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1. Introduction

In this paper we consider numerical methods for solving the nonlinear complementarity
problem (NCPF) for abbreviation):

x>0, F(x)>0 and x"F(x)=0, (1.2)

whereF: 5" — R" is any given function which we assume to be continuously differ-
entiable throughout this paper.

This problem has attracted much attention due to its various applications. We refer
the reader to [17], [25], [15], and [11] for a review. The methods considered here are
intended to handle singular nonlinear complementarity problems, in which the derivative
of the mapping= may be seriously ill-conditioned. The singularity problem will prevent
most of the currently available algorithms from converging to a solution of FQE.R(
the literature there are two classes of methods that can be used to deal with the singu-
lar nonlinear complementarity problems: regularization methods [5], [27] and proximal
point methods [35], [36]. Proximal point methods have been investigated by many re-
searchers. See the recent report of Eckstein and Ferris [6] and references therein for
a review. The methods discussed in this paper are in the class of regularization meth-
ods. This class of methods try to circumvent the singularity problem by considering a
sequence of perturbed problems, which possibly have better conditions. For nonlinear
complementarity problems, the simplest regularization technique is to use the so-called
Tikhonov-regularizatiopwhich consists in solving a sequence of complementarity prob-
lems NCPFE,):

X >0, F.(x) >0 and x'F.(x) =0, (1.2)

whereF,(x) := F(X) + ex ande¢ is a positive parameter converging to zero. In this
paper, for the convenience of discussion, we allow take a nonpositive value also.
Regularization methods, closely related to proximal point methods, for solving
monotone complementarity problems have been studied in the literature by several au-
thors, see, e.g., [37] or Theorem 5.6.2 of [3]. Recently, Facchinei and Kanzow [9] gen-
eralized most of the classic results for the monotone complementarity problems to the
larger class oP; complementarity problems. In particular, they established a result on
the behavior of the inexact solutions of the perturbed problems. This result states that
if F is a Py-function and the solution se&t of NCP(F) is nonempty and bounded then
the (inexact) solutions of NCIF() are uniformly bounded as — 0.. For a precise
description, see Theorem 5.4 of [9]. Facchinei and Kanzow’s result generalized a result
in [41] for linear complementarity problems when the exact solutions of perturbed prob-
lems are considered. In this paper we consider a regularization Newton method by using
Facchinei and Kanzow’s result, a result developed in Section 2 for monotone comple-
mentarity problems and the techniques established recently on smoothing methods [32].
For this regularization Newton method we, under the assumptioffrttsad Pp-function,
prove that every accumulation point of the sequence of iterates is a solution oF)CP(
and that the iteration sequence is bounded if the solution set of NABnhonempty
and bounded. Moreover, F is monotone and Lipschitz continuous, we prove that the
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sequence of iterates is bounded if and only if the solution set of RERB(nonempty

by settingt = % wheret € [%, 1] is a parameter. If NCH) has a locally unique so-
lution and satisfies a nonsingularity condition, then the convergence rate is superlinear
(quadratic) without assuming the strict complementarity conditions. To our knowledge,
this is the first method, not only in the scope of regularization methods, to have all these
properties. It is necessary to point out that in order to make the sequence of iterates
bounded forP, or monotone nonlinear complementarity problems, people usually use
various neighborhoods in both interior point methods [40], [43], [44], and noninterior
point methods [18], [1], [31] such that the sequence of iterates stays in these neigh-
borhoods. In general, to keep the sequence of iterates staying in these neighborhoods
one needs additional work, probably time consuming, and it may prevent the sequence
of iterates from converging to a solution superlinearly if strict complementarity condi-
tions are not satisfied. A neighborhood is also introduced in this paper, however, this
neighborhood, which does not appear in our algorithm and is only used to analyze the
convergence properties of the algorithm, allows us to achieve superlinear convergence
no matter whether strict complementarity conditions hold or not. These features can be
seen clearly in the following discussion.

The organization of this paper is as follows. In the next section we study some
preliminary properties of the reformulated nonsmooth equations and their solutions. In
Section 3 we state the algorithm and prove several propositions related to the algorithm.
In Section 4 we establish the global convergence of the algorithm. We analyze the
superlinear and quadratic convergence properties of the algorithm in Section 5 and give
preliminary numerical results in Section 6. Final conclusions are given in Section 7.

Aword about our notationis in order. Lit|| and| - | o denote thé, norm and thé,,
norm of R™, respectively. For a continuously differentiable functbn ™ — R™, we
denote the Jacobian @fatx € ™ by ®’(x), whereas the transposed Jacobian is denoted
asvVao(x). If Wis anm x m matrix with entriesWi, j,k =1, ..., m,andJ andk are
index sets suchthgk, K C {1, ..., m},wedenote bW 7« the| 7| x| K| submatrix oW
consisting of entrie8Vix, j € J,k € K. If Wy 7 is nonsingular, we denote W/ W 7
the Schur-complement &¥; 7 in W, i.e., W/ W77 := Wi — W,Cng\ljwj,c, where
K=1{1,...,m\J.

2. Some Preliminaries
We need the following definitions concerning matrices and functions.

Definition 2.1. A matrix W € )R"<" is called a

e Po-matrix if every one of its principal minors is nonnegative;
e P-matrix if every one of its principal minors is positive.

Obviously, a positive semidefinite matrix i$°g-matrix and a positive definite matrix
is a P-matrix.
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Definition 2.2. A function F: R" — %" is called a
e Po-function if, for everyx andy in ®R" with x # vy, there is an indek such that
Xi # Vi, i = yD)(FR ) = Fi(y) =0
e P-function if, for everyx andy in %" with x # y, there is an indek such that
Xi # Vi, X =y (R ) = Fi(y) >0

o uniform P-function if there exists a positive constansuch that, for every and
y in ®", there is an indek such that

X — YD(F () — Fi(y) = pulx —yl%
e monotone function if, for everx andy in )",

X -y (FX) — F(y)) >0

e strongly monotone function if there exists a positive constasuch that, for
everyx andy in k",

X =Y (FX) = F(y) > pnlx -yl

It is known that every strongly monotone function is a unifoR¥function and
every monotone function is By-function. Furthermore, the Jacobian of a continuously
differentiablePy-function (uniformP-function) is aPy-matrix (P-matrix).

The Fischer-Burmeister functiop: %2 — 9 introduced by Fischer in [12] is
defined by

Y@, b) :=+vaZ+b?2—(a+b).
The functiony () has the following important property:
Y@ b)y=0 <= ab=>0, ab=0.

Another important property of(-) is that(-)? is continuously differentiable on the
whole spacéi? [21]. The advent of the Fischer—Burmeister function, has attracted a lot of
attention in the area of nonlinear complementarity and variational inequality problems,
see, e.g.,[13],[20],[10], [4], 8], [46] and references therein. It was first used by Facchinei
and Kanzow in [9] to study regularization methods. Here we choose to use it for the sake
of simplicity. However, there are many other functions that can be chosen from [29]. In
particular, we can use the following function which was originally discussed in [38]:

Jaz+bz—(a+b if a>0 b>0,

__Jb if a>0 b<0,
V(@b = a if a<0, b=>0,
—va2 4 b? if a<0, b<DO.

The above function is linear in the second and fourth quadrants, but its square is still
continuously differentiable [38].
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Letz := (6,X) € N x A" and letF,; be theith component of~,,i € N =
{1,2,...,n}. DefineG: R"1 — K" by

Gi(e, X) == ¥ (X, Fei (X)), i €N, (2.1)

wherey (-) is the Fischer—Burmeister function. Dendle R"*! — R"+1 by

H(2) = (Giz)> . z=(sX) €N x K", (2.2)

Such a defined functioH is locally Lipschitz continuous becaugeis locally Lipschitz
continuous [12]. It is easy to see that

HE,x) =0 «— =0, X is a solution of NCPF),
(g,X) € R x R".

Letp: R — %, be defined by
92 = G@|>.

Then, becausé (-)? is continuously differentiable o#t?, ¢(-) is continuously differen-
tiable on the whole spacg™*!. Define the merit functiorf : %™ — R, by

f(2) = IH@I? =&’ + ¢(2).

Then f is also continuously differentiable o'+,

Lemma 2.1 [22]. Let{a*}, {bX} < % be any two sequences such that eithernk —
oo or ak — —oo or b — —oco. Then|y (@, b¥)| — oo.

The following lemma was provided in the proof of Proposition 3.4 in [9].

Lemma 2.2. Suppose that F is agFfunction Then for any sequende*} such that
[xK|| = oo,there existanindex& N and asubsequen@eki}suchthateitheri'§& — 00
and F(x%) does not tend te-co or xikj — —00.

The next result generalizes a result in [9] and is more suitable to our discussion.
However, its proof should be credited to Facchinei and Kanzow.

Proposition 2.1. Suppose that F is agMfunction and thag, & are two given positive
numbers such that > &. Then for any sequende® = (X, x¥)} such thatk € [z, &]
and || x| — co we have

Jim f(Z) = oo. (2.3)

Proof. For the sake of contradiction, suppose that there exists a seqi®nce
(€%, x4} such thate® e [£,&] and |x¥|| — oo and f(Z) is bounded. Then from
Lemma 2.2, by taking a subsequence if necessary, there exists an iadéxsuch that
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eitherx — oo and F; (x¥) does not tend te-oo or X — —oo. Sinceck € [, £],
for the above eitherx — oo andF; (x*) + ekxX — oo or x¥ — —o0. Hence, from
Lemma 2.1,

[ (X<, Fi (X¥) + e*%)| — o0,

which meansf (x*) — oco. This is a contradiction. So, we complete our proof. O

The following result is extracted from Theorem 5.4 of [9].

Lemma 2.3. Suppose that F is agFfunction and that the solution set NICP(F) is
nonempty and boundeBuppose thai*} and{1*} are two infinite sequences such that
for each k> 0, ¢¢ > 0, n* > 0 satisfyinglimy_, ¢ = 0, lim_,» n* = 0. For each

k > 0, let xX e ®" satisfy||G(e*, x)|| < n¥. Then{xk} remains bounded and every
accumulation point ofx*} is a solution oNCP(F).

Lemma 2.4. Suppose that F is a monotone functitet X € %" be any nonempty
closed convex subset&f and for any giverr > 0 define W: %" — R" by

W, (U) ;= u — Ix[u — (F) + su)], ueR",

where for anyv € R", IIx(v) is the orthogonal projection of onto X Let x be a
solution of W(u) = 0 and let y be a solution of Wu) — § = 0, wheres € R" is any
given vectarThen if x+# vy,

(2.4)

ly — x|l < |:(1+g) + W} M

Iy — Xl €

Proof.  First, for the projection operatdiix (-) for anyu, v € %" we have from [47]
that

(U — )T (Mx(u) — Mx () > [[Tx(u) — Mx ().

By lettingu ;= y — (F(y) + ¢y) andv := X — (F(X) + ¢X) in the above relation we
obtain

{ly — (F(y) + ey)] — [x — (FX) + ex)]}T
x{TIx[y — (F(y) + ey)] — Mx[x — (F(X) + &x)]}
> |ITIx[y — (F(y) + ey)] — Mx[x — (F(x) + ex)] 1%,

which, combining with the assumptions that= TIx[x — (F(X) + ex)] andy =
Mx[y — (F(y) + eYy)] + 8, gives

(ly= (F(Y) +ey)] =[x = (FCO +ex)]}T{y—8 —x} > [ly — x — §||
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By rearrangements,

ely = XIZ+ 18117 < @+ )3T (y —x) — (y = )T (F(y) — F(x))

+38T(F(y) — F(x)).

Hence, becausE is monotone(y — x)" (F(y) — F(x)) > 0, we have

ely = x|+ 11811 < 1+ )8 (y —x) + 8T (F(y) — F(x))

<@+ al8y =X+ 1I8MIFy) = FOOIl.

Since||§||? > 0, the above relation proves (2.4). O
Proposition 2.2. Suppose that F is a monotone function and that the solutiots set
of NCP(F) is nonemptySuppose thats} and {1*} are two infinite sequences such
that for each k> 0, ¢ > 0, n* > 0, nx < CeX, andlimy_ o e = 0, where C> 0
is a constantFor each k> 0, let X € %" satisfy||G(¢¥, x)|| < n¥. Suppose that

x* = arg mins|x|| and that F is Lipschitz continuoyse., there exists a constant
L > Osuch thatforany u v € %",

IF W) —FI < Lju—uv]. (2.5)

Then {x¥} remains bounded and every accumulation pointdf} is a solution of
NCP(F).

Proof. Suppose that, for anyy > 0, X(¢) is a solution of NCPF,). For anye > 0, let
W,: \" — R" be defined by

W, (U) 1= U — Iy [u — (F(u) + eu)] = min{u, F(u) + eu}, ueR".

Then, from Lemma 2.4,

Kook ko ITFOK) = FXEO) T ITWe (X9 |
X< — x(e9)] < [(1+e )+ X0 ~ (2.6)
By Tseng [39], for any two numbess b € )i, we have
2+lﬁ|min{a, b}| < |¥(a, b)| < (24 +/2)|min{a, b}|.
Hence,
Wk (X9 || < 2+ V2)IG (X, X9 (2.7)

Then by using (2.5)—(2.7) and the assumption fi@s¥, x)|| < Cek we have
Ix = x) < [A+& + L] 2+ v2C.

This implies that{x*} remains bounded becaug&*) — x* ask — oo [5]. By the
continuity of f every accumulation point diX} is a solution of NCPF). O



322 D. Sun

In order to design high-order convergent Newton methods we need the concept of
semismoothness. Semismoothness was originally introduced by Mifflin [24] for func-
tionals. Convex functions, smooth functions, and piecewise linear functions are examples
of semismooth functions. The composition of semismooth functions is still a semismooth
function [24]. In [33] Qi and Sun extended the definition of semismooth functions to
®: ™ — %M, Alocally Lipschitz continuous vector valued functidn |™ — QM
has a generalized Jacobias (x) as in [2].® is said to besemismootlatx € R™, if

lim {Vh}
Vedd(x+th')
h—h, t|0
exists for anyh € R™. It has been proved in [33] thdt is semismooth at if and only
if all its component functions are. Als@®/(x; h), the directional derivative ob atx in
the directionh, exists for anyh € %™ if ® is semismooth at.

Lemma 2.5 [33]. Suppose thab: %™ — %™ is a locally Lipschitzian function and
semismooth at XThen

(i) forany Ve dd(x+h), h — 0,
Vh— @'(x; h) = o(||h[D;
(ii) forany h— 0,
@ (x +h) — ®(x) — '(x; h) = o(||hl]).

A stronger notion than semismoothness is strong semismoothingsis said to be
strongly semismootht x if ® is semismooth at and, for anyv € d&(x + h), h — 0,

Vh— @' (x: h)y = O(|[h|]?).

(Note that in [33] and [28] different names for strong semismoothness are used.) A
function @ is said to be a (strongly) semismooth function if it is (strongly) semismooth
everywhere.

Lemma 2.6. Suppose that F is continuously differentiafileen the function H defined
by (2.2)is a semismooth functioif F’(.) is Lipschitz continuous in a neighborhood of
a point xe %", then H is strongly semismooth @t x) € R,

Proof.  Since a function is (strongly) semismooth at a point if and only if its component
functions are, to prove thai is a semismooth function we only need to prove tHat

i =1,...,n+ 1, are semismooth functions and to prddds strongly semismooth at

(e, X) we only need to prove th&t;,i =1, ..., n+1, are strongly semismooth@t x).
Apparently,H; is a strongly semismooth function because, foraay (e, y) € i x R",

Hi(z) = e. Next, we consideH;, i = 2,...,n + 1. By noting thaty: %% — % is

a (strongly) semismooth function [30, Lemma 3.1], and that the composition of two
semismooth functions is a semismooth function we concludedhat=2, ..., n+1,

are semismooth functions. ' (-) is Lipschitz continuous in a neighborhood of a point

x € M, thenF is strongly semismooth &t, x) € R, where for anyz = (¢, y) €
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N x N, F(2) := F.(y). Hence by Theorem 19 of [14] we can conclude thit
i =2

proof. O

3. A Regularization Newton Method

Chooses € (0, o0) andy € (0, 1) suchthatye < 1. Lett € [%, 1llandletz:= (£,0)
N x R". Definep: R — R, by

B(2) :=ymin{l, f(2)'}.
Let
Q={z=(e,X) e R xR & > B(D)&}.
Then, because, for aryye R"+1, B(2) < v, it follows that, for anyx € R",
(e,X) € Q.
We prove in what follows that if we choose the initial poifit= (g, x°), wherex® e R"
is an arbitrary point, then the sequence of iterates generated by Algorithm 3.1, which
is introduced later, will remain i. This is an important feature because through this
neighborhood we can prevenfrom approaching 0 too fast and thus avoid the iterates
converging to a nonsolution point.
Proposition 3.1. The following relations hold
Hz=0 <= B@=0 < H@=B0z2
Proof. It follows from the definitions oH () and8(-) that
H(z=0 <«<— B@=0 and B(2=0 — H@ =2z
Then we only need to prove
H2 =82z = pB@=0
FromH (z2) = B(2)zwe have
e=p(@2Eé and G(z) =0.
Hence, from the definitions of (-) and(-) and the fact thaye < 1, we get
f@) =e?+1G@I? =& = (%% < y?&% < L.
Hence,

B2 =y (@' =yp@?E?. (3.1)
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If B(z) # 0, it follows from (3.1) and the fagd(z) < y that
1=yp@* " <y,

which contradicts the fact thate < 1. This contradiction completes our proof. O

Algorithm 3.1.

Step 0. Choose constardtsz (0, 1), t € [3, 1], ando € (0, 3). Lete® := &, x° € %"
be an arbitrary point ankl := 0.

Step 1. IfH (Z¢) = 0, then stop. Otherwise, I := 8(Z) = y min{1, f(Z)}.

Step 2. Choos¥ € 9H (Z) and computeAZ¢ = (AeX, Ax¥) € it x R" by

H(Z) + WAZS = Bz (3.2)
Step 3. Lety be the smallest nonnegative intetysatisfying
f(ZX+68'AZ) <[1—20(1—y&)s' (2. (3.3)

Definez<t! := ZK 4 s A Z¥.
Step 4. Replackbyk + 1 and go to Step 1.

Remark. (i) The direction Az computed in (3.2) is an approximated generalized
Newton direction oH atZ* becausg,z is introduced in the right-hand side of (3.2). To
introducefyz to (3.2) has two benefits: (a) it ensures that4lare positive, and (b) it
keeps the whole sequence of itergt#s in Q, see Propositions 3.2—3.4. As we claimed
in the Introduction, (b) plays an important role in proving the global convergence of
Algorithm 3.1 under the assumption tHats a Py-function only. It is noted tha® does
no appear in our algorithm and thus it does not need additional work to guarantee (b).
(ii) The idea of introducing one or several parameters in the reformulated systems
as free variables is not new, see, for example, [18], [31], [32], and [19]. Here we adopted
the approach developed in [32] on smoothing methods mainly because it guarantees both
features (a) and (b) in (i).
(i) ForanyV € 0H(2),z = (g, X) € R x R" there exists &/ = (W, Wy) € dG(2)
with W, € 5ii" andW, € R™" such that

1 0
V=(w w)

Suppose thaF is a Py-function. Then, for anx € %" ande > 0, F’(X) is a Py-matrix
andF/(x) is a P-matrix. Hence, for anx € %" ande > 0, Wy is nonsingular, refer to
Proposition 3.2 of [20] for a proof. It thus follows that &l € 9H (z) are nonsingular,
z € R,y x R". Hence, from (3.2), for an > 0 ands* > 0, there exists 8V € dG(Z¥)
such that

(Vo(ZNTAZ = 2G(Z)TWeAZ = —2G(Z)TG(ZF) = —2¢(Z). (3.4)
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Proposition 3.2. Suppose that F is afunction Then for any k > 0, if zX =
(€%, x¥) € M, x R", then Algorithm3.1is well defined at t iteration and #t1 ¢
Ny x RO,

Proof. First, from Proposition 3.1 and thet € 9%, we have

Bx = B(Z) > 0.
By using (3.2) in Algorithm 3.1, we get

Agk = —eX + Byé. (3.5)
Hence, for any € [0, 1], we have

At oA = (1 —a)e + apeE e Ry, (3.6)

Then, from (3.6), (3.2), and the fact tha¢z) = y min{1, f(2)!} < y f (202 (note that
t [, 1]), for anya € [0, 1] we have

(€ +aAe)? = [(1 — a)e* + aBiE]?
= (1—a)%(£9% + 2(1 — a)afre*s + a?p2e2
< (1 - a)*(e")% + 20pe s + O(e?)
< (1— )% + 20y F(Z9Y?H(@)IE + O(?)
= (1 —20)(? + 2ayE f(Z) + O@@?). (3.7)

Define
9(@) = o(Z + aAZ") — p(Z) — a(Ve(Z) T AZ~.
Sinceg(-) is continuously differentiable at argf € %",
g(o) = o(a).
Then, from (3.4) and (3.2), for any € [0, 1] we have

IG(Z + aAZ)|? = p(Z + 2 AZ)
= @(Z) + a(Vo(Z) T AZ + g(a)
= @(Z) — 209(Z) + o(a)
= (1 - 20)¢(Z) + o). (3.8)

It then follows from (3.7) and (3.8) that, for all € [0, 1], we have

f(ZX 4+ aAZ) = |HEZ +arZd|?
= (" + A + |G + oA |?
< (1—20)(e%? + 2ay& £ (Z) 4+ (1 — 20)|G(Z) || + 0o()
= (1—2a) f(Z) + 20y& f (Z) + o(e)
=[1-21-y&a] (@) + o). (3.9)
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The inequality (3.9) shows that there exists a positive nuraber(0, 1] such that, for
alla € [0, &],

f(ZX+aAZ) <[1-201—ys)a] f(Z),

which completes our proof. O

Proposition 3.3. Suppose that F is agFfunction Foreach k> 0,if ¢ ¢ i, ,, 7 € Q,
then for any € [0, 1] such that
f(ZX+aAZ) <[1—201 - y&)a] f(Z), (3.10)

it holds that ¥ + a AZ¢ € Q.

Proof. We prove this proposition by considering the following two cases:

() f(Z > 1. Thenpy = y. It therefore follows fromz“ € € and B(z) =
y min{1, f(2)!} < y for anyz e """+ that, for alla € [0, 1], we have

Mt aA — B+ aAZ)E > 1 — a)e + apiE — yE
> (- a)Bké +apfke — ye
=AQ-a)ye+aye—ye
=0. (3.11)

(i) f(z% <1. Then, forany € [0, 1] satisfying (3.10), we have

f(ZX+aAZ) <[1-20(1—y&)a]f(Z) <1 (3.12)
So, for anyx € [0, 1] satisfying (3.10),

B(Z 4+ aAZ) = yf (X +aAZY.

Hence, again becaugk e , by using the first inequality in (3.12), for amye [0, 1]
satisfying (3.10) we have
Mt aA — B+ aA)E = L — )X+ apiE — y T (X +aA)E

> (1—a)peé + afE—y[1-20 (1—y&)a] f(2)'E
= BE — y[1 - 20(1— y&)a]' f(2)'e
=yf(@)Ve—y[l—20(1—y&)a]' f(Z)'E
=y{1-[1-20(1—y&)]'}f(@)'e
> 0. (3.13)

Thus, by combining (3.11) and (3.13), we have proved that, far &ll[0, 1] satisfying
(3.10),

X+ aAZ e Q.

This completes our proof. O
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Proposition 3.4. Suppose that F is agFfunction Then AlgorithnB.1is not finite and
generates a sequen¢e} with e¢ € R, {Z} € Q for all k.

Proof. First, because® = (&, x% e Q, we have from Propositions 3.2 and 3.3
thatz! is well definedg! € %, andz! € Q. Then, by repeatedly resorting to Propo-

g . . . . k
sitions 3.2 and 3.3, we can prove that an infinite sequéri¢ds generateds® e Ry,

andz¢ € Q. O

4. Global Convergence

Lemma 4.1. Suppose that F is agFfunction and thafz* = (X, x¥) € %t x ®\"} is an
infinite sequence generated by AlgoritBrt. Then for any k> 0,

0<el<ek<p (4.1)

Proof. First,¢® = & > 0. Then, from the design of Algorithm 3.1 and that, for any
ze R B(2) = y min{l, f(2)'} <y, we have

el = (1—-689e0 4 5"8(0)e < (1— 8"z + 8oy <.

Hence (4.1) holds fok = 0. Suppose that (4.1) holds fer=i — 1. We now prove that
(4.1) holds fork = i. From the design of Algorithm 3.1 we have

gt =1 -8 +8B(7)z.
Since, from Proposition 3.4 € Q, we haves' > g(Z)z. Thus,
dtt<@—6")e +5e =&
and
gl > 1-8Mp(@)e+8"p(Z)e = B(Z)E > 0.
So, (4.1) holds fok = i. We complete our proof. O

Theorem 4.1. Suppose that F is agHfunction Then Algorithm3.1is not finite and
generates a sequen¢z} with

Jim f(Z) = 0. (4.2)
In particular, any accumulation poirt of{z} is a solution of Hz) = 0.

Proof. It follows from Proposition 3.4 that an infinite sequeriz§ is generated such
that {Z} € Q. From the design of Algorithm 3.1f (1) < f(Z¥) for all k > 0.
Hence the two sequencéd ()} and {8(Z*)} are monotonically decreasing. Since
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f (24, B(Z) > 0 (k > 0), there existf, > 0 such thatf (Z*) — f andg(z*) — B

ask — oo. If f = 0, then we obtain the desired result. Suppose that 0. Then

B > 0.Since{Z} € Q, X > B(Z)E. It then follows from Lemma 4.1 that> X > f&.
Hence, by Proposition 2.1, the infinite sequef®¢ must be bounded because otherwise
{f(Z)} must be unbounded, which is impossible by the monotonicity decreasing prop-
erty of { f (Z)}. Then there exists at least one accumulation ppiat(, X) € % x R"

of {ZX} such that e [BE, £]. By taking a subsequence if necessary, we may assume
that {z“} converges t@. It is easy to see thaf = f(2), 8(2) = B, andz € Q. Then
anyV € dH(2) are nonsingular because> 0 andF is a Py-function. Hence, there
exists a closed neighbourhodd(Z) of Z such that for ang = (¢, x) € N'(2) we have

e € M, and that allvV € 9H(2) are nonsingular. For argre A (Z) andV € dH (2),

let Az = (Ag, AX) € N x R" be the unigue solution of the following equation:

H@ +VAz=8(2z (4.3)
and, for anyx € [0, 1], define

9z(0) = 9(z+aA2) — 9(2) — a(Ve(2)' Az.
From (4.3), for anyg € N'(2),

Ae = —¢ + B(2)¢.
Then, for alle € [0, 1] and allz € N (2),

e+ale=(1—a)e+af(2)E € Ry (4.4)

It follows from the Mean Value Theorem that
1
Oz(a) = a/ [0 (z+ 6aAZ) — ¢’ (2)]AZz D).
0

Sincegy’ () is uniformly continuous oV (2) and{Az} is bounded for alt € N (2) (refer
to Proposition 3.1 of [33] for a proof),

im 11920l /e = 0.

Then, from (4.4), (4.3), and the fact thatz) < yf(2)/?, for all « € [0, 1] and all
z € N'(2), we have

(e +aAe)? =[(1—a)e + af(2)E]?
=1—w)%?+2(1 — 0)af(2)et + a®B(2)%E>
< (1—a)?e? + 20B(2)eE + O(a?)
<(1-a)2?+2ayf@Y?H @)z + O@@?)
= (1—a)’e® + 2aye f(2) + O(a?) (4.5)
and

IG(zZ+ aA2)|? = p(z+ aA2)
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= 9@ +a(Ve(2) Az + gy(a)
= ¢(2) — 209(2) + 0(cx)
= (1-2w)¢(2) + o(a). (4.6)

It then follows from (4.5) and (4.6) that, for all € [0, 1] and allz € N (Z), we have

f(z4+aAz) = |H(Z+aA2)|?
= (¢ + ale)’ + ¢(z+ aAz)
< (1—a)2e? 4+ 20yef(2) + (1 — a)?0(2) + o(a) + O(?)
=1 —a)?f(2) 4+ 2ayef(2) + o(x)
=1-20)f(2) + 2y f(2) + o(x)
=[1-21-y&a]f(2) + o). 4.7

Then from inequality (4.7) we can find a positive numbee (0, 1] such that, for all
a e[0,a]and allz e N (2),

fz+aA2) <[1—-20(1—ye)a]f(2).
Therefore, for a nonnegative intedesuch thas' e (0, ], we have
f(ZX4+8'AZ) <[1—20(1—y8)5']f(2)

for all sufficiently largek. Then, for every sufficiently largk, we see that® < | and
hences's > §'. Therefore,

f(zk+l) < [1 _ 20,(1 _ yg,)alk] f(Zk) < [1 — 20'(1 — )/5)8'] f(zk)

for all sufficiently largek. This contradicts the fact that the sequeftéz¥)} converges

to f > 0. This contradiction shows that (4.2) must hold. In particular, if there exists an
accumulation poink of {Z}, then, by the continuity of , f(Z) = 0, and soH () = 0.

So, we complete our proof. O

Theorem 4.1 shows that (4.2) holdg$iis a Py-function and any accumulation point
7 of {Z} is a solution of NCPE). This does not mean th&t*} has an accumulation
point. Apparently, if NCPF) has no solution{z} cannot have an accumulation point.
In order to makez<} have an accumulation point we at least need to assume that the
solution set of NCHE) is nonempty.

Theorem 4.2. Suppose that F is agFfunction and that the solution s&tof NCP(F)
is nonempty and boundetihen the infinite sequen¢&} generated by Algorithr8.1is
bounded and any accumulation point{af} is a solution of Hz) = 0.

Proof. From Theorem 4.1, ligd, o, f(Z%) = 0. Thenek — 0 andgp(ek, xX) — 0 as
k — oco. By Lemma 4.1, for ank > 0,k > 0. Then by applying Lemma 2.3 we obtain
that{x*} is bounded and any accumulation poin{®f} is a solution of NCPF). Since
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limi_, 00 €€ = 0, we have in fact proved th&*} is bounded and any accumulation point
of {Z} is a solution ofH (z) = 0. O

Corollary 4.1. Suppose that F is a monotone function and that there exists a strictly
feasible point, i.e,, X > 0, F(X) > 0. Then the infinite sequen¢e<} generated by
Algorithm3.1is bounded and any accumulation point{#f} is a solution of Hz) =

Proof. Since NCPF) has a strictly feasible point, its solution sgis nonempty and
bounded [17, Theorem 3.4]. By noting that a monotone function is alwBysfanction,
we obtain the results of this theorem by Theorem 4.2. O

In Theorem 4.2 we did not state whether the sequé¢rgds bounded or not if the
solution set of NCFF) is nonempty but unbounded. Howeverifis monotone, we can
have such a result.

Theorem 4.3. Suppose that F is a monotone function and in Algorithfrthe param-
eter t is set to be, i.e, B(2) = y min{1, f(2)Y/2}. Then if the iteration sequencgz®}
is boundedthe solution se§ of NCP(F) is nonemptyconverselyif the solution setS
is nonempty an@2.5)in Proposition2.2 holds the iteration sequencg*} is bounded
and any accumulation point ¢} is a solution of Hz) =

Proof. First, we suppose th&t*} is bounded. Then there exists at least one accumula-
tion point, sayz* = (¢*, x*) € % x R". By Theorem 4.17* is a solution ofH (z) = 0.
Thene* = 0 andx* is a solution of NCPE). So,S is nonempty.

Conversely, suppose that the solutionS&t nonempty. For eadh> 0, letx(s¥) be
a solution of NCPE.«), thenx(g¥) converges tx* = arg mines [|X]|. In Theorem 4.1,
we have proved that lign, o [|H (¢, X)|| = 0. Then there existska> 0 such that, for
allk > k, we have

e > B(29E = y 1 (Z9Y% = y[(£")? + IG (" X917 V2.

Hence,
/1 232
1G(EX, x| < Yo 278 pk — ek
Yé
with
C:= \% 1- J/ZéZ

yE

Thus by Proposition 2.2 the sequen¢e®} must be bounded. Then, because
im0 f(ZX) = 0 by Theorem 4.15% — 0 ask — oo, we conclude that the sequence
{Z} is bounded and from Theorem 4.1 any accumulation poirit'gfis a solution of
H(z) =0. O
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5. Superlinear and Quadratic Convergence

In this section we discuss the superlinear and quadratic convergence of Algorithm 3.1 by
assuming that there is a locally unique solution. By a recent result [7], [16] this, under
the assumption thdt is a Py-function, is equivalent to saying that NGP)(has only one
solution, and, thus$ is bounded. We then in this section assume the pararetet,
i.e.,8(2) = y min{l, f(2)}.

Theorem 5.1. Suppose that F is agFfunction and that the solution s&tof NCP(F)
is nonempty and boundeBuppose that'z:= (¢*, x*) € % x R" is an accumulation
point of the infinite sequende®} generated by Algorithr8.1and that all V e 9H (z)
are nonsingularThen the whole sequen{z} converges to’z

127t = Z°|| = o(| Z — Z*) (5.1)
and

1 = o(eh). (5.2)
Furthermoreif F’ is locally Lipschitz around % then

12 — 2| = 0|2 — z*|1%) (5.3)
and

= 092 (5.4)

Proof. First,from Theorem4.%" isasolutionoH (z) = 0. Then, from Proposition 3.1
of [33], for all z sufficiently close ta* and for allV € 9H (2),

V=i = O).

Under the assumptions, from Lemma 2.6 we know tHats semismooth (strongly
semismooth, respectively) at. Then, from Lemma 2.5 for* sufficiently close taz*,
we have

124+ AZ~Z|| = |1+ V U—H(Z) + B2 -2
= O(|IH(Z) = H(Z") = Vi(Z*~ )|+ Bcé)
= o(|Z*~Z* N+ O(f(Z) (=0(|Z*~Z*|»+O(f(Z))). (5.5)

Then, because#l is locally Lipschitz continuous arourrd, for all Z“ close toz*,
(@9 = IH@Y1? = 012 - Z|?). (5.6)

Therefore, from (5.5) and (5.6), becaudeis semismooth (strongly semismooth, re-
spectively) atz*, for all Z¢ sufficiently close taz*,

12+ AZ" — | = o(IZ“ — ') (= O(IZ* — Z*||?)). (5.7)
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By following the proof of Theorem 3.1 of [28], for atf sufficiently close t@*, we have
12 =z = O(IH () — H@)). (5.8)

Hence, becausk is semismooth (strongly semismooth, respectivelyy“afor all z¢
sufficiently close ta*, we have

f(ZX+ AZ) = ||HEZ + AZY)?
= O(| X+ AZ — Z||®)
=o(|Z -z (= 0(Z—z|*)
=0o(lHEZ) —H@)IDH (= O(IHZ) — H@)I*)
=o(f(Z) (= O(f(Z)?). (5.9)
Therefore, for alZ* sufficiently close ta* we have
Zk+1 — Zk + AZk,
which, together with (5.7), proves (5.1), andHifis locally Lipschitz around*, proves
(5.3).

Next, from the definition of8x and the fact that* — z* ask — oo, for all k
sufficiently large,

Bk =y (@) =yIHE)I”

Also, because, for al sufficiently large 2“1 = zZX + AZ¥, we have for alk sufficiently
large that

e = gk 4 Ak = .
Hence, for alk sufficiently large,
£ =y IH@9I%,
which, together with (5.1), (5.6), and (5.8), gives

im £ IHE@IP L H@) - H@)IP
koo K keoo [HEZ D)2 koo [HEZ D) — H@Z)|2

This proves (5.2). IF' is locally Lipschitz around*, then from the above argument we
can easily get (5.4). So, we complete our proof. O

In Theorem 5.1 we assumed that\dlle dH (z*) are nonsingular at a solution point
z* of H(z) = 0. Next, we give a sufficient condition such that this assumption is satisfied.
Letz* = (¢*, x*) € R x R" be a solution point oH (z) = 0. Then, apparently,* = 0
andx* is a solution of NCPI). For convenience of handling notation we denote

Z:={i|l0<x & FKXx")=0,ieN}
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J={i|x"=0& F(x*) =0, i€ N},
and
K:={ilx"=0& /F(x*) >0, i € N}.
Then
ZUJUK =N.
By rearrangement we assume tRafx*) can be rewritten as
F(xzz F(XYzg F(XM)zc
F(x)=|FX)gz FXNg7 F&X)gx
F(xcz FXcg F(XMkx

The nonlinear complementarity problem is said toReegular atx* if F'(x*)zz is
nonsingular and its Schur-complement in the matrix

(F/(X*)II F/(X*)I.7>
F(x)gr F&XMgs

is a P-matrix, see [34].

Proposition 5.1. Suppose that*z= (¢*, x*) € R x R" is a solution of Hz) = 0.
If the nonlinear complementarity problem is R-regular &t then all V € 9H (z*) are
nonsingular

Proof. It is easy to see that for arly € dH(z*) there exists &V = (W, W) €
aG(z*) with W, € R" andW, € R"™*" such that

1 0
v=(b9)
Hence, proving/ is nonsingular is equivalent to provilg, is nonsingular. Since* = 0,

by using standard analysis (see, e.g., Proposition 3.2 of [10]), we can prove that all such
generated matricé&l are nonsingular. Then we complete our proof. O

The above proposition shows that all the conclusions of Theorem 5.1 hold if the
assumption that aV € dH (z*) are nonsingular is replaced by that the nonlinear com-
plementarity problem iR-regular atx*.

6. Numerical Results

In this section we present some numerical experiments for the nonmonotone line search
version of Algorithm 3.1: Step 3 is replaced by
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Step 3. Letl be the smallest nonnegative integysatisfying

X+8'aeq (6.1)
and
f(ZX4+8'AZ) <W—201-y5)s f(Z), (6.2)

where)V is any value satisfying

f(Z)<W< max &)

i=0,1,...,Mk
and M¥ are nonnegative integers bounded above fok allich thatM* < k.
Definez+! .= z¢ 4 sk AZ-.

Remark. (i) We choose a nonmonotone line search here because in most cases it
increases the stability of algorithms.

(ii) The requirement (6.1) is for guaranteeing the global convergence of the algo-
rithm. This requirement automatically holds for our algorithm with a monotone line
search, see Proposition 3.3. The consistency between (6.1) and (6.2) can be seen clearly
from Propositions 3.2 and 3.3.

In the implementation we choo3#' as follows:

(1) Setw = f (2% at the beginning of the algorithm.
(2) Keep the value ofV fixed as long as

k : k=]
f(Z° < J__Bnlln : f (. (6.3)

......

(3) If (6.3) is not satisfied at thieth iteration, setV = f (z9).

For a detailed description of the above nonmonotone line search technique and its mo-
tivation, see [4].

The above algorithm was implemented in Matlab and run on a DEC Alpha Server
8200. Throughout the computational experiments, the parameters used in the algorithm
weres = 05,0 =05x10%t =1, = 1,andy = 0.2. We usedf (z) < 10" *?as the
stopping rule. The numerical results are summarized in Table 1 for different problems
tested. In Table 1, Dim denotes the number of the variables in the problem, Start. point
denotes the starting point, Iter denotes the number of iterations, which is also equal to the
number of Jacobian evaluations for the functfopNF denotes the number of function
evaluations for the functiofr, and FF denotes the value bfat the final iterate. In the
following, we give a brief description of the tested problems. The source reported for
the problem is not necessarily the original one.

Problem 1. This is the Kojima-Shindo problem, see [26].s not aPy-function. This
problem has two solutions! = (+/6/2, 0, 0, 0.5) andx? = (1, 0, 3, 0).
Starting points(a) (1, 1, 1, 1), (b) (-1, -1, -1, —1), (¢) (0, 0, 0, 0).
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Table 1. Numerical results for the algorithm.

Problem Dim. Start. point Iter NF FF

Problem 1 4 a 8 13 221023
4 b 10 15 2.%10°13

4 c fail
Problem 2 10,000 a 9 11 430716
10,000 b 9 12 1.810°13
Problem 3 5 a 22 23 2310718
5 b 19 23 1.5%10°%
Problem 4 4 a 5 6 15610716
4 b 5 6 1.5¢10°16
Problem 5 10 a 9 10 321013
Problem 6a 4 a 6 9 8:210713
4 b 5 6 431013
4 c 6 9 8.x10°13
Problem 6b 4 a 8 12 2610715
4 b 6 7 4.6¢10°1°
4 c 8 12 2.510°15
Problem 7 4 a 20 117 341024
4 b 7 12 4.%10°16
Problem 8 42 a 13 15 210717
42 b 12 16 1510714
Problem 9 50 a 27 68 6:610°13
50 b 29 67 6.610°13
Problem 10 1,000 a 8 14 63018
Problem 11 106 a 31 61 56013

Problem 2. This is a linear complementarity problem. See the first example of [20]
for the data.
Starting points(a) (0, 0,0, 0), (b) (1, 1, 1, 1).

Problem 3. This is the fourth example of [42]. This problem represent&ik& con-
ditions for a convex programming problem involving exponentials. The resukiig
monotone on the positive orthant but not e@on R".

Starting points(a) (0,0, ...,0), (b) (1,1,...,1).

Problem 4. Thisis amodification of the Mathiesen example of a Walrasian equilibrium
model as suggested in[2H.is not defined everywhere and does not belong to any known
class of functions.

Starting points(a) (0, 0, 0, 0), (b) (1,1, 1, 1).

Problem 5. This is the Nash—Cournot production problem [ZB]is not twice contin-
uously differentiableF is a P-function on the strictly positive orthant.
Starting point (a) (1, 1, 1, 1).

Problem 6. This is a Mathiesen equilibrium problem [23], [26], in whi¢his not
defined everywhere. Two set of constants were uged,, bs) = (0.75, 1, 0.5) and
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(o, by, b3) = (0.9, 5, 3). We use Problem 6a and 6b to represent this problem with these
two set of constants, respectively.
Starting points(a) (1, 1, 1, 1), (b) (0.5, 0.5, 0.5, 0.5), (c) (0, 0, 0, 0).

Problem 7. This is the Kojima—Josephy problem, see [Blis not aPy-function. The
problem has a unigue solution which is ri®tregular.
Starting points(a) (0, 0,0, 0), (b) (1,1, 1, 1).

Problem 8. This is a problem arising from a spatial equilibrium model, see [EGk
a P-function and the unique solution R-regular.
Starting points(a) (0,0, ...,0), (b) (1,1,...,1).

Problem 9. This is a traffic equilibrium problem with elastic demand, see [26].
Starting points (a) All the components are 0 except, Xz, X3, X10, X11, X20, X21, X22,
X29, X30, X40, X45 Which are 1 Xzg, Xa2, Xa3, Xa6 Which are 7 Xa1, Xa7, Xa8, X50 Which are
6, andxs4 andxsg Which are 10, (b)0, 0, ..., 0).

Problem 10. This is the third problem of [42], which is a linear complementarity
problem withF (x) = Mx + g. M is not even semimonotone and none of the standard
algebraic techniques can solve it. lgebe the vector with-1 in the eighth coordinate
and zeros elsewhere. The continuation method of [42] fails on this problem.

Starting point (a) (1, 1, ..., 1).

Problem 11. This is the 106-variable Von Tinien problem [26], [45]. This problem

is a challenge to the algorithms designed in the literature for solving nonlinear comple-
mentarity problems. The data of this problem was down-loaded from Paul Tseng’s home
page http://www.math.washington.edtseng/, where the data was originally obtained
from Jong-Shi Pang.

Starting point (a) (100, 100, ..., 100),

The numerical results reported in Table 1 showed that the algorithm proposed in
this paper works well for Problems 1-10. For the challenging Problem 11, things seem
complicated because it was observed during the process of computation that some ele-
ments of the iteration sequence become negative such that the function may take complex
values. In such cases we still allowed our algorithm to continue to see what would hap-
pen. Surprisingly, our algorithm stopped in a relatively small number of iterations with
a very small residue. We then checked the approximate solysatained from our
algorithm and this time, not surprisingly, we found that it is not a real number but one
with a relatively small imaginary part. Let(Rs) denote the real part ofsand denote a
new pointxs' by

x§ = max10-%°, R(xs)i}, i=12...,106 (6.4)
This new point is a very good approximation to the solution with

Imin{xs, F(x$)}|e < 1.3 x 107°.
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This is the first time that such a good approximation point is obtained for the 106-variable
Von Thiinen problem. All the components &k are around 16° ~ 10-2° except
XS5, = 0.0032834,xs,, = 0.0231250,xs,; = 0.0133340,xs,,, = 0.0061591,
XS5 = 0.0033426, anas,,, = 0.0019377. If in (6.4) 10%° is replaced by 16'°, then

we can only get a points with

Imin{xs, F(xs)}|loc < 6.8 x 107°.

This shows that the 106-variable Von trien problem is very sensitive to the change
of variable and its implementation for various algorithms must be preprocessed
considerably.

7. Conclusions

In this paper we constructed a regularization Newton method for solving nonlinear com-
plementarity problems under the assumption thét a Py-function by using the recent
developments on regularization methods and smoothing methods. The convergence re-
sults discussed in this paper are very favorable. Even stronger results have been obtained
for monotone complementarity problems. The numerical results showed that our algo-
rithm works well for the problems tested. With regard to the nice theoretical results of
our algorithm, the computational results reported are very encouraging. We expect our
algorithm can also solve large-scale problems well.

By utilizing some box constrained variational inequality problem (BVIP) functions
(see [29] for several interesting BVIP functions), the approach developed in this paper
can also be used to solve the BVIP: fixtle X such that

x—x9TF(x*) >0 forall xe X, (7.1)

whereX ;= {x e "l < x <u},l € (RU{—0o0}}",u € {RU{oo}}", andl < u. See
[25] and [11] for various applications of BVIPs along with nonlinear complementarity
problems.

There are a few nonlinear complementarity and variational inequality problems in
which the mappingrF is not well defined outside its feasible region [11]. Then our
algorithm for these problems is not well defined on the whole spéicélowever, the
approach developed in [32] on smoothing methods provided a way to circumvent this
difficulty. We leave these as future research topics.
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