being an augmented Lagrangian
dual-based method, the approach inQi & Sun (2009) can be extended to theH -weighted case consid-
ered here. Indeed, it wasQi & Sun (2009), together withQi & Sun (2006), that inspired us to further
investigate the effectiveness of the augmented Lagrangian dual approach for theH -weighted problem
(1.3).

The type of IPMs was deliberately left out of the above discussions because it deserves its own
particular comments. As early asJohnsonet al. (1998), the authors started to use IPMs to solve
H -weighted matrix optimization problems of various types. TheH -weighted nearest correlation matrix
problem (1.3) can be reformulated as a linear optimization problem with mixed semidefinite and second-
order cone constraints (Higham, 2002; Toh et al., 2007). Consequently, publicly available IPMs-based
software such as SeDuMi (Sturm, 1999) or SDPT3 (Tütünc̈u et al., 2003) can be applied to solve these
problems directly. However, since at each iteration these solvers require us to formulate and solve a
dense Schur complement matrix (cf.Borchers & Young, 2007), which for problem (1.3) amounts to a
linear system of dimension(n+ n̄)× (n+ n̄), the size of theH -weighted problem that can be solved on
a Pentium IV PC (the computing machine that we are using) is limited to a small number, sayn = 80 or
100 at most. The serious and competitive implementation of inexact IPMs was carried out byToh et al.
(2007), for solving a special class of convex quadratic semidefinite programming (QSDP) including the
W-weighted problem (1.1), andToh (2008), for a general convex QSDP with theH -weighted problem
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6 of 21 H. QI AND D. SUN

(1.1) being targeted and tested in particular. The search direction used inToh (2008) was obtained by
solving theaugmented equationvia thepreconditioned symmetric quasi-minimal residual(PSQMR)
iterative solver. It is this QSDP solver that we are going to compare with. Our numerical tests show that
the augmented Lagrangian dual approach for theH -weighted nearest correlation problem (1.3) is not
only faster, but also more robust.

The paper is organized as follows. In Section2 we study some mathematical properties of theH -
weighted problem (1.3), mainly on constraint nondegeneracy and the SSOSC. Section3 is on the aug-
mented Lagrangian method. We first outline an abstract form of the method in Section3.1. In Section
3.2 we present two practical algorithms. One is the semismooth Newton-CG method for solving sub-
problems of the type (1.11) encountered in the augmented Lagrangian method, which is detailed in the
second algorithm. Convergence analysis for the two algorithms is included in Section3.3. We report
numerical results in Section4 and conclude the paper in Section5.

2. Mathematical properties of theHHH -weighted case

This section gives a brief account of the two mathematical properties of theH -weighted problem (1.3)
mentioned in Section1. The two properties will justify the use of the augmented Lagrangian method,
which is to be introduced in the next section.

2.1 The constraint nondegeneracy property

Let us cast the problem (1.3) into the following convex QSDP:

min 1
2〈X,Q(X)〉 − 〈C, X〉 + 1

2‖H ◦ G‖2

such that diag(X) = b,

X ∈ Sn
+,

(2.1)

whereQ = H ◦ H◦, C = H ◦ H ◦ G andb = e.
For anyX ∈ Sn

+ let TSn
+
(X) be the tangent cone ofSn

+ at X and lin(TSn
+
(X)) be the largest linear

space contained inTSn
+
(X). We say thatconstraint nondegeneracyholds at a pointX satisfying the

constraints in (2.1) if

diag(lin TSn
+
(X)) = Rn. (2.2)

For the origin of constraint nondegeneracy, its various forms and its role in general optimization, see
Bonnans & Shapiro(1998, 2000), Robinson(1984, 1987, 2003) andShapiro & Fan(1995).

Constraint nondegeneracy can be easily verified for the correlation constraints. LetX ∈ Sn. Suppose
that X has the spectral decomposition

X = P diag(λ1, . . . , λn)PT, (2.3)

whereλ1 > ∙ ∙ ∙ > λn are the eigenvalues ofX andP is a corresponding orthogonal matrix of orthonor-
mal eigenvectors. Then, fromSchwertman & Allen(1979), Higham(1988) andTseng(1998), we know
that

X+ = P diag(max(0, λ1), . . . , max(0, λn))PT. (2.4)

We define

α := {i |λi > 0}, β := {i |λi = 0} and γ := {i |λi < 0}.
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We write P = [ Pα Pβ Pγ ], wherePα contains columns inP indexed byα, andPβ andPγ are defined
similarly. The tangent coneTSn

+
(X+) was first characterized byArnold (1971) as follows:

TSn
+
(X+) = {B ∈ Sn|[ Pβ Pγ ]T B[ Pβ Pγ ] � 0}.

Consequently, we have

lin (TSn
+
(X+)) = {B ∈ Sn|PT

β B Pβ = 0, PT
β B Pγ = 0, PT

γ B Pγ = 0}.

Equivalently, we have

lin (TSn
+
(X+)) =





P B PT|B =







Bαα Bαβ Bαγ

BT
αβ 0 0

BT
αγ 0 0





 ,

Bαα ∈ S |α|,

Bαβ ∈ R|α|×|β|,

Bαγ ∈ R|α|×|γ |





. (2.5)

The following result says that any point satisfying the correlation constraints is constraint nondegener-
ate. It can be proved similarly to Proposition 4.2 in Tohet al. (2007), where the proof used a characteri-
zation of constraint nondegeneracy inAlizadehet al. (1997) and Qi & Sun (2006, Lemma 3.3), and the
result is stated only for optimal solutions. We provide here a proof for the general case.

PROPOSITION2.1 Any point satisfying the correlation constraints{diag(X) = e, X ∈ Sn
+} is constraint

nondegenerate.

Proof. Let X ∈ Sn satisfy the correlation constraints. Suppose thatX has the spectral decomposition
(2.3). BecauseX is positive semidefinite,γ = ∅. Also, because diag(X) = e, we have thatα 6= ∅.
Moreover, this diagonal constraint also implies (seeQi & Sun, 2006, Lemma 3.3)

∑

`∈α

P2
i ` > 0, i = 1, . . . , n. (2.6)

To show that condition (2.2) holds atX, it suffices to prove that

(diag(lin TSn
+
(X)))⊥ = {0}.

Let v ∈ Rn be an arbitrary element of the left-hand side set of the above equation. We shall prove that
v = 0. It follows that, for anyP B PT ∈ lin

(
TSn

+
(X)

)
, we have

0 = 〈v, diag(P B PT)〉 = 〈diag(v), P B PT〉 = 〈PTdiag(v)P, B〉, (2.7)

whereB is from (2.5). The structure ofB implies that

PTdiag(v)Pα = 0,

which in turn implies that

0 = diag(v)Pα = diag(v)(Pα ◦ Pα).

Summing each row of the above matrix equation yields

0 = vi

∑

`∈α

P2
i `, i = 1, . . . , n.

The property (2.6) ensures thatvi = 0 for eachi = 1, . . . , n. This completes our proof. �
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8 of 21 H. QI AND D. SUN

2.2 The strong second-order sufficient condition

Now let us consider the Karush–Kuhn–Tucker (KKT) system of the QSDP (2.1), namely,

Q(X) − diag(y) − Z = C,

diag(X) = b,

X � 0, Z � 0, 〈X, Z〉 = 0.

(2.8)

Any triple (X, ȳ, Z) ∈ Sn × Rm × Sn satisfying (2.8) is called a KKT point of (2.1). By using the fact
thatSn

+ is a self-dual cone, we know fromEaves(1971) that (X, ȳ, Z) ∈ Sn × Rm × Sn satisfies the
KKT conditions (2.8) if and only if it satisfies the following system of nonsmooth equations:

F(X, y, Z) :=






Q(X) − C − diag(y) − Z

b − diag(X)

Z − [Z − X]+




 =






0

0

0




 , (X, y, Z) ∈ Sn × Rm × Sn. (2.9)

Apparently,F is globally Lipschitz continuous everywhere as(∙)+ is also.
Let (X, ȳ, Z) ∈ Sn ×Rm × Sn be a KKT point of problem (2.1). We defineX := X − Z. Suppose

that X has the spectral decomposition (2.3). We define

app(ȳ, Z) := {B ∈ Sn|diag(B) = 0, PT
β B Pγ = 0, PT

γ B Pγ = 0}. (2.10)

Note that app(ȳ, Z) is independent of the choice ofP in (2.3) (seeSun, 2006, equations (38) and (39)).
We also define

M(X) := {(ȳ, Z)|(X, ȳ, Z) is a KKT point of(2.1)}.

The setM(X) is known to be the set of Lagrange multipliersat X. For theH -weighted problem (1.3)
M(X) contains a unique point(ȳ, Z) because constraint nondegeneracy holdsat X by Proposition2.1.
For a proof of this seeBonnans & Shapiro(2000, Theorem 5.85). We say that the SSOSC holdsat X if

〈B, H ◦ H ◦ B〉 + ΥX(Z, B) > 0 ∀ 0 6= B ∈ app(ȳ, Z), (2.11)

where the termΥX(Z, B) is defined by

ΥX(Z, B) = 〈Z, B X
†
B〉,

andX
†

is the Moore–Penrose pseudoinverseof X. Note thatΥX(Z, B) is quadratic inB and is always
non-negativebecauseZ � 0 and X � 0. Note also that, in the left-hand side of (2.11), the first term
〈B, H ◦ H ◦ B〉 > 0 if there existi, j ∈ {1, . . . , n} such thatHi j Bi j 6= 0. Therefore we have the
following statement.

PROPOSITION2.2 Let(X, ȳ, Z) be the unique KKT point of theH -weighted nearest correlation matrix
problem (1.3). If for any 0 6= B ∈ app(ȳ, Z) there existi, j ∈ {1, . . . , n} such thatBi j 6= 0 andHi j > 0,
then the SSOSC (2.11) holdsat X.

We now make several remarks about the SSOSC (2.11).
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(i) The SSOSC was first proposed bySun(2006) in a study of the strong regularity of nonlinear
semidefinite programming (NSDP). The original definition runs over the setM(X). As this set
is a singleton in our case, (2.11) is just a specialization of the original one given inSun(2006,
Definition 3.2).

(ii) In some practical cases (seeBhansali & Wise, 2001) the diagonal weightsHii are assignedzero
values (i.e.,Hii = 0, wherei = 1, . . . , n). This does not have any effect on (2.11) because,
for any B ∈ app(ȳ, Z), we must haveBii = 0, wherei = 1, . . . , n (see the definition (2.10)).
Therefore the diagonal weights inH have no contribution to the value〈B, H ◦ H ◦ B〉.

(iii) Furthermore, for the SSOSC (2.11) to hold at X one does not have to assume that all of the
off-diagonal weights are positive. In fact, as the following example shows, some of them are
allowed to bezerowithout damaging the SSOSC. This example also shows that too many zero
off-diagonal weights do destroy the SSOSC (2.11).

EXAMPLE 2.3 Consider theH -weighted problem (1.3) in S4 with data given by

H =









1 0 1 1

0 1 1 1

1 1 1 1

1 1 1 1









and G =









1 −1 1 −1

−1 1 −1 1

1 −1 1 0.5

−1 1 0.5 1









.

Such a matrixG is known as a pseudocorrelation matrix because−1 6 Gi j 6 1, Gii = 1 for all
i, j = 1, . . . , 4, andλmin(G) = −0.8860< 0. After running our augmented Lagrangian dual method,
namely, Algorithm3.3, with some help of analytical cross validation, we found a KKT point(X, ȳ, Z)
with

X =









1 −1 τ1 −τ1

−1 1 −τ1 τ1

τ1 −τ1 1 τ2

−τ1 τ1 τ2 1









, Z =









0 0 τ1 − 1 1− τ1

0 0 1− τ1 τ1 − 1

τ1 − 1 1− τ1 0 τ2 − 0.5

1 − τ1 τ1 − 1 τ2 − 0.5 0









+ diag(ȳ),

and ȳ1 = ȳ2 = 2τ1(1 − τ1), ȳ3 = ȳ4 = ȳ1 − τ2(τ2 − 0.5) and

τ1 = ((1 +
√

109/108)/4)1/3 − ((−1 +
√

109/108)/4)1/3 and τ2 = 1 − τ2
1 .

ThereforeX is an optimal solution (but we cannot assess at this moment if it is the unique solution).
The matrixX := X − Z has the spectral decomposition (2.3) with

P =









−0.5822 −0.0000 0.7071 0.4013

0.5822 0.0000 0.7071 −0.4013

−0.4013 0.7071 0.0000 −0.5822

−0.4013 0.7071 −0.0000 0.5822









and λ =









2.9505

1.0495

−0.4283

−1.3293









.

Henceβ = ∅ andγ = {3, 4}, implying that

app(ȳ, Z) = {B ∈ S4|diag(B) = 0, PT
γ B Pγ = 0}.
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Only some elementary calculations are new required to verify that, for anyB ∈ app(ȳ, Z), we have
B12 = 0. In other words, if 06= B ∈ app(ȳ, Z) then there must exist an off-diagonal elementBi j 6= 0,
with (i, j ) /∈ {(1, 2), (2, 1)}. Consequently, for suchB we must have

〈B, H ◦ H ◦ B〉 > H2
i j B2

i j > 0,

that is, the SSOSC (2.11) holds even if some off-diagonal weights inH arezero. Because of the fulfil-
ment of the SSOSC, we can now claimthat X is indeed the unique optimal solution. We also note that
the strict complementarity condition holds for this example.

However, ifH contains more zero off-diagonal weights then the SSOSC (2.11) may no longer hold.
For example, ifH becomes

H =









1 0 1 1

0 1 0 1

1 0 1 0

1 1 0 1









andG remains unchanged, then an optimal solution found by Algorithm3.3hasȳ = 0 andZ = 0 as a
pair of the Lagrange multipliers. This implies thatγ = ∅ and hence

app(ȳ, Z) = {B ∈ S4|diag(B) = 0}.

There exists 06= B ∈ app(ȳ, Z) such that〈B, H ◦ H ◦ B〉 = 0. We also note that the termΥX(Z, B)

always equals 0becauseZ = 0. Therefore the SSOSC (2.11) fails to hold.

One may wonder why we used Algorithm3.3to give the seemingly nontrivial Example2.3in S4. Is
it possible to have an example inS3? The answer is surprisingly no, as long asG is a pseudocorrelation
matrix. We give a brief proof of this result below.

Suppose thatH ∈ S3 has only one zero off-diagonal weight, namely,H12 = 0, and thatHi j > 0 for
all (i, j ) 6∈ {(1, 2), (2, 1)}. Let

G =







1 τ1 τ2

τ1 1 τ3

τ2 τ3 1





 , −16 τi 6 1, i = 1, 2, 3.

The following fact can easily be verified.

FACT 2.4 For arbitrary chosenτ2, τ3 ∈ [−1, 1] thematrix

X =







1 τ2τ3 τ2

τ2τ3 1 τ3

τ2 τ3 1







is a nearest correlation matrix toG under theH -weight (there may be more than one nearest correlation
matrix). If τ2 = ±1 andτ3 = ±1 thenX is the unique nearest correlation matrix.
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Because of this fact andH12 = 0, the corresponding Lagrange multipliersfor X are ȳ = 0 ∈ R3

andZ = 0 ∈ S3. This implies that

app(ȳ, Z) = {B ∈ S3|diag(B) = 0}.

Let B ∈ S3 be such thatB12 6= 0 andBi j = 0 for (i, j ) 6∈ {(1, 2), (2, 1)}. It follows thatB ∈ app(ȳ, Z)

and〈B, H ◦ H ◦ B〉 = 0. Thus the SSOSC (2.11) fails to hold becauseΥX(Z, B) is alwayszero. The
argument certainly extends toH containing morezerooff-diagonal weights. Hence the SSOSC is never
satisfied inS3 whenH contains zero off-diagonal weights. The prerequisite ofG being a pseudocorrela-
tion matrix is crucial in the above argument. WhenG is not restricted to be a pseudocorrelation matrix,
it is indeed possible to construct an example inS3 showing that the SSOSC may still hold even when
H contains somezerooff-diagonal weights (seeQi, 2009, Example 3.9).

Let the mappingF be defined by (2.9). The following result states the local invertibility ofF near
the KKT point (X, ȳ, Z) that is important for the convergence analysis of the augmented Lagrangian
method for solving theH -weighted problem (1.3).

PROPOSITION2.5 If the assumption made in Proposition2.2 is satisfied, in particular, ifHi j > 0 for
all i, j = 1, . . . , n, then there exist a neighbourhoodN of (X, ȳ, Z) in Sn × Rn × Sn and a constant
ζ > 0 such that

‖F(X, y, Z) − F(X̃, ỹ, Z̃)‖ > ζ−1‖(X, y, Z) − (X̃, ỹ, Z̃)‖ ∀ (X, y, Z) and(X̃, ỹ, Z̃) ∈ N .

The proof of this proposition follows directly from Propositions2.1 and2.2 andSun(2006, Theo-
rem 4.1).

3. The augmented Lagrangian method

As we discussed in Section1, the Lagrangian dual approach is not applicable to theH -weighted prob-
lem (1.3) because the metric projection ontoSn

+ under theH -weighting does not have an explicitly
computable formula. The consequence is that its corresponding Lagrangian dual problem does not re-
duce to an explicitly defined unconstrained smooth optimization problem. Compared with the original
problem (1.3), not much benefit would be gained through considering the Lagrangian dual problem.

In this section, we will demonstrate that the augmented Lagrangian dual approach works well in
theory for theH -weighted case. The two mathematical properties in the preceding section justify the
use of the method. For simplicity, for the remainder of this paper we shall assumeHi j > 0, which
implies the SSOSC at the solution.

3.1 Outline of the augmented Lagrangian method

Let the augmented Lagrangian function be defined by (1.9) with c > 0. The augmented Lagrangian
method for solving (1.3) can be stated as follows. Letc0 > 0 be given. Let(y0, Z0) ∈ Rm × Sn

+ be the
initial estimated Lagrange multiplier. At thekth iteration, determine

Xk+1 ∈ arg minLck(X, yk, Zk). (3.1)

Then compute(yk+1, Zk+1) by
{

yk+1 := yk + ck(b − diag(Xk+1)),

Zk+1 := (Zk − ck Xk+1)+
(3.2)
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12 of 21 H. QI AND D. SUN

and updateck+1 by

ck+1 := ck or ck+1 > ck (3.3)

according to certain rules.
As for the global convergence and the rate of convergence of the augmented Lagrangian method for

the H -weighted problem (1.3), we can directly use the convergence theory developed by Rockafellar
(1976a, Theorem 2,1976b, Theorem 5) for general convex programming problems, supported by Pro
position2.5. We will state such a result (Theorem3.4) for the practical Algorithm3.3.

Recall that, for any givenck > 0, the convex functionνck(∙) defined in (1.10) is continuously
differentiable with

∇νck(yk, Zk) =

(
−(b − diag(Xk+1))

1
ck

(Zk − (Zk − ck Xk+1)+)

)

. (3.4)

This means that the sequence{(yk+1, Zk+1)} generated by the augmented Lagrangian method (3.1)–
(3.3) can be regarded as a gradient descent method applied to the augmented Lagrangian dual problem
(1.10) with a step lengthck at thekth iteration:

(yk+1, Zk+1) = (yk, Zk) − ck∇νck(yk, Zk), k = 0, 1, . . . . (3.5)

Consequently, one may expect a slow convergence inherited by the gradient method. Interestingly, The-
orem3.4 implies that the sequence{(yk+1, Zk+1)} converges to(ȳ, Z) at a linear rate that is inversely
proportional tock for all ck sufficiently large. This fast convergence has a recent new interpretation
in the context of NSDP: locally, the augmented Lagrangian method can be treated as an approximate
semismooth Newton method (seeSunet al., 2008) for the equation

νck(y, Z) = 0, (3.6)

as long asck is sufficiently large. In fact, it was proven inSunet al. (2008) (in the NSDP setting) that,
for anyc large enough,∇νc is semismooth at(ȳ, Z) and one has the following estimate:

V−1 = cI + O(c−1)

for all V ∈ ∂(∇νc)(ȳ, Z). Thus, by using the fact that∂(∇νc)(∙) is upper semicontinuous, for allck ≡ c
sufficiently large, the term−ck∇νck(yk, Zk) in (3.5) can be regarded as a good approximation to the
semismooth Newton direction−V−1

k ∇νck(yk, Zk), whereVk ∈ ∂(∇νck)(yk, Zk) for the semismooth
equation (3.6). It is this interpretation that attracted us to attempt to apply the augmented Lagrangian
method to theH -weighted problem (1.3) in the first place.

3.2 A semismooth Newton-CG method

Section3.1 outlined a theoretical augmented Lagrangian method. But one critical issue has not been
addressed yet: How to solve the subproblem (3.1)? This issue is fundamentally important because the
method is not going to be useful anyway if solving each subproblem is difficult. We propose the use of
a semismooth Newton-CG method to solve (3.1) and explain in this subsection why it works.

Fix c > 0 and(y, Z) ∈ Rn × Sn. We define

θ(X) := Lc(X, y, Z), X ∈ Sn.
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Our aim is to develop Newton’s method for the problem

min
X∈Sn

θ(X). (3.7)

Sinceθ(∙) is a convex function, solving (3.7) is equivalent to solving the following nonsmooth equation
(see the definitions ofQ andC in (2.1)):

0 = ∇θ(X) = Q(X) − diag(y + c(b − diag(X))) − ΠSn
+
(Z − cX) − C. (3.8)

It was proven inSun & Sun(2002) that the projection operatorΠSn
+
(∙) is strongly semismooth (see

Chenet al., 2003, for some extensions). Since all other terms in∇θ(∙) are linear, (3.8) is a semismooth
equation for which the generalized Newton’s method has been well developed (seeKummer, 1988; Qi
& Sun, 1993). Let ∂ΠSn

+
(Z − cX) denote the generalized Jacobian ofΠSn

+
(∙) at (Z − cX). Then the

generalized Jacobian of∇θ(∙) at X, denoted by∂2θ(X) (also known as the generalized Hessian ofθ(∙)
at X), is given by

∂2θ(X) = Q+ c(I + ∂ΠSn
+
(Z − cX)). (3.9)

The Newton method for the semismooth equation (3.8) is then defined by

Xk+1 = Xk − V−1
k (∇θ(Xk)), Vk ∈ ∂2θ(X), k = 0, 1, . . . . (3.10)

The implementation of the Newton method (3.10) requires the availability ofV ∈ ∂2θ(X) and the
nonsingularity ofV , both of which can be easily realized. AnyV ∈ ∂2θ(X) has the formula

V = Q+ c(I + W), W ∈ ∂ΠSn
+
(Z − cX).

The identity operatorI is obviously positive semidefinite and so is anyW in ∂ΠSn
+
(Z − cX) (seeMeng

et al., 2005, Proposition 1). The positive definiteness ofV comes from that ofQ becauseQ= H◦H◦ and
Hi j >0. An explicit formula for anyW ∈ ∂ΠSn

+
(Z−cX) can be found inPanget al.(2003, Lemma 11).

Now we are ready to describe the algorithm for solving problem (3.7).

ALGORITHM 3.1 (A semismooth Newton-CG method)

Step0: Let X0 ∈ Sn, η ∈ (0, 1), μ ∈ (0, 1), τ1 ∈ (0, 1), τ2 ∈ (1, ∞), τ3 ∈ (1, ∞) andρ ∈ (0, 1) be
given. Let j := 0.

Step1: Select an elementVj ∈ ∂2θ(X j ), and computesj := min{τ1, τ2‖∇θ(X j )‖}. Then apply
the CG method (Hestenes & Stiefel, 1952) starting with the zero vector as the initial search
direction to

∇θ(X j ) + (Vj + sj I )ΔX = 0 (3.11)

to find a search directionΔX j such that

‖∇θ(X j ) + (Vj + sj I )ΔX j ‖ 6 η j ‖∇θ(Xk)‖, (3.12)

whereη j := min{η, τ3‖∇θ(X j )‖}.
Step2: Let l j be the smallest non-negative integerl such that

θ(X j + ρl (ΔX j )) − θ(X j ) 6 μρl 〈∇θ(X j ),ΔX j 〉.

Sett j := ρl j andX j +1 := X j + t j (ΔX j ).
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Step3: Replacej by j + 1 and go to Step 1.

Note that, since for eachj > 0 we have thatVj +sj I is positive definite, one can always use the CG
method to findΔX j such that (3.12) is satisfied. Furthermore, since the CG method is applied with the
zero vector as the initial search direction, it is not difficult to see thatΔX j is always a descent direction
for θ(∙) at X j . In fact, we have that

1

λmax(Vj + sj I )
‖∇θ(X j )‖2 6 〈−∇θ(X j ),ΔX j 〉 6

1

λmin(Vj + sj I )
‖∇θ(X j )‖2, (3.13)

where for any matrixA ∈ Sn the smallest and largest eigenvalue ofA are represented byλmin(A) and
λmax(A), respectively. For a proof of (3.13) seeZhaoet al. (2008). Therefore Algorithm3.1 is well
defined as long as∇θ(X j ) 6= 0, and its convergence analysis can be conducted in a similar way to that
in Qi & Sun(2006, Theorem 5.3). We state these results in the next theorem, whose proof is omitted for
brevity.

THEOREM 3.2 Suppose that in Algorithm3.1 we have∇θ(X j ) 6= 0 for all j > 0. Then Algorithm
3.1 is well defined and the generated iteration sequence{X j } converges to the unique solutionX∗ of
problem (3.7) quadratically.

In our numerical experiments the parameters used in Algorithm3.1 are set as follows:η = 10−2,
μ = 10−12, τ1 = 10−2, τ2 = 10,τ3 = 104 andρ = 0.5.

3.3 A practical augmented Lagrangian method

Section3.2 addressed the fundamental issue of solving problem (3.1). In order to use the augmented
Lagrangian method (3.2) for solving theH -weighted problem (1.3), we need to know when to termi-
nate Algorithm3.1without affecting the convergence of the augmented Lagrangian method outlined in
Section3.1so as to make the method practical. Fortunately,Rockafellar(1976a,b) has already provided
a solution to this.

For eachk > 0 we define

θk(X) := Lck(X, yk, Zk), X ∈ Sn.

Sinceθk is strongly convex, we can use the following stopping criteria considered by Rockafellar for
general convex optimization problems (seeRockafellar, 1976a,b) but tailored to our needs:






1

h2
min

‖∇θk(Xk+1)‖2 6
ε2

k

2ck
, εk > 0,

∞∑

k=0

εk < ∞,

1

h2
min

‖∇θk(Xk+1)‖2 6
δ2

k

2ck
‖(yk+1, Zk+1) − (yk, Zk)‖2, δk > 0,

∞∑

k=0

δk < ∞,

‖∇θk(Xk+1)‖ 6 δ′
k/ck‖(yk+1, Zk+1) − (yk, Zk)‖, 0 < δ′

k −→ 0,

(3.14)

wherehmin := min{Hi j |i, j = 1, . . . , n} and(yk+1, Zk+1) is defined by (3.2).
Finally, a ready-to-implement version of the augmented Lagrangian method (3.1)–(3.3) can be

described as follows.
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ALGORITHM 3.3 (A practical augmented Lagrangian method)

Step0: Let c0 > 0 andκ > 1 be given. LetX0 ∈ Sn be arbitrary. Lety0 ∈ Rn and Z0 ∈ Sn
+ be the

initial estimated Lagrange multipliers. Letk := 0.

Step1: Apply Algorithm3.1to the problem

min
X∈Sn

θk(X)

with θ(∙) = θk(∙) and the starting pointXk to obtain Xk+1 satisfying the stopping criterion
(3.14).

Step2: Compute(yk+1, Zk+1) by (3.2) and updateck+1 = ck or ck+1 = κck.

Step3: Replacek by k + 1 and go to Step 1.

As for the convergence of the algorithm, we can directly useRockafellar(1976a, Theorem 2) and
(1976b, Theorem 5) for general convex programming problems combined with Proposition2.5 to get
the following convergence theorem for Algorithm3.3.

THEOREM3.4 Let(X, ȳ, Z) be the unique KKT point of problem (1.3). Letζ > 0 be the constant given
in Proposition2.5. Let (Xk, yk, Zk) be the sequence generated by Algorithm3.3 with limk→∞ ck =
c∞ 6∞. Then

lim
k→∞

(Xk+1, yk+1, Zk+1) = (X, ȳ, Z)

and for allk sufficiently large we have

‖(yk+1, Zk+1) − (ȳ, Z)‖6 ak‖(yk, Zk) − (ȳ, Z)‖,

‖Xk+1 − X‖6 a′
k‖(yk+1, Zk+1) − (yk, Zk)‖,

where

ak := [ζ(ζ 2 + c2
k)

−1/2 + δk](1 − δk)
−1 −→ a∞ = ζ(ζ 2 + c2

∞)−1/2

and

a′
k := ζ(1 + δ′

k)/ck −→ a′
∞ = ζ/c∞.

4. Numerical results

In this section we report our numerical experiments conducted for theH -weighted nearest correlation
problem (1.3) in MATLAB 7.1 running on a PC Intel Pentium IV of 2.40 GHz CPU and 512 MB of
RAM.

In our numerical experiments the initial penalty parameterc0 is set to be 10 and the constant
scalarκ is set to be 1.4. The initial point(X0, y0) is obtained by calling the quadratically convergent
Newton method presented inQi & Sun (2006) for solving the equally weighted nearest correlation
matrix problem

min 1
2‖X − G‖2

such that Xii = 1, i = 1, . . . , n,

X ∈ Sn
+
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andZ0 is set to be

Z0 := X0 − G − diag(y0).

The stopping criterion for terminating Algorithm3.3 is

Tolk 6 5.0 × 10−6,

where

Tol0 := ‖F(x0, y0, Z0)‖

and for eachk > 0 we have

Tolk+1 := max{‖∇θk(Xk+1)‖, ‖b − diag(Xk+1)‖, ‖Zk − ΠSn
+
(Zk − ck Xk)‖/

√
ck}.

Note that the three terms in defining Tolk+1 correspond to the three conditions in the KKT system (2.8).
In Step 1 of Algorithm3.3, Xk+1 is computed to satisfy

‖∇θk(Xk+1)‖ 6 min{0.01, 0.5 × Tolk},

which is based on (3.14). In Step 2,ck+1 is updated tock+1 = κck if Tolk+1 > 1
4Tolk andck+1 = ck

otherwise.
To simulate the possible realistic situations, theH -weight matrix H is generated with all entries

uniformly distributed in [0.1, 10], except for 2× 100 entries in [0.01, 100]. TheMATLABcode for
generating such a matrixH is as follows:

W0 = sprand(n,n,0.5); W0 = triu(W0)+ triu(W0,1)’; W0 = (W0+W0’)/2;

W0 = 0.01 * ones(n,n) + 99.99 * W0;

W1 = rand(n,n); W1 = triu(W1) + triu(W1,1)’; W1 = (W1+W1’)/2;

H = 0.1 * ones(n,n)+9.9 * W1;

s = sprand(n,1,min(10/n,1)); I = find(s>0);

d = sprand(n,1,min(10/n,1)); J = find(d>0);

if length(I) >0 & length(J)>0

H(I,J) = W0(I,J); H(J,I) = W0(J,I); end

H = (H+H’)/2;

Our first example is a 387×387 correlation matrix case taken from the database of the RiskMetrics.

EXAMPLE 4.1 The correlation matrixG is the 387× 387 1-day correlation matrix (as of 15 June 2006)
from the lagged data sets of RiskMetrics (www.riskmetrics.com/stddownload edu.html ).
For testing purposes we perturbG to

G := (1 − α)G + αE,

whereα ∈ (0, 1) andE is a randomly generated symmetric matrix with entries in [−1, 1]. TheMATLAB
code for generatingE is E = 2.0 * rand(387,387) - ones(387,387); E = triu(E) +
triu(E,1)’; E = (E+E’)/2 . We also setGii = 1, wherei = 1, . . . , n.

Our second example is randomly generated withn = 100, 500, 1,000 and 1,500, respectively.
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EXAMPLE 4.2 AcorrelationmatrixG isfirstgenerated by usingMATLAB’s built-in functionrandcorr:
x=10. ˆ [-4:4/(n-1):0]; G=gallery(’randcorr’,n * x/sum(x)) . It is then perturbed
to

G := (1 − α)G + αE,

whereα ∈ (0, 1) andE is randomly generated as in Example4.1: E = 2.0 * rand(n,n) - ones
(n,n); E = triu(E) + triu(E,1)’; E = (E+E’)/2 andGii is set to be 1 fori = 1, . . . , n.

The small added termαE in the above examples changes the correlation matrix into a pseudocor-
relation matrix. Our numerical results are reported in Tables1 and2, whereIP-QSDP refers to Toh’s
inexact IPM with the PSQMR as the iterative solver (Toh, 2008). Iter andLiSys stand for the num-
ber of total iterations and the number of total linear systems solved, respectively.Res represents the
relative residue computed at the last iterate and is given by

Res := max{‖∇θk(Xk+1)‖/(1 + ‖C‖), ‖b − diag(Xk+1)‖/(1 + ‖b‖), |〈Xk+1, Zk+1〉|/(1 + |obj|)},

where

obj :=
1

2
‖H ◦ (Xk+1 − G)‖2.

In Table1, ‘∗’ means that thePSQMRreaches the maximum number of steps set at 1000 and, in Table
2, ‘out of memory ’ means that our PC runs out of memory.

From Tables1 and2 and other similar testing results not reported here, we have observed that our al-
gorithm is not only faster but also more robust with respect to the perturbed noise levelα thanIP-QSDP ,
particularly, for those cases in which a good initial correlation matrix estimation is available, as in many
real-world situations. Taking Table1 as an example, we can see that Algorithm3.3 takes almost the
same time for differentα, while IP-QSDP is much more sensitive toα and terminates prematurely for
α = 0.005. It is also worth mentioning that the main costs of Algorithm3.3 include two parts, namely,
the full spectral decomposition of matrices for computing the functionθk(∙) and the CG steps for solving
the linear systems (3.12). In cases when the condition number in the linear system (3.12) is large, the
latter dominates the computing time. This explains why, in Table2, Algorithm 3.3(and also IP-QSDP)
may take more computing time even when the perturbation is smaller.

TABLE 1 Numerical results of Example4.1

Algorithm α CPU time Iter LiSys Res

3.3 0.1 0:04:52 13 36 3.1 × 10−9

0.05 0:04:12 12 29 2.7 × 10−8

0.01 0:04:58 12 27 1.6 × 10−9

0.005 0:04:16 11 21 1.7 × 10−9

IP-QSDP 0.1 0:17:43 17 34 1.7 × 10−8

0.05 0:18:36 18 36 3.3 × 10−8

0.01 0:37:28 25 50 8.5 × 10−8

0.005 0:36:21 17 34 2.6 × 10−1∗

 at N
ational U

niversity of S
ingapore on A

pril 1, 2010 
http://im

ajna.oxfordjournals.org
D

ow
nloaded from

 

http://imajna.oxfordjournals.org


18 of 21 H. QI AND D. SUN

TABLE 2 Numerical results of Example4.2

Algorithm n α CPU time Iter LiSys Res

3.3 100 0.1 0:00:10 10 24 1.1 × 10−8

0.05 0:00:10 8 22 1.1 × 10−8

0.01 0:00:16 8 22 1.6 × 10−8

0.005 0:00:41 8 34 1.1 × 10−8

IP-QSDP 0.1 0:01:27 14 28 6.6 × 10−8

0.05 0:02:08 16 32 9.6 × 10−9

0.01 0:03:36 19 38 1.8 × 10−8

0.005 0:06:05 18 36 2.6 × 10−8

3.3 500 0.1 0:06:22 10 26 4.7 × 10−9

0.05 0:05:53 9 23 8.4 × 10−9

0.01 0:08:06 10 24 1.1 × 10−9

0.005 0:08:49 9 24 5.1 × 10−9

IP-QSDP 0.1 0:41:22 14 28 9.5 × 10−8

0.05 0:39:47 14 28 8.7 × 10−8

0.01 1:34:16 19 38 1.8 × 10−8

0.005 1:46:42 19 38 2.9 × 10−8

3.3 1,000 0.1 0:42:24 14 32 5.6 × 10−8

0.05 0:36:12 11 29 3.5 × 10−10

0.01 0:34:59 10 26 2.0 × 10−9

0.005 0:33:30 9 22 2.9 × 10−9

IP-QSDP 0.1 3:13:58 14 28 1.2 × 10−8

0.05 4:36:47 15 30 3.6 × 10−8

0.01 8:00:46 21 42 2.3 × 10−8

0.005 6:39:58 21 42 4.7 × 10−8

3.3 1,500 0.1 2:01:48 12 31 8.3 × 10−10

0.05 1:54:57 11 27 1.2 × 10−9

0.01 1:46:43 9 25 2.6 × 10−9

0.005 2:06:06 9 26 1.1 × 10−9

IP-QSDP — — — — out of memory

5. Conclusions

The convergence theory for the augmented Lagrangian method for the convex optimization problem
has been well established byRockafellar(1976a,b). The main purpose of this paper is to demonstrate
that this method is not only fast, but also robust for theH -weighted correlation matrix problem. The-
oretically, one only needs to verify the conditions used inRockafellar(1976a,b). It turns out that the
constraint nondegeneracy property and the SSOSC are sufficient in order to apply Rockafellar’s con-
vergence results. We outlined how the two properties naturally lead to the linear convergence of the
method.

The key element for the practical efficiency of the augmented Lagrangian dual approach is the semis-
mooth Newton-CG algorithm introduced in this paper. We believe that the excellent numerical results
reported in this paper are largely due to this semismooth Newton-CG algorithm.
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Finally, we note that, in a straightforward way, we may extend this approach to deal with a more
general version that allows certain elements to be fixed or contained in some confidence intervals, i.e.,

min 1
2‖H ◦ (X − G)‖2

such that Xii = 1, i = 1, . . . , n,

Xi j > l i j , (i, j ) ∈ Bl ,

Xi j 6 ui j , (i, j ) ∈ Bu,

X ∈ Sn
+,

(5.1)

whereBl andBu are two index subsets of{(i, j )|1 6 i < j < n}, l i j ∈ [−1, 1] for all (i, j ) ∈ Bl ,
ui j ∈ [−1, 1] for all (i, j ) ∈ Bu andl i j 6 ui j for any(i, j ) ∈ Bl ∩ Bu. We omit the details here as our
theoretical analysis still holds and there are no other methods available to allow us to make a comparison
for problems of reasonable sizes.

Acknowledgements

The authors would like to thank our colleague Kim-Chuan Toh for sharing with us his excellent code
for solving theH -weighted nearest correlation matrix problem (Toh, 2008). Several helpful discussions
on the implementation of the augmented Lagrangian method with Yan Gao and Xinyuan Zhao at the
National University of Singapore are also acknowledged. The authors are also very grateful to the editor
and two referees for their constructive comments.

Funding

Engineering and Physical Sciences Research Council (EP/D502535/1 to H.Q.); Academic Research
Fund (R-146-000-104-112); the Risk Management Institute (R-703-000-004-720, R-703-000-004-646
to D.S.).

REFERENCES

ALIZADEH , F., ALIZADEH , J.-P. A. & OVERTON, M. L. (1997) Complementarity and nondegeneracy in semidef-
inite programming.Math. Programming, 77, 111–128.

ARNOLD, V. I. (1971) On matrices depending on parameters.Russ. Math. Surv., 26, 29–43.
BHANSALI , V. & W ISE, B. (2001) Forecasting portfolio risk in normal and stressed market.J. Risk, 4, 91–106.
BONNANS, J. F. & SHAPIRO, A. (1998) Nondegeneracy and quantitative stability of parameterized optimization

problems with multiple solutions.SIAM J. Optim., 8, 940–946.
BONNANS, J. F. & SHAPIRO, A. (2000)Perturbation Analysis of Optimization Problems. New York: Springer.
BORCHERS, B. & Y OUNG, J. G. (2007) Implementation of a primal–dual method for SDP on a shared memory

parallel architecture.Comput. Optim. Appl., 37, 355–369.
BORSDORF, R. (2007) A Newton algorithm for the nearest correlation matrix.Master’s Thesis, School of Mathe-

matics, University of Manchester.
BORSDORF, R. & HIGHAM , N. J. (2009) A preconditioned Newton algorithm for the nearest correlation matrix.

IMA J. Numer. Anal.(in press). doi:10.1093/imanum/drn085.
BOYD, S. & XIAO, L. (2005) Least-squares covariance matrix adjustment.SIAM J. Matrix Anal. Appl., 27,

532–546.
CHEN, X., QI, H. & TSENG, P. (2003) Analysis of nonsmooth symmetric matrix valued functions with applications

to semidefinite complementarity problems.SIAM J. Optim., 13, 960–985.

 at N
ational U

niversity of S
ingapore on A

pril 1, 2010 
http://im

ajna.oxfordjournals.org
D

ow
nloaded from

 

http://imajna.oxfordjournals.org


20 of 21 H. QI AND D. SUN

CLARKE, F. H. (1983)Optimization and Nonsmooth Analysis. New York: Wiley. (reprinted by SIAM (Philadelphia)
in 1990).

EAVES, B. C. (1971) On the basic theorem for complementarity.Math. Programming, 1, 68–75.
HESTENES, M. R. & STIEFEL, E. (1952) Methods of conjugate gradients for solving linear systems.J. Res. Natl.

Bur. Stand., 49, 409–436.
HIGHAM , N. J. (1988) Computing a nearest symmetric positive semidefinite matrix.Linear Algebra Appl., 103,

103–118.
HIGHAM , N. J. (2002) Computing the nearest correlation matrix—a problem from finance.IMA J. Numer. Anal.,

22, 329–343.
JOHNSON, C. R., KROSCHEL, B. & WOLKOWICZ, H. (1998) An interior-point method for approximate positive

semidefinite completions.Comput. Optim. Appl., 9, 175–190.
KUMMER, B. (1988) Newton’s method for nondifferentiable functions.Adv. Math. Optim. Math. Res., 45, 114–125.
MALICK , J. (2004) A dual approach to semidefinite least-squares problems.SIAM J. Matrix Anal. Appl., 26,

272–284.
MENG, F., SUN, D. & ZHAO, G. Y. (2005) Semismoothness of solutions to generalized equations and the Moreau–

Yosida regularization.Math. Programming, 104, 561–581.
PANG, J. S., SUN, D. & SUN, J. (2003) Semismooth homeomorphisms and strong stability of semidefinite and

Lorentz complementarity problems.Math. Oper. Res., 28, 39–63.
QI, H. (2009) Local duality of nonlinear semidefinite programming.Math. Oper. Res., 34, 124–141.
QI, H. & SUN, D. (2006) A quadratically convergent Newton method for computing the nearest correlation matrix.

SIAM J. Matrix Anal. Appl., 28, 360–385.
QI, H. & SUN, D. (2009) Correlation stress testing for value-at-risk: an unconstrained convex optimization

approach.Comput. Optim. Appl.(in press). doi:10.1007/s10589-008-9231-4.
QI, L. & SUN, J. (1993) A nonsmooth version of Newton’s method.Math. Programming, 58, 353–367.
ROBINSON, S. M. (1984) Local structure of feasible sets in nonlinear programming, part II: nondegeneracy.Math.

Programming Study, 22, 217–230.
ROBINSON, S. M. (1987) Local structure of feasible sets in nonlinear programming, part III: stability and sensitiv-

ity. Math. Programming Study, 30, 45–66.
ROBINSON, S. M. (2003) Constraint nondegeneracy in variational analysis.Math. Oper. Res., 28, 201–232.
ROCKAFELLAR, R. T. (1974)Conjugate Duality and Optimization. Philadelphia, PA: SIAM.
ROCKAFELLAR, R. T. (1976a) Augmented Lagrangians and applications of the proximal point algorithm in convex

programming.Math. Oper. Res., 1, 97–116.
ROCKAFELLAR, R. T. (1976b) Monotone operators and the proximal point algorithm.SIAM J. Control Optim., 14,

877–898.
SCHWERTMAN, N. C. & ALLEN, D. M. (1979) Smoothing an indefinite variance–covariance matrix.J. Stat.

Comput. Simul., 9, 183–194.
SHAPIRO, A. & FAN, M. K. H. (1995) On eigenvalue optimization.SIAM J. Optim., 5, 552–569.
STURM, J. F. (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.Optim.

Methods Softw., 11/12, 625–653.
SUN, D. (2006) The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefi-

nite programming and their implications.Math. Oper. Res., 31, 761–776.
SUN, D. & SUN, J. (2002) Semismooth matrix valued functions.Math. Oper. Res., 27, 150–169.
SUN, D., SUN, J. & ZHANG, L. W. (2008) The rate of convergence of the augmented Lagrangian method for

nonlinear semidefinite programming.Math. Programming, 114, 349–391.
TOH, K. C. (2008) An inexact path-following algorithm for convex quadratic SDP.Math. Programming, 112,

221–254.
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