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1 Introduction

Let U, W, X, Y, and Z be finite-dimensional real Hilbert spaces, each equipped
with an inner product 〈·, ·〉 and its corresponding norm ‖ · ‖. In this paper,
we focus on the ergodic convergence of the Peaceman-Rachford (PR) splitting
method for solving the following convex optimization problem (COP):

min
y∈Y,z∈Z

f1(y) + f2(z)

s.t. B1y +B2z = c,
(1)

where f1 : Y → (−∞,+∞] and f2 : Z → (−∞,+∞] are proper closed convex
functions, B1 : Y → X and B2 : Z → X are given linear operators, and c ∈ X

is a given vector. Let σ > 0 be a given positive parameter. The augmented
Lagrangian function for problem (1) is defined, for any (y, z, x) ∈ Y× Z × X,
as

Lσ(y, z;x) := f1(y) + f2(z) + 〈x,B1y +B2z − c〉+
σ

2
‖B1y +B2z − c‖2.

The dual of problem (1) is

max
x∈X

{−f∗
1 (−B∗

1x) − f∗
2 (−B∗

2x)− 〈c, x〉} . (2)

Under mild constraint qualifications [19, Theorem 23.8], solving the dual prob-
lem (2) is equivalent to solving the following monotone inclusion problem
(MIP):

0 ∈ (G1 + G2)x, x ∈ X, (3)

where G1(x) := ∂ (f∗
1 ◦ (−B∗

1)) (x) + c and G2(x) := ∂(f∗
2 ◦ (−B∗

2))(x). For
any given maximal monotone operator G : X → 2X, we denote its resolvent
by JG := (I + G)−1, where I is the identity operator. The relaxed Douglas-
Rachford (DR) splitting method with the relaxation factor ρ ∈ (0, 2] [15] for
solving problem (3) is given by

uk+1 = F̂DR
ρ (uk) :=

(
I+ρ

(
JσG1

◦ (2JσG2
−I)−JσG2

))
uk, k = 0, 1, . . . , (4)

where u0 ∈ X is an initial point. This is equivalent to the following iterative
scheme: for any k ≥ 0,





x̄k
1 = JσG2

(uk),
x̄k
2 = JσG1

(2x̄k
1 − uk),

uk+1 = uk + ρ(x̄k
2 − x̄k

1).

The case ρ = 2 is referred to as the PR splitting method, while ρ = 1 corre-
sponds to the widely studied DR splitting method.

Building on the relaxed DR splitting method, Eckstein and Bertsekas
[11] introduced the generalized alternating direction method of multipliers
(GADMM) for solving the COP (1). Later, in extending the semi-proximal
ADMM (sPADMM) framework with larger dual step lengths studied in [12] to
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Algorithm 1 A pADMM method for solving COP (1)
1: Input: Let T1 and T2 be two self-adjoint, positive semidefinite linear operators on Y

and Z, respectively. Denote w = (y, z, x) and w̄ = (ȳ, z̄, x̄). Select an initial point w0 =
(y0, z0, x0) ∈ dom(f1) × dom(f2) × X. Set the parameters σ > 0 and ρ ∈ (0, 2].

2: for k = 0, 1, ..., do

3: Step 1. z̄k = argmin
z∈Z

{

Lσ

(

yk, z;xk
)

+ 1
2
‖z − zk‖2T2

}

;

4: Step 2. x̄k = xk + σ(B1yk + B2z̄k − c);

5: Step 3. ȳk = argmin
y∈Y

{

Lσ

(

y, z̄k; x̄k
)

+ 1
2
‖y − yk‖2T1

}

;

6: Step 4. wk+1 = (1− ρ)wk + ρw̄k;
7: end for

encompass the GADMM, Xiao et al. [24] proposed a preconditioned ADMM
(pADMM) with semi-proximal terms (or degenerate proximal ADMM) for
solving the COP (1), as described in Algorithm 1.

When T1 = 0 and T2 = 0, the pADMM with ρ = 2 reduces to the PR
splitting method [11,24], while the pADMM with ρ = 1 corresponds to the
DR splitting method [13]. For general positive semidefinite linear operators T1
and T2, we refer to the pADMM as the PR splitting method with semi-proximal
terms when ρ = 2, or as the DR splitting method with semi-proximal terms
when ρ = 1. These semi-proximal terms are crucial for simplifying subproblem
solutions and improving the scalability of the PR and DR splitting methods,
especially for large-scale COPs (1).

It has long been observed that the PR splitting method is typically faster
than the DR splitting method whenever it converges point-wisely [13,15]. Un-

fortunately, since F̂DR
2 defined in (4) is merely a non-expansive operator, the

PR splitting method does not necessarily converge point-wisely for general
MIPs (3) (see e.g., [16]). Consequently, previous studies have primarily fo-
cused on studying the point-wise convergence of the PR splitting method un-
der strong monotonicity assumptions on G1 or G2 [10,14,16,22]. However, these
strong monotonicity conditions are rarely met in practice, particularly for im-
portant problem classes like COPs (1), which significantly limit the practical
applicability of the PR splitting method. Moreover, motivated by the impres-
sive performance of the restarted ergodic primal-dual hybrid gradient method
for linear programming (LP) [2], we evaluate the restarted ergodic PR splitting
method with semi-proximal terms on LP instances (see Section 4). Numerical
results show that it significantly outperforms both the point-wise and ergodic
sequences of the DR splitting method with semi-proximal terms.

Let the sequences {wt = (yt, zt, xt)} and {w̄t = (ȳt, z̄t, x̄t)} be generated
by the pADMM in Algorithm 1. Without imposing any strong monotonicity
assumption, here we focus on analyzing the convergence of the two ergodic
sequences {wk

a = (yka , z
k
a , x

k
a)} and {w̄k

a = (ȳka , z̄
k
a , x̄

k
a)}, where for each k ≥ 0,

(yka , z
k
a , x

k
a) :=

1

k + 1

k∑

t=0

(yt, zt, xt) and (ȳka , z̄
k
a , x̄

k
a) :=

1

k + 1

k∑

t=0

(ȳt, z̄t, x̄t).
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By applying Baillon’s non-linear ergodic theorem [3] to the non-expansive op-

erator F̂DR
2 in (4), the convergence of the ergodic sequence {uk

a := 1
k+1

∑k

t=0 u
t}

can be directly obtained in the PR splitting method to solve MIP (3). Further-
more, the continuity of the resolvent operator JσG2

(·) ensures the convergence
of the sequence {JσG2

(uk
a)}. However, these results do not imply the conver-

gence of {w̄k
a} or {wk

a} of the PR splitting method to solve COP (1). One key
reason is that averaging and applying the resolvent operator cannot generally
be interchanged. An analytical example in Appendix A further highlights the
challenges of analyzing the ergodic sequence of the PR splitting method by
showing that the sequence {wk} generated by the PR splitting method for
solving COP (1) may be unbounded. To our knowledge, whether the ergodic
sequence of the PR splitting method converges to solve COP (1) remains an
unsolved question.

In this paper, we address this unsolved question by proving the conver-
gence of the ergodic sequence {w̄k

a} of the pADMM with ρ ∈ (0, 2], which
includes the PR splitting method with semi-proximal terms as a special case.
Specifically, by reformulating the pADMM as a degenerate proximal point al-
gorithm (dPPA) with a positive semidefinite preconditioner, as proposed in
[4], we establish the ergodic convergence of the pADMM by analyzing the
ergodic convergence of the dPPA with a relaxation factor ρ ∈ (0, 2]. Further-
more, numerical results on the LP benchmark dataset show that, with a restart
strategy, the ergodic sequence of the PR splitting method with semi-proximal
terms outperforms both the point-wise and ergodic sequences of the DR split-
ting method with semi-proximal terms. This empirical evidence highlights the
practical advantages of the ergodic sequence of the PR splitting method with
semi-proximal terms for solving large-scale COPs (1). To provide theoretical
justification for these findings, in Appendix B, we establish an ergodic iter-
ation complexity of O(1/k) for the PR splitting method with semi-proximal
terms, evaluated in terms of the objective error, the feasibility violation, and
the Karush-Kuhn-Tucker residual using the ε-subdifferential.

The remainder of this paper is organized as follows: Section 2 establishes
the ergodic convergence of the dPPA for ρ ∈ (0, 2]. Section 3 builds on this re-
sult to prove the ergodic convergence of the PR splitting method for COPs (1).
Section 4 presents numerical results on the LP benchmark dataset, highlight-
ing the superior performance of the PR splitting method’s ergodic sequence.
Finally, Section 5 concludes the paper.

Notation. For any convex function f : X → (−∞,+∞], we define its effec-
tive domain as dom(f) := {x ∈ X : f(x) < ∞}, its conjugate as f∗(x) :=
supz∈X

{〈x, z〉 − f(z)}, x ∈ X, and its subdifferential ∂f(x) = {v | f(z) ≥
f(x) + 〈v, x − z〉, ∀z ∈ X}, x ∈ X. Furthermore, consider a closed convex
set C ⊆ X. We express the Euclidean projection of x onto C as ΠC(x) :=
argmin{‖x − z‖ | z ∈ C}. Moreover, for a linear operator A : X → Y, its
adjoint is denoted by A∗ and λ1(AA

∗) represents the largest eigenvalue of
AA∗. Additionally, for any self-adjoint, positive semidefinite linear operator
M : X → X, we define the semi-norm as ‖x‖M :=

√
〈x, x〉M =

√
〈x,Mx〉 for
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any x ∈ X. Finally, for a non-expansive operator F̂ : X → X, the set of fixed
points of F̂ is denoted by Fix F̂ .

2 Ergodic convergence of the dPPA

Let T be a maximal monotone operator from W into itself. Consider the
following inclusion problem:

find w ∈ W such that 0 ∈ T w. (5)

Assume that M : W → W is an admissible preconditioner for the maximal
monotone operator T , that is, M is a linear, bounded, self-adjoint and positive
semidefinite operator such that T̂ := (M + T )−1M is single-valued and has
a full domain. For a given w0 ∈ W, the dPPA [4] for solving the inclusion
problem (5) is given by:

wk+1 = (1− ρ)wk + ρw̄k, w̄k = T̂ wk = (M+ T )−1Mwk, k = 0, 1, . . . , (6)

where ρ ∈ (0, 2]. When M is the identity mapping, the dPPA reduces to the
classical PPA introduced by Rockafellar in [20]. By carefully selecting M, the

computation of T̂ can be greatly simplified, as discussed in [4,23].
The global point-wise convergence of the dPPA for ρ ∈ (0, 2) has been

established by Bredies et al. [4] under the assumption that (M + T )−1 is L-
Lipschitz continuous, i.e., there exists a constant L ≥ 0 such that for all v1, v2
in the domain of (M+ T )−1,

‖(M+ T )−1v1 − (M+ T )−1v2‖ ≤ L‖v1 − v2‖.

This Lipschitz continuity assumption is met by many splitting algorithms,
including the pADMM, under mild conditions (see [4,23]). For ρ = 2, the
dPPA may fail to converge point-wisely for solving the inclusion problem (5)
without imposing additional assumptions, such as the strong monotonicity
of T . Instead, we focus on analyzing the global convergence of the following
ergodic sequences generated by the dPPA for ρ = 2, without requiring the
strong monotonicity of T :

wk
a =

1

k + 1

k∑

t=0

wt, w̄k
a =

1

k + 1

k∑

t=0

w̄t, ∀k ≥ 0, (7)

where the sequences {wt} and {w̄t} are generated by the dPPA (6). Recall that,
for a maximal monotone operator T : W → 2W and ε ≥ 0, the ε-enlargement
of T at w [5] is defined as

T ε(w) = {v ∈ W : 〈w − w′, v − v′〉 ≥ −ε, ∀(w′, v′) ∈ gph(T )},

where gph(T ) := {(w, v) ∈ W × W | v ∈ T w}. Using the ε-enlargement
of T , we can establish the following proposition on the ergodic convergence
properties of the dPPA.
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Proposition 1 Let T : W → 2W be a maximal monotone operator with
T −1(0) 6= ∅, and let M be an admissible preconditioner. Then the ergodic
sequences {w̄k

a} and {wk
a}, generated by the dPPA (6) with ρ ∈ (0, 2], satisfy

for all k ≥ 0 and w∗ ∈ T −1(0) that

(a) ‖w̄k
a − wk

a‖M ≤ 2
ρ(k+1)‖w

0 − w∗‖M;

(b) M(wk
a − w̄k

a) ∈ T ε̄ka(w̄k
a), where ε̄ka := 1

k+1

∑k

t=0〈w̄
t − w̄k

a , w
t − w̄t〉M and

0 ≤ ε̄ka ≤ 1
2ρ(k+1)‖w

0 − w∗‖2M.

Proof Note that T̂ is M-firmly non-expansive, as stated in [23, Proposition
2.3], meaning that

‖T̂ w − T̂ w′‖2M + ‖(I − T̂ )w − (I − T̂ )w′‖2M ≤ ‖w − w′‖2M, ∀w,w′ ∈ W.

From this property, we derive the following key inequality for the dPPA (6):

‖wk+1 −w∗‖2M ≤ ‖wk −w∗‖2M − ρ(2− ρ)‖wk − w̄k‖2M, ∀k ≥ 0, w∗ ∈ T −1(0).
(8)

Using this inequality and the scheme (6), we can complete the proof of state-
ment (a) by noticing that for any k ≥ 0 and w∗ ∈ T −1(0),

‖w̄k
a − wk

a‖M = ‖
1

k + 1

k∑

t=0

(w̄t − wt)‖M = ‖
1

k + 1

k∑

t=0

(wt+1 − wt)

ρ
‖M

=
1

ρ(k + 1)
‖wk+1 − w0‖M ≤

2

ρ(k + 1)
‖w0 − w∗‖M.

Moreover, for any (w′, v′) ∈ gph(T ), the definitions of wk
a and w̄k

a in (7), along
with the monotonicity of T , yield the following for any k ≥ 0:

〈w̄k
a − w′,M(wk

a − w̄k
a)− v′〉 =

1

k + 1

k∑

t=0

〈w̄t − w′,M(wk
a − w̄k

a)− v′〉

=
1

k + 1

k∑

t=0

(
〈w̄t − w′, (wk

a − w̄k
a)− (wt − w̄t)〉M

+〈w̄t − w′,M(wt − w̄t)− v′〉
)

≥
1

k + 1

k∑

t=0

〈
w̄t − w′, (wk

a − w̄k
a)− (wt − w̄t)

〉
M

=
1

k + 1

k∑

t=0

〈
w̄t − w̄k

a + w̄k
a − w′, (wk

a − w̄k
a)− (wt − w̄t)

〉
M

=
1

k + 1

k∑

t=0

〈
w̄t − w̄k

a , (w
k
a − w̄k

a)− (wt − w̄t)
〉
M

= −
1

k + 1

k∑

t=0

〈w̄t − w̄k
a , w

t − w̄t〉M = −ε̄ka.

(9)



Ergodical Peaceman-Rachford Splitting Method 7

It follows from the definition of the ε-enlargement of T that M(wk
a − w̄k

a) ∈

T ε̄ka(w̄k
a). Next, we prove that ε̄ka ≥ 0 for all k ≥ 0 by contradiction. Suppose

that ε̄ka < 0 for some k ≥ 0. Then, for any (w′, v′) ∈ gph(T ), from (9), we have

〈w̄k
a − w′,M(wk

a − w̄k
a)− v′〉 ≥ −ε̄ka > 0,

which, combined with the maximality of T , implies that (w̄k
a ,M(wk

a − w̄k
a)) ∈

gph(T ). Taking (w′, v′) = (w̄k
a ,M(wk

a − w̄k
a)), we obtain 0 ≥ −ε̄ka, which

contradicts the assumption εka < 0. Thus, ε̄ka ≥ 0 for all k ≥ 0.
Now, we establish an upper bound for ε̄ka for any k ≥ 0. By the scheme of

dPPA (6) and ρ ∈ (0, 2], we have

ε̄ka =
1

k + 1

k∑

t=0

〈wt − w̄t, w̄t − w̄k
a〉M

=
1

k + 1

k∑

t=0

(
〈
1

ρ
(wt − wt+1), wt −

1

ρ
(wt − wt+1)− w̄k

a〉M
)

=
1

k + 1

k∑

t=0

(
−

1

ρ2
‖wt − wt+1‖2M +

1

2ρ
‖wt − wt+1‖2M

+
1

2ρ
(‖wt − w̄k

a‖
2
M − ‖wt+1 − w̄k

a‖
2
M)

)

≤
1

k + 1

k∑

t=0

( 1

2ρ
(‖wt − w̄k

a‖
2
M − ‖wt+1 − w̄k

a‖
2
M)

)

=
1

2ρ(k + 1)

(
‖w0 − w̄k

a‖
2
M − ‖wk+1 − w̄k

a‖
2
M

)

=
1

2ρ(k + 1)

(
− ‖w0 − wk+1‖2M − 2〈wk+1 − w0, w0 − w̄k

a〉M
)

≤
1

2ρ(k + 1)

(
− ‖w0 − wk+1‖2M + 2‖wk+1 − w0‖M‖w0 − w̄k

a‖M
)
.

(10)

Using the convexity of ‖ · ‖M and (8), we obtain that

‖w0−w̄k
a‖M = ‖

1

k + 1

k∑

t=0

(w0−w̄t)‖M ≤
1

k + 1

k∑

t=0

‖w0−w̄t‖M ≤ 2‖w0−w∗‖M.

Combining this with (10), we derive for any k ≥ 0 that

ε̄ka ≤
1

2ρ(k + 1)

(
− ‖w0 − wk+1‖2M + 2‖wk+1 − w0‖M‖w0 − w∗‖M

)

≤
1

2ρ(k + 1)
‖w0 − w∗‖2M.

This completes the proof.

Based on Proposition 1, we can establish the convergence of ergodic sequence
{w̄k

a} generated by the dPPA (6) in Theorem 1.
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Theorem 1 Let T : W → 2W be a maximal monotone operator with T −1(0) 6=
∅, and let M be an admissible preconditioner such that (M + T )−1 is L-
Lipschitz continuous. Then, the ergodic sequence {w̄k

a} generated by the dPPA
(6) with ρ ∈ (0, 2] converges to a point in T −1(0).

Proof Suppose that M = CC∗ is a decomposition of M according to [4, Propo-
sition 2.3], where C : U → W is an injective operator. Since (M + T )−1 is
L-Lipschitz continuous and ‖C∗w‖ = ‖w‖M for every w ∈ W, we derive for all
w′ ∈ W and w∗ ∈ T −1(0) that

‖T̂ w′−T̂ w∗‖ = ‖(M+T )−1CC∗w′− (M+T )−1CC∗w∗‖ ≤ L‖C‖‖w′−w∗‖M.

Combining this with the M-firm non-expansiveness of T̂ [23, Proposition 2.3],
we conclude that

‖w̄k − w∗‖ = ‖T̂ wk − w∗‖ ≤ L‖C‖‖wk − w∗‖M ≤ L‖C‖‖w0 − w∗‖M.

Thus, both sequences {w̄k} and {w̄k
a} are bounded. Furthermore, according to

Proposition 1 and the maximality of T , any cluster point of {w̄k
a} belongs to

T −1(0).
To establish the uniqueness of cluster points, we define two shadow se-

quences as follows:

uk = C∗wk and uk
a =

1

k + 1

k∑

t=0

ut, ∀k ≥ 0. (11)

A straightforward calculation shows that uk+1 = F̃ρu
k, ∀k ≥ 0, where F̃ρ :=

(1 − ρ)I + ρ(C∗(M + T )−1C) with ρ ∈ (0, 2] is a non-expansive operator, as
shown in [23, Proposition 2.5]. By Baillon’s non-linear ergodic theorem [3], the

sequence {uk
a} converges to a point in Fix(F̃ρ). Using the equivalence between

Fix(F̃ρ) and C∗T −1(0) as stated in [23, Proposition 2.5], we conclude that
there exists w∗

a ∈ T −1(0) such that

‖uk
a − C∗w∗

a‖ → 0.

Therefore, by the definition of {uk
a} in (11), we have

‖wk
a − w∗

a‖M = ‖
1

k + 1

k∑

t=0

C∗wt − C∗w∗
a‖ = ‖uk

a − C∗w∗
a‖ → 0,

which, together with part (a) of Proposition 1, implies that

‖w̄k
a−w∗

a‖
2
M = ‖w̄k

a−wk
a‖

2
M+‖wk

a−w∗
a‖

2
M+2〈w̄k

a−wk
a, w

k−w∗
a〉M → 0. (12)

Since the sequence {w̄k
a} is bounded, it must have at least one cluster point.

Assume that there is a subsequence {w̄ki
a } converging to w∗. Suppose that

‖w∗ − w∗
a‖M > 0. By an Opial-type argument [18, Lemma 1], we have

lim inf
i→∞

‖w̄ki
a − w∗‖M < lim inf

i→∞
‖w̄ki

a − w∗
a‖M,
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which, combined with (12), implies lim inf
i→∞

‖w̄ki
a − w∗‖M < 0, a contradiction

to the positive semidefiniteness of M. Hence, ‖w∗−w∗
a‖M = 0. It follows that

w∗ = (M + T )−1Mw∗ = (M+ T )−1Mw∗
a = w∗

a.

Taking any other cluster point w∗∗, we can similarly show that w∗∗ = w∗
a.

Hence, the cluster point is unique, and the sequence {w̄k
a} converges to w∗

a.

3 Ergodic convergence of the PR splitting method

The Karush–Kuhn–Tucker (KKT) system of COP (1) is given by:

−B∗
1x

∗ ∈ ∂f1(y
∗), −B∗

2x
∗ ∈ ∂f2(z

∗), B1y
∗ +B2z

∗ − c = 0. (13)

As shown in [19, Corollary 28.3.1], (y∗, z∗) ∈ Y× Z is an optimal solution to
problem (1) if and only if there exists x∗ ∈ X such that (y∗, z∗, x∗) satisfies the
KKT system. To analyze the ergodic convergence of the pADMM including
the PR splitting method, we make the following assumption:

Assumption 1 The KKT system (13) has a nonempty solution set.

Under Assumption 1, solving the COP (1) is equivalent to finding w ∈ W =
Y× Z× X such that 0 ∈ T w, where the maximal monotone operator T is

T w =




∂f1(y) +B∗
1x

∂f2(z) +B∗
2x

c−B1y −B2z


 , ∀w = (y, z, x) ∈ W. (14)

Additionally, since f1 and f2 are proper closed convex functions, there exist
two self-adjoint and positive semidefinite operators Σf1 and Σf2 such that:

f1(y) ≥ f1(ŷ) + 〈φ̂, y − ŷ〉+ 1
2‖y − ŷ‖2Σf1

, ∀y, ŷ ∈ dom(f1), φ̂ ∈ ∂f1(ŷ),

f2(z) ≥ f2(ẑ) + 〈ϕ̂, z − ẑ〉+ 1
2‖z − ẑ‖2Σf2

, ∀z, ẑ ∈ dom(f2), ϕ̂ ∈ ∂f2(ẑ).

We make the following assumption to ensure that each step of the pADMM is
well defined.

Assumption 2 Σf1 +B∗
1B1 + T1 and Σf2 +B∗

2B2 + T2 are positive definite.

By defining the self-adjoint linear operator M : W → W as

M =



σB∗

1B1 + T1 0 B∗
1

0 T2 0
B1 0 σ−1I


 , (15)

Sun et al. [23] demonstrated the following equivalence between the pADMM
in Algorithm 1 and the dPPA in (6).
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Proposition 2 ([23]) Suppose that Assumption 2 holds. Consider the opera-
tors T defined in (14) and M defined in (15), respectively. Then the sequence
{wk} generated by the pADMM in Algorithm 1 coincides with the sequence
{wk} generated by the dPPA in (6) with the same initial point w0 ∈ W. Addi-
tionally, M is an admissible preconditioner such that (M+ T )−1 is Lipschitz
continuous.

The equivalence in Proposition 2 allows us to use the ergodic convergence
results of the dPPA in Theorem 1 to establish the ergodic convergence of
the pADMM, including the PR splitting method (ρ = 2) with semi-proximal
terms, for solving COP (1), as shown in the following corollary.

Corollary 1 Suppose that Assumptions 1 and 2 hold. Then the ergodic se-
quence {w̄k

a} = {(ȳka , z̄
k
a , x̄

k
a)}, generated by the pADMM with ρ ∈ (0, 2] in

Algorithm 1, converges to the point w∗ = (y∗, z∗, x∗), where (y∗, z∗) is a solu-
tion to problem (1), and x∗ is a solution to problem (2).

Remark 1 The example in Appendix A demonstrates that the ergodic se-
quence {wk

a} of the PR splitting method may fail to converge for general COPs
(1). In this context, the ergodic convergence result established in Corollary 1
represents the best achievable.

4 Numerical experiment

In this section, we use the following LP as an example to evaluate the perfor-
mance of the ergodic sequence of the PR splitting method with semi-proximal
terms:

min{〈c, x〉 | A1x = b1, A2x ≥ b2, x ∈ C}, (16)

where A1 ∈ R
m1×n, A2 ∈ R

m2×n, b1 ∈ R
m1 , b2 ∈ R

m2 , and c ∈ R
n. The set

C := {x ∈ R
n | l ≤ x ≤ u}, with l ∈ (R ∪ {−∞})n and u ∈ (R ∪ {+∞})n. Let

A = [A1;A2] ∈ R
m×n with m = m1 +m2 and b = [b1; b2] ∈ R

m. We assume
that A is a non-zero matrix. The dual of problem (16) can be expressed as:

min{−〈b, y〉+ δD(y) + δ∗C(−z) | A∗y + z = c, y ∈ R
m, z ∈ R

n}, (17)

where δD(·) is the indicator function over D := {y = (y1, y2) ∈ R
m1 × R

m2

+ }.
We apply the pADMM from Algorithm 1 with T1 = σ(λ1(AA

∗)Im −AA∗)
and T2 = 0 to solve problem (17), where Im is the identity matrix in R

m. In
this experiment, the pADMM with ρ = 2 and ρ = 1 are denoted as “PR” and
“DR,” respectively, with their ergodic sequences referred to as “EPR” and
“EDR.” To enhance the performance of the ergodic sequences, we apply the
restart strategy from [2,7], using the following merit function based on primal
and dual infeasibility:

R̃k =
√
σ−1‖ΠD(b −Ax̄k

a)‖
2 + σ‖c−A∗ȳka − z̄ka‖

2.
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The restarted variants are referred to as “rEPR” and “rEDR”. We implement
all tested algorithms in Julia and run them on an NVIDIA A100-SXM4-80GB
GPU with CUDA 12.3. The tested algorithms terminate when the following
“optimality” measure falls below a specified tolerance ǫ > 0:

max

{
|〈b, y〉 − δ∗C(−z)− 〈c, x〉|

1 + |〈b, y〉 − δ∗C(−z)|+ |〈c, x〉|
,
‖ΠD(b −Ax)‖

1 + ‖b‖
,
‖c−A∗y − z‖

1 + ‖c‖

}
≤ ǫ.

Figure 1 illustrates the performance comparison of tested algorithms with σ =
1 on the “ex10” instance from Mittelmann’s LP benchmark. In particular, the
left subfigure indicates that PR does not necessarily converge, while the middle
subfigure shows that EPR does converge. Furthermore, to reach a solution
with a tolerance of 10−2.5, EPR requires roughly half of the iterations of EDR,
which is consistent with the ratio of the upper bounds for the ergodic iteration
complexity results of the PR and DR splitting methods, as shown in (21)
and (22) in Appendix B. More importantly, with the restart strategy, rEPR
significantly outperforms both DR and EDR.
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-2

0
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rEPR

Fig. 1 Performance comparison of algorithms (σ = 1) on the “ex10” instance from Mittel-
mann’s LP benchmark

To further evaluate rEPR, rEDR, and DR, we test them on 49 instances
from Mittelmann’s LP benchmark set. Each algorithm runs with a tolerance
of ǫ = 10−8 and a 3,600-second time limit. Figure 2 shows performance profiles
for solving times. We observe that rEPR is the fastest solver for 50% of the
problems, solves 60% of them using half of the time required by rEDR, and
solves 20% more problems than DR. In summary, with the restart strategy,
the ergodic sequence of the PR splitting method with semi-proximal terms
outperforms both the point-wise and ergodic sequences of the DR splitting
method with semi-proximal terms.
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Fig. 2 Performance profiles of solving times for tested algorithms (σ = 1) on 49 instances
from Mittelmann’s LP benchmark set

5 Conclusion

To establish the ergodic convergence of the PR splitting method for solving the
COP (1), we first proved the ergodic convergence of the dPPA with ρ ∈ (0, 2].
Leveraging the equivalence between the pADMM and the dPPA, we then
demonstrated the ergodic convergence of the pADMM with ρ ∈ (0, 2], includ-
ing the PR splitting method with semi-proximal terms. Numerical results on
the LP benchmark dataset revealed that, with a restart strategy, the ergodic
sequence of the PR splitting method with semi-proximal terms consistently
outperforms both the point-wise and ergodic sequences of the DR splitting
method with semi-proximal terms. These results suggested that the restarted
ergodic PR splitting method might be a more effective approach for solving
large-scale COPs compared to its DR counterparts. For future research, it
would be interesting to investigate why the restart strategy significantly en-
hances the performance of the PR splitting method’s ergodic sequence.
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A An analytical example of the ergodic convergence of the PR
splitting method

The following example illustrates the challenge of analyzing the ergodic sequence of the PR
splitting method.

Example 1
min

y∈R,z∈R

δ{0}(z)

s.t. y + z = 0.
(18)

The optimal solution to problem (18) and its dual problem is (y∗, z∗, x∗) = (0, 0, 0). Choos-
ing T1 = 0, T2 = 0, and initializing with (y0, z0, x0) = (1, 0, 1) and σ = 1, we apply the
pADMM in Algorithm 1 to solve problem (18). Through direct calculations, we obtain the
following for any k ≥ 0:































ȳk = −2(1− ρ)k,
z̄k = 0,
x̄k = 2(1 − ρ)k ,
yk = −2kρ(1− ρ)k−1 + (1− ρ)k,
zk = 0,
xk = 2kρ(1− ρ)k−1 + (1 − ρ)k ,

and















































ȳka = − 2(1−(1−ρ)k+1)
ρ(k+1)

,

z̄ka = 0,

x̄k
a =

2(1−(1−ρ)k+1)
ρ(k+1)

,

yka = 2(1 − ρ)k − 1−(1−ρ)k+1

ρ(k+1)
,

zka = 0,

xk
a = −2(1− ρ)k + 3(1−(1−ρ)k+1)

ρ(k+1)
,

where 00 is defined as 1. In particular, if ρ = 2, then for k ≥ 0, we have































ȳk = −2(−1)k ,
z̄k = 0,
x̄k = 2(−1)k ,
yk = −4k(−1)k−1 + (−1)k ,
zk = 0,
xk = 4k(−1)k−1 + (−1)k ,

and















































ȳka = − 1−(−1)k+1

k+1
,

z̄ka = 0,

x̄k
a = 1−(−1)k+1

k+1
,

yka = 2(−1)k − 1−(−1)k+1

2(k+1)
,

zka = 0,

xk
a = −2(−1)k + 3(1−(−1)k+1)

2(k+1)
.

It is evident that the point-wise sequence {(x̄k , ȳk)} of the PR splitting method (ρ = 2)
oscillates, while {(xk , yk)} diverges to infinity. In contrast, the ergodic sequence {(x̄k

a, ȳ
k
a)} of

the PR splitting method converges to the optimal solution, whereas {(xk
a, y

k
a)} still diverges.

Moreover, the ergodic sequence {(x̄k
a, ȳ

k
a)} of the PR splitting method performs better than

that of the DR splitting method (ρ = 1), in the sense that the odd ergodic iterations of the
PR splitting method reach the solution directly:

(x̄k
a, ȳ

k
a) =







( − 1−(−1)k+1

k+1
, 1−(−1)k+1

k+1
), ρ = 2,

( − 2
k+1

, 2
k+1

), ρ = 1.

In summary, this example illustrates that the PR splitting method may fail to achieve
point-wise convergence when solving COP (1), while clearly highlighting the superiority of
its ergodic sequences compared to those of the DR splitting method. Moreover, it reveals
that the ergodic sequence {wk

a} of the PR splitting method does not necessarily converge for
general COPs (1). In this sense, the ergodic convergence result of the PR splitting method
established in Corollary 1 represents the best achievable outcome.

B Ergodic iteration complexity of the PR splitting method for
COPs

To theoretically justify the superior performance of the ergodic PR splitting method com-
pared to the ergodic DR splitting method, this section focuses on analyzing the ergodic
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iteration complexity of the pADMM framework, which includes the PR splitting method.
We begin by introducing the concept of the ε-subgradient of a convex function f [19]:

Definition 1 Let f : X → (−∞,+∞] be a proper convex function, and let x̄ ∈ dom(f).
Given ε ≥ 0, the ε-subgradient of f at x̄ is defined as

∂εf(x̄) := {x∗ ∈ X
∗ | 〈x∗, x− x̄〉 ≤ f(x) − f(x̄) + ε, ∀x ∈ X} .

Using the optimality conditions of each subproblem in the pADMM and the concept of
ε-subgradient, we derive the following lemma for the ergodic sequence {w̄k

a}.

Lemma 1 Suppose that Assumptions 1 and 2 hold. Let w∗ = (y∗, z∗, x∗) be a solution

to the KKT system (13). Then the sequence {(ȳka , z̄ka , x̄k
a)} generated by the pADMM in

Algorithm 1 with ρ ∈ (0, 2] satisfies for any k ≥ 0,

{

−B∗
2 x̄

k
a − T2(z̄ka − zka) ∈ ∂ε̄kz

f2(z̄
k
a),

−B∗
1 (x̄

k
a + σ(B1 ȳ

k
a + B2z̄

k
a − c)) − T1(ȳka − yka) ∈ ∂ε̄ky

f1(ȳ
k
a),

where























ε̄kz =
1

k + 1

k
∑

t=0

〈−B∗
2 x̄

t − T2(z̄t − zt), z̄t − z̄ka〉 ≥ 0,

ε̄ky =
1

k + 1

k
∑

t=0

〈−B∗
1 (x̄

t + σ(B1 ȳ
t +B2z̄

t − c))− T1(ȳt − yt), ȳt − ȳka〉 ≥ 0,

(19)

and

ε̄kz + ε̄ky ≤ 1

2ρ(k + 1)
‖w0 −w∗‖2M. (20)

Proof From the optimality conditions of the subproblems in Algorithm 1, we have, for any
t ≥ 0,

{

f2(z) ≥ f2(z̄
t) + 〈−B∗

2 x̄
t − T2(z̄t − zt), z − z̄t〉, ∀z ∈ Z,

f1(y) ≥ f1(ȳ
t) + 〈−B∗

1 (x̄
t + σ(B1 ȳ

t + B2z̄
t − c))− T1(ȳt − yt), y − ȳt〉, ∀y ∈ Y.

Summing these from t = 0 to k, and dividing by k + 1, we obtain for any z ∈ Z and y ∈ Y,























f2(z) ≥ 1

k + 1

k
∑

t=0

(

f2(z̄
t) + 〈−B∗

2 x̄
t − T2(z̄t − zt), z − z̄t〉

)

,

f1(y) ≥ 1

k + 1

k
∑

t=0

(

f1(ȳ
t) + 〈−B∗

1 (x̄
t + σ(B1 ȳ

t + B2z̄
t − c))− T1(ȳt − yt), y − ȳt〉

)

.

By the convexity of f2(·), we have for any z ∈ Z,

f2(z) ≥ f2(z̄
k
a) +

1

k + 1

k
∑

t=0

〈−B∗
2 x̄

t − T2(z̄t − zt), z − z̄t〉

= f2(z̄
k
a) +

1

k + 1

k
∑

t=0

〈−B∗
2 x̄

t − T2(z̄t − zt), z − z̄ka〉 − ε̄kz ,

where

ε̄kz =
1

k + 1

k
∑

t=0

〈−B∗
2 x̄

t − T2(z̄t − zt), z̄t − z̄ka〉

is non-negative by substituting z = z̄ka in the first inequality. Hence, we have for any k ≥ 0,

−(B∗
2 x̄

k
a + T2(z̄ka − zka)) =

1

k + 1

k
∑

t=0

−(B∗
2 x̄

t + T2(z̄t − zt)) ∈ ∂ε̄kz
f2(z̄

k
a).
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Similarly, for f1(·), we obtain that for all k ≥ 0,

−B∗
1 (x̄

k
a + σ(B1 ȳ

k
a +B2z̄

k
a − c))− T1(ȳka − yka) ∈ ∂ε̄ky

f1(ȳ
k
a),

where

ε̄ky =
1

k + 1

k
∑

t=0

〈−B∗
1 (x̄

t + σ(B1 ȳ
t + B2z̄

t − c))− T1(ȳt − yt), ȳt − ȳka〉 ≥ 0.

Now, we show the upper bound of ε̄kz + ε̄ky for all k ≥ 0. According to the definitions of ε̄kz
and ε̄ky in (19), Step 2 of Algorithm 1, and the definition of M in (15), we obtain for any
k ≥ 0,

ε̄kz + ε̄ky

=
1

k + 1

k
∑

t=0

(

〈−B∗
2 x̄

t − T2(z̄t − zt), z̄t − z̄ka〉

+〈−B∗
1 (x̄

t + σ(B1 ȳt +B2z̄t − c))− T1(ȳt − yt), ȳt − ȳka〉
)

=
1

k + 1

k
∑

t=0

(

〈M(wt − w̄t), w̄t − w̄k
a〉

−〈B∗
1 x̄

t, ȳt − ȳka〉 − 〈B∗
2 x̄

t, z̄t − z̄ka〉 − 〈c−B1ȳt − B2z̄t, x̄t − x̄k
a〉
)

=
1

k + 1

k
∑

t=0

〈M(wt − w̄t), w̄t − w̄k
a〉.

Thus, by the definition of ε̄ka in Proposition 1, and the equivalence between the pADMM
and the dPPA in Proposition 2, we can derive

ε̄kz + ε̄ky = ε̄ka ≤ 1

2ρ(k + 1)
‖w0 −w∗‖2M.

This completes the proof.

To estimate the objective error, we define

h(ȳka , z̄
k
a) := f1(ȳ

k
a) + f2(z̄

k
a)− f1(y

∗)− f2(z
∗), ∀k ≥ 0,

where (y∗, z∗) is a solution to the COP (1). Based on the ergodic properties established in
Lemma 1, we derive the following iteration complexity with respect to the objective error,
the feasibility violation, and the KKT residual based on ε-subdifferential in Theorem 2.

Theorem 2 Suppose that Assumptions 1 and 2 hold. Let w∗ = (y∗, z∗, x∗) be a solution

to the KKT system (13), and define R0 = ‖w0 −w∗‖M. Then, the sequence {(ȳka , z̄ka , x̄k
a)}

generated by the pADMM in Algorithm 1 with ρ ∈ (0, 2] satisfies the following iteration

complexity bounds for all k ≥ 0:

dist
(

0, ∂ε̄ky
f1(ȳ

k
a) + B∗

1 x̄
k
a

)

+ dist
(

0, ∂ε̄kz
f2(z̄

k
a) +B∗

2 x̄
k
a

)

+ ‖B1ȳ
k
a +B2z̄

k
a − c‖

≤
(σ‖B∗

1‖+ 1
√
σ

+ ‖
√

T2‖+ ‖
√

T1‖
) 2R0

ρ(k + 1)
,

(21)

where ε̄kz + ε̄ky ≤ 1
2ρ(k+1)

‖w0−w∗‖2M. Moreover, the following bound holds for the objective

function:

(

− ‖x∗‖√
σ

) 2R0

ρ(k+1)
≤ h(ȳka , z̄

k
a)

≤
(

R0 + 4
√
σ‖B1y

∗‖
) R0

2ρ(k + 1)
+

‖x0 + σB1y0‖2
2ρ(k + 1)

.
(22)
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Proof According to Propositions 1 and 2, we have

‖w̄k
a −wk

a‖2M ≤ 4R2
0

ρ2(k + 1)2
, ∀k ≥ 0.

By the definition of M in (15), this can be rewritten as

‖ȳka − yka‖2T1
+

1

σ
‖σB1(ȳ

k
a − yka) + (x̄k

a − xk
a)‖2 + ‖z̄ka − zka‖2T2

≤ 4R2
0

ρ2(k + 1)2
, ∀k ≥ 0. (23)

From Step 2 of Algorithm 1, we can deduce that for any k ≥ 0,

‖σB1(ȳka − yka) + (x̄k
a − xk

a)‖ = ‖σB1(ȳka − yka) + σ(B1yka + B2z̄ka − c)‖
= σ‖B1 ȳka + B2z̄ka − c‖,

which, together with (23), yields that

‖B1ȳ
k
a + B2z̄

k
a − c‖ ≤ 2R0√

σρ(k + 1)
, ∀k ≥ 0. (24)

Furthermore, according to the Lemma 1, we have for k ≥ 0,

{

−B∗
2 x̄

k
a − T2(z̄ka − zka) ∈ ∂ε̄kz

f2(z̄ka),

−B∗
1 (x̄

k
a + σ(B1 ȳka + B2z̄ka − c)) − T1(ȳka − yka) ∈ ∂ε̄ky

f1(ȳka),

which, together with (23) and (24), implies

dist
(

0, ∂ε̄kz
f2(z̄

k
a) + B∗

2 x̄
k
a

)

≤ ‖T2(z̄ka − zka)‖ ≤ ‖
√

T2‖‖z̄ka − zka‖T2
≤ ‖

√

T2‖
2R0

ρ(k + 1)
(25)

and
dist

(

0, ∂ε̄ky
f1(ȳka) +B∗

1 x̄
k
a

)

≤ σ‖B∗
1‖‖B1ȳ

k
a + B2z̄

k
a − c‖+ ‖T1(ȳka − yka)‖

≤
(σ‖B∗

1‖√
σ

+ ‖
√

T1‖
) 2R0

ρ(k + 1)
.

(26)

Thus, combining (20), (24), (25), and (26), we derive the iteration complexity bound in (21).
We now estimate the ergodic iteration complexity results for the objective error. From

the KKT conditions in (13), we have, for any k ≥ 0,

f1(ȳ
k
a)− f1(y

∗) ≥ 〈−B∗
1x

∗, ȳka − y∗〉 and f2(z̄
k
a )− f2(z

∗) ≥ 〈−B∗
2x

∗, z̄ka − z∗〉.

Thus, it follows from (24) that for all k ≥ 0,

h(ȳka , z̄
k
a) ≥ 〈B1 ȳka +B2z̄ka − c,−x∗〉 ≥ −‖x∗‖‖B1ȳka +B2z̄ka − c‖ ≥ − 2R0‖x∗‖√

σρ(k + 1)
.

For the upper bound of the objective error, from [23, Lemma 3.6], we first have the following
upper bounds:

h(ȳk, z̄k) ≤ 〈σB1(y
∗ − ȳk) − x̄k, B1ȳ

k + B2z̄
k − c〉

+〈y∗ − ȳk, T1(ȳk − yk)〉+ 〈z∗ − z̄k,T2(z̄k − zk)〉. (27)

Note that from Step 4 of Algorithm 1 and ρ ∈ (0, 2], we have for any k ≥ 0,

〈y∗ − ȳk ,T1(ȳk − yk)〉 =
〈

y∗ − (yk +
yk+1 − yk

ρ
), T1(

yk+1 − yk

ρ
)
〉

=
1

2ρ

(

‖yk − y∗‖2T1
− ‖yk+1 − y∗‖2T1

)

+
ρ− 2

2ρ2
‖yk+1 − yk‖2T1

≤ 1

2ρ

(

‖yk − y∗‖2T1
− ‖yk+1 − y∗‖2T1

)

.

(28)
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Similarly, we also have
〈

z∗ − z̄k,T2(z̄k − zk)
〉

≤ 1
2ρ

(

‖zk − z∗‖2T1
− ‖zk+1 − z∗‖2T1

)

, ∀k ≥ 0. (29)

Additionally, for ease of notation, we define

∆k := xk + σB1y
k, ∀k ≥ 0.

From Step 4 of Algorithm 1 and ρ ∈ (0, 2], we can derive that for any k ≥ 0,

〈σB1(y
∗ − ȳk)− x̄k, B1ȳ

k +B2z̄
k − c〉

= 〈σB1y
∗, B1ȳ

k + B2z̄
k − c〉 − 〈x̄k + σB1 ȳ

k, B1ȳ
k + B2z̄

k − c〉
= 〈σB1y

∗, B1ȳ
k + B2z̄

k − c〉 −
〈

∆k +
∆k+1 −∆k

ρ
,
∆k+1 −∆k

ρ

〉

= 〈σB1y
∗, B1ȳ

k + B2z̄
k − c〉 − 1

2ρ

(

‖∆k+1‖2 − ‖∆k‖2
)

+
ρ− 2

2ρ2
‖∆k+1‖2

≤ 〈σB1y
∗, B1ȳ

k + B2z̄
k − c〉 − 1

2ρ

(

‖∆k+1‖2 − ‖∆k‖2
)

.

(30)

Thus, combing with (27), (28), (29), and (30), we conclude that for all k ≥ 0,

h(ȳk , z̄k) ≤ 1

2ρ
(‖yk − y∗‖2T1

− ‖yk+1 − y∗‖2T1
) +

1

2ρ
(‖zk − z∗‖2T1

− ‖zk+1 − z∗‖2T1
)

+〈σB1y
∗, B1ȳ

k + B2z̄
k − c〉 − 1

2ρ

(

‖∆k+1‖2 − ‖∆k‖2
)

.

It follows from the convexity of h(·) and (24) that for any k ≥ 0,

h(ȳka , z̄
k
a) ≤

1

k + 1

k
∑

t=0

h(ȳt, z̄t)

≤ 1

2ρ(k + 1)

(

‖y0 − y∗‖2T1
+ ‖z0 − z∗‖2T2

)

+
〈

σB1y
∗, B1ȳ

k
a +B2z̄

k
a − c〉+ 1

2ρ(k + 1)
‖∆0‖2

≤ R2
0

2ρ(k + 1)
+

√
σ‖B1y

∗‖ 2R0

ρ(k + 1)
+

1

2ρ(k + 1)
‖x0 + σB1y

0‖2.

This completes the proof.

Remark 2 From the ergodic iteration complexity results in (21) and (22), the ergodic se-
quence of the PR splitting method with semi-proximal terms has a worst-case upper bound
that is half that of the DR splitting method with semi-proximal terms. This provides theo-
retical support for the superior performance of the ergodic PR splitting method with semi-
proximal terms compared to the ergodic DR splitting method with semi-proximal terms, as
demonstrated in the numerical experiments in Section 4.

Remark 3 We summarize some existing complexity results for ergodic sequences of ADMM-
type algorithms closely related to our work in Table 1. For more results, one can refer to [1,
6] and the references in.

Table 1 Ergodic iteration complexity results of ADMM-type algorithms

Paper Algorithm Proximal Operators ρ
Dual

Step-size

Feasibility

Violation

Objective

Error

KKT

Residual

[17] ADMM T1 = 0,T2 = 0 1 1 O(1/k) - Oε(1/k)1

[9] GADMM T1 = 0,T2 = 0 (0, 2] 1 O(1/k) O(1/k) -

[8]
(Majorized)

sPADMM
T1 � 0,T2 � 0 1 (0, 1+

√
5

2
) O(1/k) O(1/k) -

[21] sPADMM T1 � 0,T2 � 0 1 (0, 1+
√

5
2

) O(1/k) - Oε(1/k)

Ours pADMM T1 � 0,T2 � 0 (0, 2] 1 O(1/k) O(1/k) Oε(1/k)
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When T1 = 0 and T2 = 0, pADMM with ρ = 2 reduces to the PR splitting method,
which corresponds to the GADMM [11] with ρ = 2. According to the results of Davis and
Yin [9], the ergodic sequence of the PR splitting method achieves an O(1/k) complexity
in terms of the objective error and the feasibility violation. In contrast, we establish the
ergodic iteration complexity result for the PR splitting method with semi-proximal terms
with respect to the objective error, the feasibility violation, and the KKT residual based on
ε-subdifferential. This generalization is particularly significant, as carefully chosen T1 and T2
can simplify the solution of subproblems in some important convex optimization problems,
such as general LPs.

1 Oε(1/k) of the KKT residual: an O(1/k) iteration complexity of the KKT residual based
on ε-subdifferential in (21).


	Introduction
	Ergodic convergence of the dPPA
	Ergodic convergence of the PR splitting method
	Numerical experiment
	Conclusion
	An analytical example of the ergodic convergence of the PR splitting method
	Ergodic iteration complexity of the PR splitting method for COPs

