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Abstract. In this paper we construct a regularization Newton method for solv-
ing the nonlinear complementarity problem (NCP(F)) and analyze its convergence
properties under the assumption thatF is a P0-function. We prove that every ac-
cumulation point of the sequence of iterates is a solution of NCP(F) and that the
sequence of iterates is bounded if the solution set of NCP(F) is nonempty and
bounded. Moreover, ifF is a monotone and Lipschitz continuous function, we prove
that the sequence of iterates is bounded if and only if the solution set of NCP(F) is
nonempty by settingt = 1

2, wheret ∈ [ 1
2,1] is a parameter. If NCP(F) has a locally
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superlinear (quadratic) without strict complementarity conditions. At each step, we
only solve a linear system of equations. Numerical results are provided and further
applications to other problems are discussed.

Key Words. Nonlinear complementarity problem, Nonsmooth equations, Regu-
larization, Generalized Newton method, Convergence.

AMS Classification. 90C33, 90C30, 65H10.

∗ This work was supported by the Australian Research Council.



316 D. Sun

1. Introduction

In this paper we consider numerical methods for solving the nonlinear complementarity
problem (NCP(F) for abbreviation):

x ≥ 0, F(x) ≥ 0 and xT F(x) = 0, (1.1)

whereF : <n → <n is any given function which we assume to be continuously differ-
entiable throughout this paper.

This problem has attracted much attention due to its various applications. We refer
the reader to [17], [25], [15], and [11] for a review. The methods considered here are
intended to handle singular nonlinear complementarity problems, in which the derivative
of the mappingF may be seriously ill-conditioned. The singularity problem will prevent
most of the currently available algorithms from converging to a solution of NCP(F). In
the literature there are two classes of methods that can be used to deal with the singu-
lar nonlinear complementarity problems: regularization methods [5], [27] and proximal
point methods [35], [36]. Proximal point methods have been investigated by many re-
searchers. See the recent report of Eckstein and Ferris [6] and references therein for
a review. The methods discussed in this paper are in the class of regularization meth-
ods. This class of methods try to circumvent the singularity problem by considering a
sequence of perturbed problems, which possibly have better conditions. For nonlinear
complementarity problems, the simplest regularization technique is to use the so-called
Tikhonov-regularization, which consists in solving a sequence of complementarity prob-
lems NCP(Fε):

x ≥ 0, Fε(x) ≥ 0 and xT Fε(x) = 0, (1.2)

whereFε(x) := F(x) + εx andε is a positive parameter converging to zero. In this
paper, for the convenience of discussion, we allowε to take a nonpositive value also.

Regularization methods, closely related to proximal point methods, for solving
monotone complementarity problems have been studied in the literature by several au-
thors, see, e.g., [37] or Theorem 5.6.2 of [3]. Recently, Facchinei and Kanzow [9] gen-
eralized most of the classic results for the monotone complementarity problems to the
larger class ofP0 complementarity problems. In particular, they established a result on
the behavior of the inexact solutions of the perturbed problems. This result states that
if F is a P0-function and the solution setS of NCP(F) is nonempty and bounded then
the (inexact) solutions of NCP(Fε) are uniformly bounded asε → 0+. For a precise
description, see Theorem 5.4 of [9]. Facchinei and Kanzow’s result generalized a result
in [41] for linear complementarity problems when the exact solutions of perturbed prob-
lems are considered. In this paper we consider a regularization Newton method by using
Facchinei and Kanzow’s result, a result developed in Section 2 for monotone comple-
mentarity problems and the techniques established recently on smoothing methods [32].
For this regularization Newton method we, under the assumption thatF is aP0-function,
prove that every accumulation point of the sequence of iterates is a solution of NCP(F)
and that the iteration sequence is bounded if the solution set of NCP(F) is nonempty
and bounded. Moreover, ifF is monotone and Lipschitz continuous, we prove that the
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sequence of iterates is bounded if and only if the solution set of NCP(F) is nonempty
by settingt = 1

2, wheret ∈ [ 1
2,1] is a parameter. If NCP(F) has a locally unique so-

lution and satisfies a nonsingularity condition, then the convergence rate is superlinear
(quadratic) without assuming the strict complementarity conditions. To our knowledge,
this is the first method, not only in the scope of regularization methods, to have all these
properties. It is necessary to point out that in order to make the sequence of iterates
bounded forP0 or monotone nonlinear complementarity problems, people usually use
various neighborhoods in both interior point methods [40], [43], [44], and noninterior
point methods [18], [1], [31] such that the sequence of iterates stays in these neigh-
borhoods. In general, to keep the sequence of iterates staying in these neighborhoods
one needs additional work, probably time consuming, and it may prevent the sequence
of iterates from converging to a solution superlinearly if strict complementarity condi-
tions are not satisfied. A neighborhood is also introduced in this paper, however, this
neighborhood, which does not appear in our algorithm and is only used to analyze the
convergence properties of the algorithm, allows us to achieve superlinear convergence
no matter whether strict complementarity conditions hold or not. These features can be
seen clearly in the following discussion.

The organization of this paper is as follows. In the next section we study some
preliminary properties of the reformulated nonsmooth equations and their solutions. In
Section 3 we state the algorithm and prove several propositions related to the algorithm.
In Section 4 we establish the global convergence of the algorithm. We analyze the
superlinear and quadratic convergence properties of the algorithm in Section 5 and give
preliminary numerical results in Section 6. Final conclusions are given in Section 7.

A word about our notation is in order. Let‖·‖and‖·‖∞ denote thel2 norm and thel∞
norm of<m, respectively. For a continuously differentiable function8: <m→ <m, we
denote the Jacobian of8atx ∈ <m by8′(x), whereas the transposed Jacobian is denoted
as∇8(x). If W is anm×m matrix with entriesWjk , j, k = 1, . . . ,m, andJ andK are
index sets such thatJ ,K ⊆ {1, . . . ,m}, we denote byWJK the|J |×|K| submatrix ofW
consisting of entriesWjk , j ∈ J , k ∈ K. If WJJ is nonsingular, we denote byW/WJJ
the Schur-complement ofWJJ in W, i.e.,W/WJJ := WKK−WKJW−1

JJWJK, where
K = {1, . . . ,m}\J .

2. Some Preliminaries

We need the following definitions concerning matrices and functions.

Definition 2.1. A matrix W ∈ <n×n is called a

• P0-matrix if every one of its principal minors is nonnegative;
• P-matrix if every one of its principal minors is positive.

Obviously, a positive semidefinite matrix is aP0-matrix and a positive definite matrix
is a P-matrix.
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Definition 2.2. A function F : <n→ <n is called a

• P0-function if, for everyx andy in <n with x 6= y, there is an indexi such that

xi 6= yi , (xi − yi )(Fi (x)− Fi (y)) ≥ 0;
• P-function if, for everyx andy in <n with x 6= y, there is an indexi such that

xi 6= yi , (xi − yi )(Fi (x)− Fi (y)) > 0;
• uniform P-function if there exists a positive constantµ such that, for everyx and

y in <n, there is an indexi such that

(xi − yi )(Fi (x)− Fi (y)) ≥ µ‖x − y‖2;
• monotone function if, for everyx andy in <n,

(x − y)T (F(x)− F(y)) ≥ 0;
• strongly monotone function if there exists a positive constantµ such that, for

everyx andy in <n,

(x − y)T (F(x)− F(y)) ≥ µ‖x − y‖2.

It is known that every strongly monotone function is a uniformP-function and
every monotone function is aP0-function. Furthermore, the Jacobian of a continuously
differentiableP0-function (uniformP-function) is aP0-matrix (P-matrix).

The Fischer–Burmeister functionψ : <2 → < introduced by Fischer in [12] is
defined by

ψ(a,b) :=
√

a2+ b2− (a+ b).

The functionψ(·) has the following important property:

ψ(a,b) = 0 ⇐⇒ a,b ≥ 0, ab= 0.

Another important property ofψ(·) is thatψ(·)2 is continuously differentiable on the
whole space<2 [21]. The advent of the Fischer–Burmeister function, has attracted a lot of
attention in the area of nonlinear complementarity and variational inequality problems,
see, e.g., [13], [20], [10], [4], [8], [46] and references therein. It was first used by Facchinei
and Kanzow in [9] to study regularization methods. Here we choose to use it for the sake
of simplicity. However, there are many other functions that can be chosen from [29]. In
particular, we can use the following function which was originally discussed in [38]:

ψ(a,b) :=


√

a2+ b2− (a+ b) if a ≥ 0, b ≥ 0,
b if a ≥ 0, b < 0,
a if a < 0, b ≥ 0,
−√a2+ b2 if a < 0, b < 0.

The above function is linear in the second and fourth quadrants, but its square is still
continuously differentiable [38].
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Let z := (ε, x) ∈ < × <n and let Fε,i be thei th component ofFε, i ∈ N :=
{1,2, . . . ,n}. DefineG: <n+1→ <n by

Gi (ε, x) := ψ(xi , Fε,i (x)), i ∈ N, (2.1)

whereψ(·) is the Fischer–Burmeister function. DenoteH : <n+1→ <n+1 by

H(z) :=
(

ε

G(z)

)
, z= (ε, x) ∈ < × <n. (2.2)

Such a defined functionH is locally Lipschitz continuous becauseψ is locally Lipschitz
continuous [12]. It is easy to see that

H(ε, x) = 0 ⇐⇒ ε = 0, x is a solution of NCP(F),

(ε, x) ∈ < × <n.

Let ϕ: <n+1→ <+ be defined by

ϕ(z) := ‖G(z)‖2.
Then, becauseψ(·)2 is continuously differentiable on<2, ϕ(·) is continuously differen-
tiable on the whole space<n+1. Define the merit functionf : <n+1→ <+ by

f (z) := ‖H(z)‖2 = ε2+ ϕ(z).
Then f is also continuously differentiable on<n+1.

Lemma 2.1 [22]. Let {ak}, {bk} ⊆ < be any two sequences such that either ak,bk →
∞ or ak →−∞ or bk →−∞. Then|ψ(ak,bk)| → ∞.

The following lemma was provided in the proof of Proposition 3.4 in [9].

Lemma 2.2. Suppose that F is a P0-function. Then for any sequence{xk} such that
‖xk‖ → ∞, there exist an index i∈ N and a subsequence{xkj } such that either x

kj

i →∞
and Fi (xkj ) does not tend to−∞ or x

kj

i →−∞.

The next result generalizes a result in [9] and is more suitable to our discussion.
However, its proof should be credited to Facchinei and Kanzow.

Proposition 2.1. Suppose that F is a P0-function and that̃ε, ε̄ are two given positive
numbers such that̄ε ≥ ε̃. Then for any sequence{zk = (εk, xk)} such thatεk ∈ [ε̃, ε̄]
and‖xk‖ → ∞ we have

lim
k→∞

f (zk) = ∞. (2.3)

Proof. For the sake of contradiction, suppose that there exists a sequence{zk =
(εk, xk)} such thatεk ∈ [ε̃, ε̄] and ‖xk‖ → ∞ and f (zk) is bounded. Then from
Lemma 2.2, by taking a subsequence if necessary, there exists an indexi ∈ N such that
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either xk
i → ∞ and Fi (xk) does not tend to−∞ or xk

i → −∞. Sinceεk ∈ [ε̃, ε̄],
for the abovei eitherxk

i → ∞ andFi (xk) + εkxk
i → ∞ or xk

i → −∞. Hence, from
Lemma 2.1,

|ψ(xk
i , Fi (x

k)+ εkxk
i )| → ∞,

which meansf (xk)→∞. This is a contradiction. So, we complete our proof.

The following result is extracted from Theorem 5.4 of [9].

Lemma 2.3. Suppose that F is a P0-function and that the solution set ofNCP(F) is
nonempty and bounded. Suppose that{εk} and{ηk} are two infinite sequences such that,
for each k≥ 0, εk > 0, ηk ≥ 0 satisfyinglimk→∞ εk = 0, limk→∞ ηk = 0. For each
k ≥ 0, let xk ∈ <n satisfy‖G(εk, xk)‖ ≤ ηk. Then{xk} remains bounded and every
accumulation point of{xk} is a solution ofNCP(F).

Lemma 2.4. Suppose that F is a monotone function. Let X ∈ <n be any nonempty
closed convex subset of<n and for any givenε > 0 define Wε: <n→ <n by

Wε(u) := u−5X[u− (F(u)+ εu)], u ∈ <n,

where for anyv ∈ <n, 5X(v) is the orthogonal projection ofv onto X. Let x be a
solution of Wε(u) = 0 and let y be a solution of Wε(u) − δ = 0, whereδ ∈ <n is any
given vector. Then if x 6= y,

‖y− x‖ ≤
[
(1+ ε)+ ‖F(y)− F(x)‖

‖y− x‖
] ‖δ‖
ε
. (2.4)

Proof. First, for the projection operator5X(·) for anyu, v ∈ <n we have from [47]
that

(u− v)T (5X(u)−5X(v)) ≥ ‖5X(u)−5X(v)‖2.

By letting u := y − (F(y) + εy) andv := x − (F(x) + εx) in the above relation we
obtain

{[y− (F(y)+ εy)] − [x − (F(x)+ εx)]}T
×{5X[y− (F(y)+ εy)] −5X[x − (F(x)+ εx)]}

≥ ‖5X[y− (F(y)+ εy)] −5X[x − (F(x)+ εx)]‖2,

which, combining with the assumptions thatx = 5X[x − (F(x) + εx)] and y =
5X[y− (F(y)+ εy)] + δ, gives

{[y− (F(y)+ εy)] − [x − (F(x)+ εx)]}T {y− δ − x} ≥ ‖y− x − δ‖2.
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By rearrangements,

ε‖y− x‖2+ ‖δ‖2 ≤ (1+ ε)δT (y− x)− (y− x)T (F(y)− F(x))

+ δT (F(y)− F(x)).

Hence, becauseF is monotone,(y− x)T (F(y)− F(x)) ≥ 0, we have

ε‖y− x‖2+ ‖δ‖2 ≤ (1+ ε)δT (y− x)+ δT (F(y)− F(x))

≤ (1+ ε)‖δ‖‖y− x‖ + ‖δ‖‖F(y)− F(x)‖.
Since‖δ‖2 ≥ 0, the above relation proves (2.4).

Proposition 2.2. Suppose that F is a monotone function and that the solution setS
of NCP(F) is nonempty. Suppose that{εk} and {ηk} are two infinite sequences such
that for each k≥ 0, εk > 0, ηk ≥ 0, ηk ≤ Cεk, and limk→∞ εk = 0, where C> 0
is a constant. For each k≥ 0, let xk ∈ <n satisfy‖G(εk, xk)‖ ≤ ηk. Suppose that
x∗ = arg minx∈S‖x‖ and that F is Lipschitz continuous, i.e., there exists a constant
L > 0 such that, for any u, v ∈ <n,

‖F(u)− F(v)‖ ≤ L‖u− v‖. (2.5)

Then {xk} remains bounded and every accumulation point of{xk} is a solution of
NCP(F).

Proof. Suppose that, for anyε > 0, x(ε) is a solution of NCP(Fε). For anyε > 0, let
Wε: <n→ <n be defined by

Wε(u) := u−5<n
+ [u− (F(u)+ εu)] = min{u, F(u)+ εu}, u ∈ <n.

Then, from Lemma 2.4,

‖xk − x(εk)‖ ≤
[
(1+ εk)+ ‖F(x

k)− F(x(εk))‖
‖xk − x(εk)‖

] ‖Wεk(xk)‖
εk

. (2.6)

By Tseng [39], for any two numbersa,b ∈ <, we have

1

2+√2
|min{a,b}| ≤ |ψ(a,b)| ≤ (2+

√
2)|min{a,b}|.

Hence,

‖Wεk(xk)‖ ≤ (2+
√

2)‖G(εk, xk)‖. (2.7)

Then by using (2.5)–(2.7) and the assumption that‖G(εk, xk)‖ ≤ Cεk we have

‖xk − x(εk)‖ ≤ [(1+ εk)+ L
]
(2+
√

2)C.

This implies that{xk} remains bounded becausex(εk) → x∗ ask → ∞ [5]. By the
continuity of f every accumulation point of{xk} is a solution of NCP(F).
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In order to design high-order convergent Newton methods we need the concept of
semismoothness. Semismoothness was originally introduced by Mifflin [24] for func-
tionals. Convex functions, smooth functions, and piecewise linear functions are examples
of semismooth functions. The composition of semismooth functions is still a semismooth
function [24]. In [33] Qi and Sun extended the definition of semismooth functions to
8: <m1 → <m2. A locally Lipschitz continuous vector valued function8: <m1 → <m2

has a generalized Jacobian∂8(x) as in [2].8 is said to besemismoothat x ∈ <m1, if

lim
V∈∂8(x+th′)

h′→h, t↓0

{V h′}

exists for anyh ∈ <m1. It has been proved in [33] that8 is semismooth atx if and only
if all its component functions are. Also,8′(x; h), the directional derivative of8 at x in
the directionh, exists for anyh ∈ <m1 if 8 is semismooth atx.

Lemma 2.5 [33]. Suppose that8: <m1 → <m2 is a locally Lipschitzian function and
semismooth at x. Then

(i) for any V ∈ ∂8(x + h), h→ 0,

V h−8′(x; h) = o(‖h‖);
(ii) for any h→ 0,

8(x + h)−8(x)−8′(x; h) = o(‖h‖).

A stronger notion than semismoothness is strong semismoothness.8(·) is said to be
strongly semismoothat x if 8 is semismooth atx and, for anyV ∈ ∂8(x + h), h→ 0,

V h−8′(x; h) = O(‖h‖2).
(Note that in [33] and [28] different names for strong semismoothness are used.) A
function8 is said to be a (strongly) semismooth function if it is (strongly) semismooth
everywhere.

Lemma 2.6. Suppose that F is continuously differentiable.Then the function H defined
by (2.2) is a semismooth function. If F ′(·) is Lipschitz continuous in a neighborhood of
a point x∈ <n, then H is strongly semismooth at(ε, x) ∈ <n+1.

Proof. Since a function is (strongly) semismooth at a point if and only if its component
functions are, to prove thatH is a semismooth function we only need to prove thatHi ,
i = 1, . . . ,n+ 1, are semismooth functions and to proveH is strongly semismooth at
(ε, x)we only need to prove thatHi , i = 1, . . . ,n+1, are strongly semismooth at(ε, x).
Apparently,H1 is a strongly semismooth function because, for anyz= (ε, y) ∈ <×<n,
H1(z) = ε. Next, we considerHi , i = 2, . . . ,n + 1. By noting thatψ : <2 → < is
a (strongly) semismooth function [30, Lemma 3.1], and that the composition of two
semismooth functions is a semismooth function we conclude thatHi , i = 2, . . . ,n+ 1,
are semismooth functions. IfF ′(·) is Lipschitz continuous in a neighborhood of a point
x ∈ <n, then F̃ is strongly semismooth at(ε, x) ∈ <n+1, where for anyz = (ε, y) ∈
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< × <n, F̃(z) := Fε(y). Hence by Theorem 19 of [14] we can conclude thatHi ,
i = 2, . . . ,n + 1, are strongly semismooth at(ε, x) ∈ <n+1. So, we complete our
proof.

3. A Regularization Newton Method

Choosēε ∈ (0,∞) andγ ∈ (0,1) such thatγ ε̄ < 1. Let t ∈ [ 1
2,1] and letz̄ := (ε̄,0) ∈

< × <n. Defineβ: <n+1→ <+ by

β(z) := γ min{1, f (z)t }.
Let

Ä := {z= (ε, x) ∈ < × <n| ε ≥ β(z)ε̄}.
Then, because, for anyz ∈ <n+1, β(z) ≤ γ , it follows that, for anyx ∈ <n,

(ε̄, x) ∈ Ä.
We prove in what follows that if we choose the initial pointz0 = (ε̄, x0), wherex0 ∈ <n

is an arbitrary point, then the sequence of iterates generated by Algorithm 3.1, which
is introduced later, will remain inÄ. This is an important feature because through this
neighborhood we can preventε from approaching 0 too fast and thus avoid the iterates
converging to a nonsolution point.

Proposition 3.1. The following relations hold:

H(z) = 0 ⇐⇒ β(z) = 0 ⇐⇒ H(z) = β(z)z̄.

Proof. It follows from the definitions ofH(·) andβ(·) that

H(z) = 0 ⇐⇒ β(z) = 0 and β(z) = 0 H⇒ H(z) = β(z)z̄.

Then we only need to prove

H(z) = β(z)z̄ H⇒ β(z) = 0.

From H(z) = β(z)z̄ we have

ε = β(z)ε̄ and G(z) = 0.

Hence, from the definitions off (·) andβ(·) and the fact thatγ ε̄ < 1, we get

f (z) = ε2+ ‖G(z)‖2 = ε2 = β(z)2ε̄2 ≤ γ 2ε̄2 < 1.

Hence,

β(z) = γ f (z)t = γβ(z)2t ε̄2t . (3.1)
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If β(z) 6= 0, it follows from (3.1) and the factβ(z) ≤ γ that

1= γβ(z)2t−1ε̄2t ≤ γ 2t ε̄2t ,

which contradicts the fact thatγ ε̄ < 1. This contradiction completes our proof.

Algorithm 3.1.

Step 0. Choose constantsδ ∈ (0,1), t ∈ [ 1
2,1], andσ ∈ (0, 1

2). Let ε0 := ε̄, x0 ∈ <n

be an arbitrary point andk := 0.
Step 1. IfH(zk) = 0, then stop. Otherwise, letβk := β(zk) = γ min{1, f (zk)t }.
Step 2. ChooseVk ∈ ∂H(zk) and compute1zk = (1εk,1xk) ∈ < × <n by

H(zk)+ Vk1zk = βkz̄. (3.2)

Step 3. Letlk be the smallest nonnegative integerl satisfying

f (zk + δl1zk) ≤ [1− 2σ(1− γ ε̄)δl ] f (zk). (3.3)

Definezk+1 := zk + δlk1zk.
Step 4. Replacek by k+ 1 and go to Step 1.

Remark. (i) The direction1zk computed in (3.2) is an approximated generalized
Newton direction ofH atzk becauseβkz̄ is introduced in the right-hand side of (3.2). To
introduceβkz̄ to (3.2) has two benefits: (a) it ensures that allεk are positive, and (b) it
keeps the whole sequence of iterates{zk} inÄ, see Propositions 3.2–3.4. As we claimed
in the Introduction, (b) plays an important role in proving the global convergence of
Algorithm 3.1 under the assumption thatF is a P0-function only. It is noted thatÄ does
no appear in our algorithm and thus it does not need additional work to guarantee (b).

(ii) The idea of introducing one or several parameters in the reformulated systems
as free variables is not new, see, for example, [18], [31], [32], and [19]. Here we adopted
the approach developed in [32] on smoothing methods mainly because it guarantees both
features (a) and (b) in (i).

(iii) For anyV ∈ ∂H(z), z= (ε, x) ∈ <×<n there exists aW = (Wε Wx) ∈ ∂G(z)
with Wε ∈ <n andWx ∈ <n×n such that

V =
(

1 0
Wε Wx

)
.

Suppose thatF is a P0-function. Then, for anyx ∈ <n andε > 0, F ′(x) is a P0-matrix
andF ′ε(x) is a P-matrix. Hence, for anyx ∈ <n andε > 0, Wx is nonsingular, refer to
Proposition 3.2 of [20] for a proof. It thus follows that allV ∈ ∂H(z) are nonsingular,
z ∈ <++×<n. Hence, from (3.2), for anyk ≥ 0 andεk > 0, there exists aWk ∈ ∂G(zk)

such that

(∇ϕ(zk))T1zk = 2G(zk)T Wk1zk = −2G(zk)T G(zk) = −2ϕ(zk). (3.4)
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Proposition 3.2. Suppose that F is a P0-function. Then, for any k ≥ 0, if zk =
(εk, xk) ∈ <++ × <n, then Algorithm3.1 is well defined at kth iteration and zk+1 ∈
<++ × <n.

Proof. First, from Proposition 3.1 and thatεk ∈ <++, we have

βk = β(zk) > 0.

By using (3.2) in Algorithm 3.1, we get

1εk = −εk + βkε̄. (3.5)

Hence, for anyα ∈ [0,1], we have

εk + α1εk = (1− α)εk + αβkε̄ ∈ <++. (3.6)

Then, from (3.6), (3.2), and the fact thatβ(z) = γ min{1, f (z)t } ≤ γ f (z)1/2 (note that
t ∈ [ 1

2,1]), for anyα ∈ [0,1] we have

(εk + α1εk)2 = [(1− α)εk + αβkε̄]
2

= (1− α)2(εk)2+ 2(1− α)αβkε
kε̄ + α2β2

k ε̄
2

≤ (1− α)2(εk)2+ 2αβkε
kε̄ + O(α2)

≤ (1− α)2(εk)2+ 2αγ f (zk)1/2‖H(zk)‖ε̄ + O(α2)

= (1− 2α)(εk)2+ 2αγ ε̄ f (zk)+ O(α2). (3.7)

Define

g(α) := ϕ(zk + α1zk)− ϕ(zk)− α(∇ϕ(zk))T1zk.

Sinceϕ(·) is continuously differentiable at anyzk ∈ <n+1,

g(α) = o(α).

Then, from (3.4) and (3.2), for anyα ∈ [0,1] we have

‖G(zk + α1zk)‖2 = ϕ(zk + α1zk)

= ϕ(zk)+ α(∇ϕ(zk))T1zk + g(α)

= ϕ(zk)− 2αϕ(zk)+ o(α)

= (1− 2α)ϕ(zk)+ o(α). (3.8)

It then follows from (3.7) and (3.8) that, for allα ∈ [0,1], we have

f (zk + α1zk) = ‖H(zk + α1zk)‖2
= (εk + α1εk)2+ ‖G(zk + α1zk)‖2
≤ (1− 2α)(εk)2+ 2αγ ε̄ f (zk)+ (1− 2α)‖G(zk)‖2+ o(α)

= (1− 2α) f (zk)+ 2αγ ε̄ f (zk)+ o(α)

= [1− 2(1− γ ε̄)α] f (zk)+ o(α). (3.9)
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The inequality (3.9) shows that there exists a positive numberᾱ ∈ (0,1] such that, for
all α ∈ [0, ᾱ],

f (zk + α1zk) ≤ [1− 2σ(1− γ ε̄)α] f (zk),

which completes our proof.

Proposition 3.3. Suppose that F is a P0-function.For each k≥ 0, if εk ∈ <++, zk ∈ Ä,
then for anyα ∈ [0,1] such that

f (zk + α1zk) ≤ [1− 2σ(1− γ ε̄)α] f (zk), (3.10)

it holds that zk + α1zk ∈ Ä.

Proof. We prove this proposition by considering the following two cases:

(i) f (zk) > 1. Thenβk = γ . It therefore follows fromzk ∈ Ä and β(z) =
γ min{1, f (z)t } ≤ γ for anyz ∈ <n+1 that, for allα ∈ [0,1], we have

εk + α1εk − β(zk + α1zk)ε̄ ≥ (1− α)εk + αβkε̄ − γ ε̄
≥ (1− α)βkε̄ + αβkε̄ − γ ε̄
= (1− α)γ ε̄ + αγ ε̄ − γ ε̄
= 0. (3.11)

(ii) f (zk) ≤ 1. Then, for anyα ∈ [0,1] satisfying (3.10), we have

f (zk + α1zk) ≤ [1− 2σ(1− γ ε̄)α] f (zk) ≤ 1. (3.12)

So, for anyα ∈ [0,1] satisfying (3.10),

β(zk + α1zk) = γ f (zk + α1zk)t .

Hence, again becausezk ∈ Ä, by using the first inequality in (3.12), for anyα ∈ [0,1]
satisfying (3.10) we have

εk + α1εk − β(zk + α1zk)ε̄ = (1− α)εk + αβkε̄ − γ f (zk + α1zk)t ε̄

≥ (1−α)βkε̄ + αβkε̄−γ [1−2σ(1−γ ε̄)α]t f (zk)t ε̄

= βkε̄ − γ [1− 2σ(1− γ ε̄)α]t f (zk)t ε̄

= γ f (zk)t ε̄ − γ [1− 2σ(1− γ ε̄)α]t f (zk)t ε̄

= γ {1− [1− 2σ(1− γ ε̄)α]t } f (zk)t ε̄

≥ 0. (3.13)

Thus, by combining (3.11) and (3.13), we have proved that, for allα ∈ [0,1] satisfying
(3.10),

zk + α1zk ∈ Ä.
This completes our proof.
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Proposition 3.4. Suppose that F is a P0-function. Then Algorithm3.1 is not finite and
generates a sequence{zk} with εk ∈ <++, {zk} ∈ Ä for all k.

Proof. First, becausez0 = (ε̄, x0) ∈ Ä, we have from Propositions 3.2 and 3.3
thatz1 is well defined,ε1 ∈ <++, andz1 ∈ Ä. Then, by repeatedly resorting to Propo-
sitions 3.2 and 3.3, we can prove that an infinite sequence{zk} is generated,εk ∈ <n

++,
andzk ∈ Ä.

4. Global Convergence

Lemma 4.1. Suppose that F is a P0-function and that{zk = (εk, xk) ∈ <×<n} is an
infinite sequence generated by Algorithm3.1.Then, for any k≥ 0,

0< εk+1 ≤ εk ≤ ε̄. (4.1)

Proof. First, ε0 = ε̄ > 0. Then, from the design of Algorithm 3.1 and that, for any
z ∈ <n+1, β(z) = γ min{1, f (z)t } ≤ γ , we have

ε1 = (1− δl0)ε0+ δl0β(z0)ε̄ ≤ (1− δl0)ε̄ + δl0γ ε̄ ≤ ε̄.

Hence (4.1) holds fork = 0. Suppose that (4.1) holds fork = i − 1. We now prove that
(4.1) holds fork = i . From the design of Algorithm 3.1 we have

εi+1 = (1− δl i )εi + δl i β(zi )ε̄.

Since, from Proposition 3.4,zi ∈ Ä, we haveεi ≥ β(zi )ε̄. Thus,

εi+1 ≤ (1− δl i )εi + δl i εi = εi

and

εi+1 ≥ (1− δl i )β(zi )ε̄ + δl i β(zi )ε̄ = β(zi )ε̄ > 0.

So, (4.1) holds fork = i . We complete our proof.

Theorem 4.1. Suppose that F is a P0-function. Then Algorithm3.1 is not finite and
generates a sequence{zk} with

lim
k→∞

f (zk) = 0. (4.2)

In particular, any accumulation point̃z of{zk} is a solution of H(z) = 0.

Proof. It follows from Proposition 3.4 that an infinite sequence{zk} is generated such
that {zk} ∈ Ä. From the design of Algorithm 3.1,f (zk+1) < f (zk) for all k ≥ 0.
Hence the two sequences{ f (zk)} and {β(zk)} are monotonically decreasing. Since



328 D. Sun

f (zk), β(zk) ≥ 0 (k ≥ 0), there existf̃ , β̃ ≥ 0 such thatf (zk) → f̃ andβ(zk) → β̃

ask → ∞. If f̃ = 0, then we obtain the desired result. Suppose thatf̃ > 0. Then
β̃ > 0. Since{zk} ∈ Ä, εk ≥ β(zk)ε̄. It then follows from Lemma 4.1 thatε̄ ≥ εk ≥ β̃ε̄.
Hence, by Proposition 2.1, the infinite sequence{zk}must be bounded because otherwise
{ f (zk)}must be unbounded, which is impossible by the monotonicity decreasing prop-
erty of { f (zk)}. Then there exists at least one accumulation pointz̃= (ε̃, x̃) ∈ < × <n

of {zk} such thatε̃ ∈ [β̃ε̄, ε̄]. By taking a subsequence if necessary, we may assume
that {zk} converges tõz. It is easy to see that̃f = f (z̃), β(z̃) = β̃, andz̃ ∈ Ä. Then
any V ∈ ∂H(z̃) are nonsingular becauseε̃ > 0 andF is a P0-function. Hence, there
exists a closed neighbourhoodN (z̃) of z̃ such that for anyz = (ε, x) ∈ N (z̃) we have
ε ∈ <++ and that allV ∈ ∂H(z) are nonsingular. For anyz ∈ N (z̃) andV ∈ ∂H(z),
let1z= (1ε,1x) ∈ < × <n be the unique solution of the following equation:

H(z)+ V1z= β(z)z̄, (4.3)

and, for anyα ∈ [0,1], define

gz(α) = ϕ(z+ α1z)− ϕ(z)− α(∇ϕ(z))T1z.

From (4.3), for anyz ∈ N (z̃),
1ε = −ε + β(z)ε̄.

Then, for allα ∈ [0,1] and allz ∈ N (z̃),
ε + α1ε = (1− α)ε + αβ(z)ε̄ ∈ <++. (4.4)

It follows from the Mean Value Theorem that

gz(α) = α
∫ 1

0
[ϕ′(z+ θα1z)− ϕ′(z)]1z dθ.

Sinceϕ′(·) is uniformly continuous onN (z̃) and{1z} is bounded for allz ∈ N (z̃) (refer
to Proposition 3.1 of [33] for a proof),

lim
α↓0
‖gz(α)‖/α = 0.

Then, from (4.4), (4.3), and the fact thatβ(z) ≤ γ f (z)1/2, for all α ∈ [0,1] and all
z ∈ N (z̃), we have

(ε + α1ε)2 = [(1− α)ε + αβ(z)ε̄]2

= 1− α)2ε2+ 2(1− α)αβ(z)εε̄ + α2β(z)2ε̄2

≤ (1− α)2ε2+ 2αβ(z)εε̄ + O(α2)

≤ (1− α)2ε2+ 2αγ f (z)1/2‖H(z)‖ε̄ + O(α2)

= (1− α)2ε2+ 2αγ ε̄ f (z)+ O(α2) (4.5)

and

‖G(z+ α1z)‖2 = ϕ(z+ α1z)
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= ϕ(z)+ α(∇ϕ(z))T1z+ gz(α)

= ϕ(z)− 2αϕ(z)+ o(α)

= (1− 2α)ϕ(z)+ o(α). (4.6)

It then follows from (4.5) and (4.6) that, for allα ∈ [0,1] and allz ∈ N (z̃), we have

f (z+ α1z) = ‖H(z+ α1z)‖2
= (ε + α1ε)2+ ϕ(z+ α1z)

≤ (1− α)2ε2+ 2αγ ε̄ f (z)+ (1− α)2ϕ(z)+ o(α)+ O(α2)

= (1− α)2 f (z)+ 2αγ ε̄ f (z)+ o(α)

= (1− 2α) f (z)+ 2αγ ε̄ f (z)+ o(α)

= [1− 2(1− γ ε̄)α] f (z)+ o(α). (4.7)

Then from inequality (4.7) we can find a positive numberᾱ ∈ (0,1] such that, for all
α ∈ [0, ᾱ] and allz ∈ N (z̃),

f (z+ α1z) ≤ [1− 2σ(1− γ ε̄)α] f (z).

Therefore, for a nonnegative integerl such thatδl ∈ (0, ᾱ], we have

f (zk + δl1zk) ≤ [1− 2σ(1− γ ε̄)δl ] f (z)

for all sufficiently largek. Then, for every sufficiently largek, we see thatl k ≤ l and
henceδlk ≥ δl . Therefore,

f (zk+1) ≤ [1− 2σ(1− γ ε̄)δlk ] f (zk) ≤ [1− 2σ(1− γ ε̄)δl ] f (zk)

for all sufficiently largek. This contradicts the fact that the sequence{ f (zk)} converges
to f̃ > 0. This contradiction shows that (4.2) must hold. In particular, if there exists an
accumulation point̃z of {zk}, then, by the continuity off , f (z̃) = 0, and soH(z̃) = 0.
So, we complete our proof.

Theorem 4.1 shows that (4.2) holds ifF is aP0-function and any accumulation point
z̃ of {zk} is a solution of NCP(F). This does not mean that{zk} has an accumulation
point. Apparently, if NCP(F) has no solution,{zk} cannot have an accumulation point.
In order to make{zk} have an accumulation point we at least need to assume that the
solution set of NCP(F) is nonempty.

Theorem 4.2. Suppose that F is a P0-function and that the solution setS of NCP(F)
is nonempty and bounded. Then the infinite sequence{zk} generated by Algorithm3.1 is
bounded and any accumulation point of{zk} is a solution of H(z) = 0.

Proof. From Theorem 4.1, limk→∞ f (zk) = 0. Thenεk → 0 andϕ(εk, xk) → 0 as
k→∞. By Lemma 4.1, for anyk ≥ 0,εk > 0. Then by applying Lemma 2.3 we obtain
that{xk} is bounded and any accumulation point of{xk} is a solution of NCP(F). Since
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limk→∞ εk = 0, we have in fact proved that{zk} is bounded and any accumulation point
of {zk} is a solution ofH(z) = 0.

Corollary 4.1. Suppose that F is a monotone function and that there exists a strictly
feasible pointx̂, i.e., x̂ > 0, F(x̂) > 0. Then the infinite sequence{zk} generated by
Algorithm3.1 is bounded and any accumulation point of{zk} is a solution of H(z) = 0.

Proof. Since NCP(F) has a strictly feasible point, its solution setS is nonempty and
bounded [17, Theorem 3.4]. By noting that a monotone function is always aP0–function,
we obtain the results of this theorem by Theorem 4.2.

In Theorem 4.2 we did not state whether the sequence{zk} is bounded or not if the
solution set of NCP(F) is nonempty but unbounded. However, ifF is monotone, we can
have such a result.

Theorem 4.3. Suppose that F is a monotone function and in Algorithm3.1the param-
eter t is set to be12, i.e, β(z) = γ min{1, f (z)1/2}. Then, if the iteration sequence{zk}
is bounded, the solution setS of NCP(F) is nonempty; conversely, if the solution setS
is nonempty and(2.5) in Proposition2.2 holds, the iteration sequence{zk} is bounded
and any accumulation point of{zk} is a solution of H(z) = 0.

Proof. First, we suppose that{zk} is bounded. Then there exists at least one accumula-
tion point, sayz∗ = (ε∗, x∗) ∈ < × <n. By Theorem 4.1,z∗ is a solution ofH(z) = 0.
Thenε∗ = 0 andx∗ is a solution of NCP(F). So,S is nonempty.

Conversely, suppose that the solution setS is nonempty. For eachk ≥ 0, letx(εk) be
a solution of NCP(Fεk ), thenx(εk) converges tox∗ = arg minx∈S ‖x‖. In Theorem 4.1,
we have proved that limk→∞ ‖H(εk, xk)‖ = 0. Then there exists āk ≥ 0 such that, for
all k ≥ k̄, we have

εk ≥ β(zk)ε̄ = γ f (zk)1/2ε̄ = γ [(εk)2+ ‖G(εk, xk)‖2]1/2ε̄.

Hence,

‖G(εk, xk)‖ ≤
√

1− γ 2ε̄2

γ ε̄
εk = Cεk

with

C :=
√

1− γ 2ε̄2

γ ε̄
.

Thus by Proposition 2.2 the sequence{xk} must be bounded. Then, because
limk→∞ f (zk) = 0 by Theorem 4.1,εk → 0 ask→∞, we conclude that the sequence
{zk} is bounded and from Theorem 4.1 any accumulation point of{zk} is a solution of
H(z) = 0.
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5. Superlinear and Quadratic Convergence

In this section we discuss the superlinear and quadratic convergence of Algorithm 3.1 by
assuming that there is a locally unique solution. By a recent result [7], [16] this, under
the assumption thatF is aP0-function, is equivalent to saying that NCP(F) has only one
solution, and, thus,S is bounded. We then in this section assume the parametert = 1,
i.e.,β(z) = γ min{1, f (z)}.

Theorem 5.1. Suppose that F is a P0-function and that the solution setS of NCP(F)
is nonempty and bounded. Suppose that z∗ := (ε∗, x∗) ∈ < × <n is an accumulation
point of the infinite sequence{zk} generated by Algorithm3.1and that all V∈ ∂H(z∗)
are nonsingular. Then the whole sequence{zk} converges to z∗,

‖zk+1− z∗‖ = o(‖zk − z∗‖) (5.1)

and

εk+1 = o(εk). (5.2)

Furthermore, if F ′ is locally Lipschitz around x∗, then

‖zk+1− z∗‖ = O(‖zk − z∗‖2) (5.3)

and

εk+1 = O(εk)2. (5.4)

Proof. First, from Theorem 4.1,z∗ is a solution ofH(z) = 0. Then, from Proposition 3.1
of [33], for all z sufficiently close toz∗ and for allV ∈ ∂H(z),

‖V−1‖ = O(1).

Under the assumptions, from Lemma 2.6 we know thatH is semismooth (strongly
semismooth, respectively) atz∗. Then, from Lemma 2.5 forzk sufficiently close toz∗,
we have

‖zk+1zk−z∗‖ = ‖zk+V−1
k [−H(zk)+βkz̄]−z∗‖

= O(‖H(zk)−H(z∗)−Vk(z
k−z∗)‖+βkε̄)

= o(‖zk−z∗‖)+O( f (zk)) (=O(‖zk−z∗‖2)+O( f (zk))). (5.5)

Then, becauseH is locally Lipschitz continuous aroundz∗, for all zk close toz∗,

f (zk) = ‖H(zk)‖2 = O(‖zk − z∗‖2). (5.6)

Therefore, from (5.5) and (5.6), becauseH is semismooth (strongly semismooth, re-
spectively) atz∗, for all zk sufficiently close toz∗,

‖zk +1zk − z∗‖ = o(‖zk − z∗‖) (= O(‖zk − z∗‖2)). (5.7)
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By following the proof of Theorem 3.1 of [28], for allzk sufficiently close toz∗, we have

‖zk − z∗‖ = O(‖H(zk)− H(z∗)‖). (5.8)

Hence, becauseH is semismooth (strongly semismooth, respectively) atz∗, for all zk

sufficiently close toz∗, we have

f (zk +1zk) = ‖H(zk +1zk)‖2
= O(‖zk +1zk − z∗‖2)
= o(‖zk − z∗‖2) (= O(‖zk − z∗‖4))
= o(‖H(zk)− H(z∗)‖2) (= O(‖H(zk)− H(z∗)‖4))
= o( f (zk)) (= O( f (zk)2)). (5.9)

Therefore, for allzk sufficiently close toz∗ we have

zk+1 = zk +1zk,

which, together with (5.7), proves (5.1), and ifF ′ is locally Lipschitz aroundx∗, proves
(5.3).

Next, from the definition ofβk and the fact thatzk → z∗ ask → ∞, for all k
sufficiently large,

βk = γ f (zk) = γ ‖H(zk)‖2.

Also, because, for allk sufficiently large,zk+1 = zk+1zk, we have for allk sufficiently
large that

εk+1 = εk +1εk = βkε̄.

Hence, for allk sufficiently large,

εk+1 = γ ‖H(zk)‖2ε̄,

which, together with (5.1), (5.6), and (5.8), gives

lim
k→∞

εk+1

εk
= lim

k→∞
‖H(zk)‖2
‖H(zk−1)‖2 = lim

k→∞
‖H(zk)− H(z∗)‖2
‖H(zk−1)− H(z∗)‖2 = 0.

This proves (5.2). IfF ′ is locally Lipschitz aroundx∗, then from the above argument we
can easily get (5.4). So, we complete our proof.

In Theorem 5.1 we assumed that allV ∈ ∂H(z∗) are nonsingular at a solution point
z∗ of H(z) = 0. Next, we give a sufficient condition such that this assumption is satisfied.
Let z∗ = (ε∗, x∗) ∈ < × <n be a solution point ofH(z) = 0. Then, apparently,ε∗ = 0
andx∗ is a solution of NCP(F). For convenience of handling notation we denote

I := {i | 0< x∗i & Fi (x
∗) = 0, i ∈ N},
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J := {i | x∗i = 0 & Fi (x
∗) = 0, i ∈ N},

and

K := {i | x∗i = 0 & Fi (x
∗) > 0, i ∈ N}.

Then

I ∪ J ∪K = N.

By rearrangement we assume thatF ′(x∗) can be rewritten as

F ′(x∗) =
F ′(x∗)II F ′(x∗)IJ F ′(x∗)IK

F ′(x∗)JI F ′(x∗)JJ F ′(x∗)JK
F ′(x∗)KI F ′(x∗)KJ F ′(x∗)KK

 .
The nonlinear complementarity problem is said to beR-regular atx∗ if F ′(x∗)II is
nonsingular and its Schur-complement in the matrix(

F ′(x∗)II F ′(x∗)IJ
F ′(x∗)JI F ′(x∗)JJ

)
is a P-matrix, see [34].

Proposition 5.1. Suppose that z∗ = (ε∗, x∗) ∈ < × <n is a solution of H(z) = 0.
If the nonlinear complementarity problem is R-regular at x∗, then all V ∈ ∂H(z∗) are
nonsingular.

Proof. It is easy to see that for anyV ∈ ∂H(z∗) there exists aW = (Wε Wx) ∈
∂G(z∗) with Wε ∈ <n andWx ∈ <n×n such that

V =
(

1 0
Wε Wx

)
.

Hence, provingV is nonsingular is equivalent to provingWx is nonsingular. Sinceε∗ = 0,
by using standard analysis (see, e.g., Proposition 3.2 of [10]), we can prove that all such
generated matricesWx are nonsingular. Then we complete our proof.

The above proposition shows that all the conclusions of Theorem 5.1 hold if the
assumption that allV ∈ ∂H(z∗) are nonsingular is replaced by that the nonlinear com-
plementarity problem isR-regular atx∗.

6. Numerical Results

In this section we present some numerical experiments for the nonmonotone line search
version of Algorithm 3.1: Step 3 is replaced by
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Step 3′. Let lk be the smallest nonnegative integerl satisfying

zk + δl1zk ∈ Ä (6.1)

and

f (zk + δl1zk) ≤W − 2σ(1− γ ε̄)δl f (zk), (6.2)

whereW is any value satisfying

f (zk) ≤W ≤ max
j=0,1,...,Mk

f (zk− j )

and Mk are nonnegative integers bounded above for allk such thatMk ≤ k.
Definezk+1 := zk + δlk1zk.

Remark. (i) We choose a nonmonotone line search here because in most cases it
increases the stability of algorithms.

(ii) The requirement (6.1) is for guaranteeing the global convergence of the algo-
rithm. This requirement automatically holds for our algorithm with a monotone line
search, see Proposition 3.3. The consistency between (6.1) and (6.2) can be seen clearly
from Propositions 3.2 and 3.3.

In the implementation we chooseW as follows:

(1) SetW = f (z0) at the beginning of the algorithm.
(2) Keep the value ofW fixed as long as

f (zk) ≤ min
j=0,1,...,5

f (zk− j ). (6.3)

(3) If (6.3) is not satisfied at thekth iteration, setW = f (zk).

For a detailed description of the above nonmonotone line search technique and its mo-
tivation, see [4].

The above algorithm was implemented in Matlab and run on a DEC Alpha Server
8200. Throughout the computational experiments, the parameters used in the algorithm
wereδ = 0.5,σ = 0.5×10−4, t = 1, ε̄ = 1, andγ = 0.2. We usedf (z) ≤ 10−12 as the
stopping rule. The numerical results are summarized in Table 1 for different problems
tested. In Table 1, Dim denotes the number of the variables in the problem, Start. point
denotes the starting point, Iter denotes the number of iterations, which is also equal to the
number of Jacobian evaluations for the functionF , NF denotes the number of function
evaluations for the functionF , and FF denotes the value off at the final iterate. In the
following, we give a brief description of the tested problems. The source reported for
the problem is not necessarily the original one.

Problem 1. This is the Kojima-Shindo problem, see [26].F is not aP0-function. This
problem has two solutions:x1 = (√6/2,0,0,0.5) andx2 = (1,0,3,0).
Starting points: (a) (1,1,1,1), (b) (−1,−1,−1,−1), (c) (0,0,0,0).
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Table 1. Numerical results for the algorithm.

Problem Dim. Start. point Iter NF FF

Problem 1 4 a 8 13 2.2×10−23

4 b 10 15 2.2×10−13

4 c fail
Problem 2 10,000 a 9 11 4.3×10−16

10,000 b 9 12 1.3×10−13

Problem 3 5 a 22 23 2.3×10−18

5 b 19 23 1.5×10−25

Problem 4 4 a 5 6 1.5×10−16

4 b 5 6 1.5×10−16

Problem 5 10 a 9 10 3.2×10−13

Problem 6a 4 a 6 9 8.2×10−13

4 b 5 6 4.3×10−13

4 c 6 9 8.2×10−13

Problem 6b 4 a 8 12 2.5×10−15

4 b 6 7 4.6×10−19

4 c 8 12 2.5×10−15

Problem 7 4 a 20 117 3.4×10−24

4 b 7 12 4.2×10−16

Problem 8 42 a 13 15 2.7×10−17

42 b 12 16 1.5×10−14

Problem 9 50 a 27 68 6.6×10−13

50 b 29 67 6.6×10−13

Problem 10 1,000 a 8 14 6.5×10−18

Problem 11 106 a 31 61 5.6×10−13

Problem 2. This is a linear complementarity problem. See the first example of [20]
for the data.
Starting points: (a) (0,0,0,0), (b) (1,1,1,1).

Problem 3. This is the fourth example of [42]. This problem represents theKKT con-
ditions for a convex programming problem involving exponentials. The resultingF is
monotone on the positive orthant but not evenP0 on Rn.
Starting points: (a) (0,0, . . . ,0), (b) (1,1, . . . ,1).

Problem 4. This is a modification of the Mathiesen example of a Walrasian equilibrium
model as suggested in [21].F is not defined everywhere and does not belong to any known
class of functions.
Starting points: (a) (0,0,0,0), (b) (1,1,1,1).

Problem 5. This is the Nash–Cournot production problem [26].F is not twice contin-
uously differentiable.F is a P-function on the strictly positive orthant.
Starting point: (a) (1,1,1,1).

Problem 6. This is a Mathiesen equilibrium problem [23], [26], in whichF is not
defined everywhere. Two set of constants were used:(α,b2,b3) = (0.75,1,0.5) and
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(α,b2,b3) = (0.9,5,3). We use Problem 6a and 6b to represent this problem with these
two set of constants, respectively.
Starting points: (a) (1,1,1,1), (b) (0.5,0.5,0.5,0.5), (c) (0,0,0,0).

Problem 7. This is the Kojima–Josephy problem, see [4].F is not aP0-function. The
problem has a unique solution which is notR-regular.
Starting points: (a) (0,0,0,0), (b) (1,1,1,1).

Problem 8. This is a problem arising from a spatial equilibrium model, see [26].F is
a P-function and the unique solution isR-regular.
Starting points: (a) (0,0, . . . ,0), (b) (1,1, . . . ,1).

Problem 9. This is a traffic equilibrium problem with elastic demand, see [26].
Starting points: (a) All the components are 0 exceptx1, x2, x3, x10, x11, x20, x21, x22,
x29, x30, x40, x45 which are 1,x39, x42, x43, x46 which are 7,x41, x47, x48, x50 which are
6, andx44 andx49 which are 10, (b)(0,0, . . . ,0).

Problem 10. This is the third problem of [42], which is a linear complementarity
problem withF(x) = Mx + q. M is not even semimonotone and none of the standard
algebraic techniques can solve it. Letq be the vector with−1 in the eighth coordinate
and zeros elsewhere. The continuation method of [42] fails on this problem.
Starting point: (a) (1,1, . . . ,1).

Problem 11. This is the 106-variable Von Th¨unen problem [26], [45]. This problem
is a challenge to the algorithms designed in the literature for solving nonlinear comple-
mentarity problems. The data of this problem was down-loaded from Paul Tseng’s home
page http://www.math.washington.edu/∼tseng/, where the data was originally obtained
from Jong-Shi Pang.
Starting point: (a) (100,100, . . . ,100),

The numerical results reported in Table 1 showed that the algorithm proposed in
this paper works well for Problems 1–10. For the challenging Problem 11, things seem
complicated because it was observed during the process of computation that some ele-
ments of the iteration sequence become negative such that the function may take complex
values. In such cases we still allowed our algorithm to continue to see what would hap-
pen. Surprisingly, our algorithm stopped in a relatively small number of iterations with
a very small residue. We then checked the approximate solutionxs obtained from our
algorithm and this time, not surprisingly, we found that it is not a real number but one
with a relatively small imaginary part. Let R(xs) denote the real part ofxsand denote a
new pointxs′ by

xs′i = max{10−20,R(xs)i }, i = 1,2, . . . ,106. (6.4)

This new point is a very good approximation to the solution with

‖min{xs′, F(xs′)}‖∞ ≤ 1.3× 10−9.
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This is the first time that such a good approximation point is obtained for the 106-variable
Von Thünen problem. All the components ofxs′ are around 10−8 ∼ 10−20 except
xs′101 = 0.0032834,xs′102 = 0.0231250,xs′103 = 0.0133340,xs′104 = 0.0061591,
xs′105= 0.0033426, andxs′106= 0.0019377. If in (6.4) 10−20 is replaced by 10−15, then
we can only get a pointxs′ with

‖min{xs′, F(xs′)}‖∞ ≤ 6.8× 10−5.

This shows that the 106-variable Von Th¨unen problem is very sensitive to the change
of variable and its implementation for various algorithms must be preprocessed
considerably.

7. Conclusions

In this paper we constructed a regularization Newton method for solving nonlinear com-
plementarity problems under the assumption thatF is a P0-function by using the recent
developments on regularization methods and smoothing methods. The convergence re-
sults discussed in this paper are very favorable. Even stronger results have been obtained
for monotone complementarity problems. The numerical results showed that our algo-
rithm works well for the problems tested. With regard to the nice theoretical results of
our algorithm, the computational results reported are very encouraging. We expect our
algorithm can also solve large-scale problems well.

By utilizing some box constrained variational inequality problem (BVIP) functions
(see [29] for several interesting BVIP functions), the approach developed in this paper
can also be used to solve the BVIP: findx∗ ∈ X such that

(x − x∗)T F(x∗) ≥ 0 for all x ∈ X, (7.1)

whereX := {x ∈ <n| l ≤ x ≤ u}, l ∈ {< ∪ {−∞}}n, u ∈ {< ∪ {∞}}n, andl < u. See
[25] and [11] for various applications of BVIPs along with nonlinear complementarity
problems.

There are a few nonlinear complementarity and variational inequality problems in
which the mappingF is not well defined outside its feasible region [11]. Then our
algorithm for these problems is not well defined on the whole space<n. However, the
approach developed in [32] on smoothing methods provided a way to circumvent this
difficulty. We leave these as future research topics.
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