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Abstract. In this paper, we aim to accelerate a preconditioned alternating direction method
of multipliers (pADMM), whose proximal terms are convex quadratic functions, for solving linearly
constrained convex optimization problems. To achieve this, we first reformulate the pADMM into
a form of the proximal point method (PPM) with a positive semidefinite preconditioner which can
be degenerate due to the lack of strong convexity of the proximal terms in the pADMM. Then we
accelerate the pADMM by accelerating the reformulated degenerate PPM (dPPM). Specifically, we
first propose an accelerated dPPM by integrating the Halpern iteration and the fast Krasnosel'ski\u {\i}--
Mann iteration into it, achieving asymptotic o(1/k) and nonasymptotic O(1/k) convergence rates.
Subsequently, building upon the accelerated dPPM, we develop an accelerated pADMM algorithm
that exhibits both asymptotic o(1/k) and nonasymptotic O(1/k) nonergodic convergence rates con-
cerning the Karush--Kuhn--Tucker residual and the primal objective function value gap. Preliminary
numerical experiments validate the theoretical findings, demonstrating that the accelerated pADMM
outperforms the pADMM in solving convex quadratic programming problems.

Key words. preconditioned ADMM, degenerate PPM, acceleration, Halpern iteration, Kras-
nosel'ski\u {\i}--Mann iteration, convergence rate
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1. Introduction. Let \BbbX , \BbbY , and \BbbZ be three finite-dimensional real Euclidean
spaces, each equipped with an inner product \langle \cdot , \cdot \rangle and its induced norm \| \cdot \| . In
this paper, we aim to settle the issue on how to accelerate an alternating direction
method of multipliers (ADMM) with semiproximal terms for solving the following
convex optimization problem:

miny\in \BbbY ,z\in \BbbZ f1(y) + f2(z)
subject to B1y+B2z = c,

(1.1)

where f1 : \BbbY \rightarrow ( - \infty ,+\infty ] and f2 : \BbbZ \rightarrow ( - \infty ,+\infty ] are two proper closed con-
vex functions, B1 : \BbbY \rightarrow \BbbX and B2 : \BbbZ \rightarrow \BbbX are two given linear operators, and
c \in \BbbX is a given point. For a linear operator B : \BbbX \rightarrow \BbbX , we define its norm as
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1166 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

\| B\| := sup\| x\| \leq 1 \| Bx\| . Moreover, for any convex function f :\BbbX \rightarrow ( - \infty ,+\infty ], we use
dom(f) := \{ x \in \BbbX : f(x) <\infty \} to denote its effective domain, f\ast : \BbbX \rightarrow ( - \infty ,+\infty ] to
represent its Fenchel conjugate, and Proxf (\cdot ) to denote its associated Moreau--Yosida
proximal mapping [47], respectively. Let \sigma > 0 be a given penalty parameter. The aug-
mented Lagrangian function of problem (1.1) is defined by, for any (y, z,x)\in \BbbY \times \BbbZ \times \BbbX ,

L\sigma (y, z;x) := f1(y) + f2(z) + \langle x,B1y+B2z  - c\rangle + \sigma 

2
\| B1y+B2z  - c\| 2.

The dual of problem (1.1) is given by

max
x\in \BbbX 

\{  - f\ast 
1 ( - B\ast 

1x) - f\ast 
2 ( - B\ast 

2x) - \langle c,x\rangle \} ,(1.2)

where B\ast 
1 : \BbbX \rightarrow \BbbY and B\ast 

2 : \BbbX \rightarrow \BbbZ are the adjoints of B1 and B2, respectively. For
ease of notation, let w := (y, z,x) and \BbbW := \BbbY \times \BbbZ \times \BbbX . For any self-adjoint positive
semidefinite linear operator \scrM :\BbbX \rightarrow \BbbX , denote \| x\| \scrM :=

\sqrt{} 
\langle x,\scrM x\rangle . In extending the

framework of ADMM with semiproximal terms and larger dual step lengths studied in
[22] to cover the case of generalized ADMM in the sense of Eckstein and Bertsekas [21],
Xiao et al. [54] considered the preconditioned ADMM (pADMM) (see Algorithm 1.1)
for solving problem (1.1).

Since the two linear operators \scrT 1 and \scrT 2 in Algorithm 1.1 are only assumed to
be positive semidefinite, the pADMM framework includes ADMM [23, 24], proximal
ADMM [20], and semiproximal ADMM [22] as special cases. Specifically, when \scrT 1 = 0,
\scrT 2 = 0, and \rho k \equiv 1, pADMM corresponds to the ADMM [23, 24] with a unit dual step
length. Additionally, if both \scrT 1 and \scrT 2 are positive definite, then the above pADMM
scheme with \rho k \equiv 1 reduces to the proximal ADMM proposed by Eckstein [20] with
possible changes of inner products. Moreover, when \rho k \equiv 1, pADMM corresponds to a
special case studied in Fazel et al. [22] under the setting of semiproximal ADMM. On
the other hand, it is worth highlighting that pADMM is capable of handling multi-
block convex optimization problems by introducing the symmetric Gauss--Seidel (sGS)
operator [31, 33] as a linear operator in the proximal term, which has proven to be
effective in solving large-scale optimization problems [31, 32, 35, 54]. Therefore, given
the broad applicability and effectiveness of the pADMM framework, investigating the
acceleration of pADMM is of significant interest.

Before discussing the acceleration techniques, we mention several developments
in the convergence rate analysis of pADMM that are relevant to our paper: Monteiro
and Svaiter [40] first established an ergodic O(1/k) convergence rate for the ADMM
with a unit dual stepsize in terms of the Karush--Kuhn--Tucker (KKT) type residual;

Algorithm 1.1 A pADMM for solving two-block convex optimization problem (1.1).

Input: Let \scrT 1 and \scrT 2 be two self-adjoint positive semidefinite linear operators on \BbbY 
and \BbbZ , respectively. Choose an initial point w0 = (y0, z0, x0)\in dom(f1)\times dom(f2)\times \BbbX .
Set parameters \sigma >0 and \rho k\in (0,2] for any k\geq 0. For k=0,1, . . . , perform the following
steps in each iteration.
1: Step 1. \=zk = argmin

z\in \BbbZ 

\bigl\{ 
L\sigma 

\bigl( 
yk, z;xk

\bigr) 
+ 1

2\| z  - zk\| 2\scrT 2

\bigr\} 
.

2: Step 2. \=xk = xk + \sigma (B1y
k +B2\=z

k  - c).
3: Step 3. \=yk = argmin

y\in \BbbY 

\bigl\{ 
L\sigma 

\bigl( 
y, \=zk; \=xk

\bigr) 
+ 1

2\| y - yk\| 2\scrT 1

\bigr\} 
.

4: Step 4. wk+1 = (1 - \rho k)w
k + \rho k \=w

k.
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ACCELERATED PRECONDITIONED ADMM 1167

Davis and Yin [19] provided a nonergodic iteration complexity bound of o(1/
\surd 
k) for

the ADMM with a unit dual stepsize, focusing on primal feasibility violations and the
primal objective function value gap; and Cui et al. [18] demonstrated that a majorized
ADMM, including the classical ADMM, exhibits a nonergodic O(1/

\surd 
k) convergence

rate concerning the KKT optimality condition.
To further enhance the efficiency of the pADMM, researchers have explored two

main approaches for accelerations. One approach involves integrating Nesterov's ex-
trapolation [4, 41] directly into the pADMM to develop accelerated variants. For
instance, when one of the objective functions is strongly convex, Xu [55] proposed an
accelerated linearized ADMM (LADMM) with an ergodic O(1/k2) convergence rate
concerning feasibility violations and objective function values. For more results on
the strongly convex case, one may refer to [25, 50] and the references therein. On the
other hand, in the absence of a strong convexity assumption, which is a primary focus
of this paper, several accelerated ADMM versions with a convergence rate of O(1/k)
have been introduced. Specifically, assuming f2(\cdot ) to be a smooth convex function
with Lf2-Lipschitz continuous gradient, Ouyang et al. [42] proposed an accelerated
variant of LADMM. In terms of function values and feasibility violations, the ergodic
convergence rate of this method associated with the Lf2 part surpasses O(1/k), while
the ergodic rate for other parts remains O(1/k) (see Tables 2 and 3 in [42]). Turning
to the nonergodic rates along this approach, two notable works are those of Li and
Lin [30] and Sabach and Teboulle [49].

In [30], Li and Lin modified the accelerated LADMM proposed in [42] to obtain
a nonergodic O(1/(1 + k(1  - \tau ))) convergence rate in terms of function values and
feasibility violations with the dual steplength \tau to be restricted in (0.5,1). In their
algorithm, the largest eigenvalues \lambda max(\scrT k

i ) of \scrT k
i for i= 1,2 vary with k and satisfy

\lambda max(\scrT k
1 )\sim O(1 + k(1 - \tau )), \lambda max(\scrT k

2 )\sim O(1 + k(1 - \tau ))

at the kth iteration, as indicated in formulas (6a) and (6b) of [30]. This implies that
the primal step length approaches zero as k tends to infinity. Furthermore, when the
dual step length \tau approaches one, the O(1/(1+k(1 - \tau ))) complexity result will be lost
(see Theorem 1 of [30]). Different from Li and Lin [30], in [49], Sabach and Teboulle
introduced an accelerated variant of pADMM with a nonergodic O(1/k) convergence
rate in terms of function values and feasibility violations when \scrT 2 is positive definite.
Note that the dual step length \mu in Sabach and Teboulle's algorithm is required to
satisfy

\mu \in (0, \delta ], \delta = 1 - \sigma \lambda max (B
\ast 
2B2)

(\sigma \lambda max (B\ast 
2B2) + \lambda min (\scrT 2))

< 1

according to Lemma 5.7 of [49], where \lambda min(\scrT 2) is the smallest eigenvalue of \scrT 2. When
\scrT 2 tends to be degenerate, i.e., \lambda min(\scrT 2) goes to zero, the dual step length \mu approaches
zero as \delta tends to zero, which implies that the obtained complexity bounds blow up
(see formulas (4.11) and (4.12) in Theorem 4.5 of [49]). Thus, to the best of our
knowledge, there is still a big gap in using this acceleration technique to handle the
case where both \scrT 1 and \scrT 2 are positive semidefinite and/or with large step lengths.

Another approach for accelerating the pADMM is first to reformulate it as a
fixed-point iterative method, if possible, and then to accelerate the pADMM by ac-
celerating the fixed-point iterative method. For instance, Kim [28] introduced an
accelerated proximal point method (PPM) [45, 46] for the purpose of achieving a fast
rate of O(1/k). By reformulating the ADMM as the Douglas--Rachford (DR) splitting

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1168 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

method, which is a special case of the PPM [21], Kim [28] obtained an accelerated
ADMM that possesses a nonergodic O(1/k) convergence rate concerning the primal
feasibility violations. Since Contreras and Cominetti [17] established a close connec-
tion between Kim's accelerated PPM and Halpern's iteration [26, 36, 48], it is natural
to employ the Halpern iteration to obtain an accelerated ADMM, owing to the simplic-
ity of the Halpern iteration. Following this line, Tran-Dinh and Luo [52] obtained an
accelerated ADMM by accelerating the DR splitting method, which achieves a noner-
godic O(1/k) convergence rate on the forward-backward residual operator associated
with the dual problem (1.2). When f2(\cdot ) is a strongly convex function, this result
actually represents the O(1/k) convergence rate in terms of primal feasibility viola-
tions. Furthermore, by using a more effective Peaceman--Rachford splitting method
in general, Zhang et al. [57] proposed a Halpern--Peaceman--Rachford method, which
exhibits a nonergodic convergence rate of O(1/k) concerning both the KKT residual
and the primal objective function value gap. Recently, assuming that both \scrT 1 and \scrT 2
are positive definite, Yang et al. [56] reformulated the pADMM as a preconditioned
PPM [5, 34]. By applying the Halpern iteration to this preconditioned PPM, they
proposed an accelerated pADMM with the relaxation factor \rho \in (0,2], which enjoys
a nonergodic O(1/k) convergence rate for the fixed-point KKT residual. While the
accelerated pADMM variants mentioned above have demonstrated success in specific
applications, it is worth emphasizing that these methods cannot cover the general
case of pADMM with semiproximal terms.

Compared to the first approach of employing Nesterov's extrapolation to obtain an
accelerated pADMM, the second approach mentioned above does not impose restric-
tive requirements on the step lengths. This inspires us to further explore accelerating
the pADMM with semiproximal terms by focusing on the second approach. More
recently, Bredies et al. [9] extended their earlier works [10, 11] by introducing the
degenerate PPM (dPPM) with a positive semidefinite preconditioner. They regarded
the Chambolle--Pock scheme [13] under the condition of \tau \sigma \| L\| 2 = 1 (see formula
(3.3) in [9]) as a dPPM to discuss its convergence [16]. Note that the Chambolle--
Pock scheme under the condition of \tau \sigma \| L\| 2 \leq 1 is actually equivalent to LADMM,
and the convergence properties of LADMM, even with larger dual step lengths in the
interval (0, (1 +

\surd 
5)/2), have already been covered in [22] under a much more gen-

eral setting of ADMM with semiproximal terms. So it is not of absolute necessity to
study the dPPM if it is only used to analyze the convergence of the Chambolle--Pock
scheme [13] with the condition \tau \sigma \| L\| 2 = 1. However, the work of [9] has motivated
us to look at the pADMM from the perspective of dPPM for extending the work of
Yang et al. [56], where both \scrT 1 and \scrT 2 are assumed to be positive definite. Indeed,
we establish an equivalence between the pADMM and the dPPM. Consequently, one
may consider employing the Halpern iteration to accelerate the dPPM, thus obtain-
ing an accelerated pADMM. On the other hand, it is worth noting that Contreras
and Cominetti [17] demonstrated that the best possible convergence rate for general
Mann iterations in normed spaces, including the Halpern iteration, is lower bounded
by O(1/k). In contrast, inspired by the second-order dynamical system with a van-
ishing damping term proposed in [7] for solving monotone equations, Bo\c t and Nguyen
[8] introduced the fast Krasnosel'ski\u {\i}--Mann (KM) iteration with asymptotic o(1/k)
convergence rates for finding a fixed-point of the nonexpansive operator, which ap-
pears to offer better convergence rates than O(1/k) in certain applications. Therefore,
in this paper, we integrate the fast KM iteration and the Halpern iteration into the
dPPM to accelerate it, aiming to achieve both asymptotic o(1/k) and nonasymptotic

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ACCELERATED PRECONDITIONED ADMM 1169

O(1/k) convergence rates. The main contributions of this paper can be highlighted
as follows:

1. We propose a globally convergent accelerated dPPM by unifying the Halpern
iteration and the fast KM iteration. This method exhibits both asymptotic
o(1/k) and nonasymptotic O(1/k) in terms of the operator residual.

2. We establish the equivalence between the pADMM and the dPPM. Utiliz-
ing the accelerated dPPM, we introduce a globally convergent accelerated
pADMM, which enjoys both asymptotic o(1/k) and nonasymptotic O(1/k)
nonergodic convergence rates concerning the KKT residual and the primal
objective function value gap. In our accelerated pADMM, both \scrT 1 and \scrT 2
can be positive semidefinite under mild conditions. Additionally, the relax-
ation factor \rho can be chosen in the interval (0,2], where a larger value of \rho 
generally leads to better performance.

3. We implement the proposed accelerated pADMM and the pADMM to solve
convex quadratic programming (QP) problems. Our preliminary numerical
results exhibit the superiority of the proposed accelerated pADMM over the
pADMM.

The remaining parts of this paper are organized as follows. In section 2, we briefly
introduce the dPPM and propose an accelerated dPPM. In section 3, we first establish
the equivalence between the pADMM and the dPPM, and then present an accelerated
pADMM based on the accelerated dPPM. Section 4 provides some numerical results
to show the superiority of the accelerated pADMM over the pADMM by using the
convex QP problem as an illustrative example. Finally, we conclude the paper in
section 5.

2. Acceleration of degenerate proximal point methods. In this section,
we start by introducing the dPPM. Subsequently, we present an accelerated version
of the dPPM.

2.1. The degenerate proximal point method. Let \scrH be a real Hilbert space
with inner product \langle \cdot , \cdot \rangle and its induced norm \| \cdot \| . A set-valued operator \scrT :\scrH \rightarrow 2\scrH 

is said to be a monotone operator if it satisfies the following inequality:

\langle v - v\prime ,w - w\prime \rangle \geq 0 whenever v \in \scrT w,v\prime \in \scrT w\prime .

It is said to be maximal monotone if, in addition, the graph

gph(\scrT ) = \{ (w,v)\in \scrH \times \scrH | v \in \scrT w\} 

is not properly contained in the graph of any other monotone operator \scrT \prime :\scrH \rightarrow 2\scrH .
Consider the following monotone inclusion problem:

find w \in \scrH such that 0\in \scrT w,(2.1)

where \scrT is a maximal monotone operator from \scrH into itself. If one introduces a
preconditioner, namely, a linear, bounded, self-adjoint, and positive semidefinite op-
erator \scrM :\scrH \rightarrow \scrH , then the PPM with the preconditioner \scrM [9] for solving (2.1) can
be expressed as follows:

w0 \in \scrH , wk+1 = \widehat \scrT wk := (\scrM + \scrT ) - 1\scrM wk.(2.2)

Proper choices of \scrM will allow for efficient evaluations of \widehat \scrT . To ensure the well-
definedness of (2.2), we introduce the concept of an admissible preconditioner:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/3

1/
25

 to
 1

58
.1

32
.1

3.
16

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1170 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

Definition 2.1 (admissible preconditioner [9]). An admissible preconditioner for
the operator \scrT : \scrH \rightarrow 2\scrH is a linear, bounded, self-adjoint, and positive semidefinite
operator \scrM :\scrH \rightarrow \scrH such that \widehat \scrT = (\scrM + \scrT ) - 1\scrM (2.3)

is single-valued and has full domain.

Drawing from classical results in functional operator theory, Bredies et al. [9] pro-
vided the following fundamental decomposition result to characterize linear, bounded,
self-adjoint, and positive semidefinite operators.

Proposition 2.2 (Proposition 2.3 in [9]). Let \scrM :\scrH \rightarrow \scrH be a linear, bounded,
self-adjoint, and positive semidefinite operator. Then, there exists a bounded and
injective operator \scrC : \scrU \rightarrow \scrH for some real Hilbert space \scrU , such that \scrM = \scrC \scrC \ast , where
\scrC \ast :\scrH \rightarrow \scrU is the adjoint of \scrC . Moreover, if \scrM has closed range, then \scrC \ast is onto.

Let \scrM be an admissible preconditioner for the maximal monotone operator \scrT .
The dPPM for solving the inclusion problem (2.1) is expressed as follows:

w0 \in \scrH , wk+1 = (1 - \rho k)w
k + \rho k \=w

k, \=wk = \widehat \scrT wk = (\scrM + \scrT ) - 1\scrM wk,(2.4)

where \{ \rho k\} is a sequence in [0,2]. Here, \scrM is only required to be positive semidefi-
nite, which is the reason we refer to it as a dPPM. Note that \scrM is associated with
a semi-inner-product \langle v,w\rangle \scrM := \langle v,\scrM w\rangle for all v and w in \scrH , as well as a continu-
ous seminorm \| w\| \scrM =

\sqrt{} 
\langle w,w\rangle \scrM . For notational convenience, define the following

mappings: \widehat \scrQ := \scrI  - \widehat \scrT and \widehat \scrF \rho := (1 - \rho )\scrI + \rho \widehat \scrT , \rho \in [0,2],(2.5)

where \scrI is an identity operator on \scrH . Clearly, if 0 \in \scrT w, we have that \widehat \scrT w = w and\widehat \scrQ w= 0. Similar to [46, Proposition 1], we summarize some properties of \widehat \scrT , \widehat \scrF \rho , and\widehat \scrQ in the following proposition.

Proposition 2.3. The following hold:
(a) w= \widehat \scrT w+ \widehat \scrQ w and \scrM \widehat \scrQ w \in \scrT (\widehat \scrT w) for all w \in \scrH ;
(b) \langle \widehat \scrT w - \widehat \scrT w\prime , \widehat \scrQ w - \widehat \scrQ w\prime \rangle \scrM \geq 0 for all w,w\prime \in \scrH ;
(c) \widehat \scrT is \scrM -firmly nonexpansive, i.e.,

\| \widehat \scrT w - \widehat \scrT w\prime \| 2\scrM + \| \widehat \scrQ w - \widehat \scrQ w\prime \| 2\scrM \leq \| w - w\prime \| 2\scrM , for all w,w\prime \in \scrH ;

(d) \widehat \scrF \rho is \scrM -nonexpansive for \rho \in (0,2], i.e.,

\| \widehat \scrF \rho w - \widehat \scrF \rho w
\prime \| \scrM \leq \| w - w\prime \| \scrM for all w,w\prime \in \scrH .

Proof. The proofs of parts (a)--(c) can be obtained through straightforward calcu-
lations in a way similar to the proof provided in [46, Proposition 1]. Part (d) follows
from part (c), which can be verified by referring to [3, Exercise 4.13], with \| \cdot \| being
replaced by \| \cdot \| \scrM . We omit the details here.

Note that when \scrM is the identity operator, \scrM -firmly nonexpansiveness and
\scrM -nonexpansiveness reduce to the firmly nonexpansiveness and nonexpansiveness,
respectively. Furthermore, the global convergence of the dPPM in (2.4) can be es-
tablished under the assumption that (\scrM + \scrT ) - 1 is L-Lipschitz; that is, there exists
a constant L\geq 0 such that for all v1, v2 in the domain of (\scrM + \scrT ) - 1,

\| (\scrM + \scrT ) - 1v1  - (\scrM + \scrT ) - 1v2\| \leq L\| v1  - v2\| .
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ACCELERATED PRECONDITIONED ADMM 1171

Bredies et al. [9] showed that this Lipschitz assumption holds for many splitting
algorithms, including the Douglas--Rachford splitting method [37] and the Chambolle--
Pock scheme [13], under mild conditions. Additional examples can be found in
section 3 of [9]. Moreover, building on the techniques developed in [22] for analyzing
the global convergence of ADMM with semiproximal terms, we provide a practical
criterion in section 3 for verifying this Lipschitz condition for the pADMM.

Theorem 2.4 (Corollary 2.10 in [9]). Let \scrT : \scrH \rightarrow 2\scrH with \scrT  - 1(0) \not = \emptyset be a
maximal monotone operator, and let \scrM be an admissible preconditioner such that
(\scrM +\scrT ) - 1 is L-Lipschitz. Let \{ wk\} be any sequence generated by the dPPM in (2.4).
If 0< infk \rho k \leq supk \rho k < 2, then \{ wk\} converges weakly to a point in \scrT  - 1(0).

Furthermore, Bredies et al. [9] introduced a reduced preconditioned PPM for
the parallel composition of \scrT by \scrC \ast , which can help us explore the acceleration of
the dPPM in (2.4). We summarize some key results related to parallel composition
in the following proposition.

Proposition 2.5. Let \scrT : \scrH \rightarrow 2\scrH be a maximal monotone operator, and let
\scrM be an admissible preconditioner with closed range. Suppose that \scrM = \scrC \scrC \ast is
a decomposition of \scrM according to Proposition 2.2 with \scrC : \scrU \rightarrow \scrH . The parallel
composition \scrC \ast  \triangleleft \scrT :=

\bigl( 
\scrC \ast \scrT  - 1\scrC 

\bigr)  - 1
is a maximal monotone operator. Furthermore,

the resolvent of \scrC \ast  \triangleleft \scrT , denoted by \widetilde \scrT := (\scrI + \scrC \ast  \triangleleft \scrT )
 - 1

, has the following identity:\widetilde \scrT = \scrC \ast (\scrM + \scrT ) - 1\scrC .(2.6)

In particular, \widetilde \scrT : \scrU \rightarrow \scrU is everywhere well defined and firmly nonexpansive. More-
over, for any \rho \in (0,2], \widetilde \scrF \rho = (1 - \rho )\scrI + \rho \widetilde \scrT is nonexpansive and

\scrC \ast \scrT  - 1(0) = \scrC \ast Fix \widehat \scrT =Fix \widetilde \scrT =Fix \widetilde \scrF \rho ,

where we denote the set of fixed-points of an operator \widehat \scrT by Fix \widehat \scrT .

Proof. See Lemma 2.12 and Theorem 2.13 in [9] for the maximal monotonicity of
\scrC \ast  \triangleleft \scrT , the identity (2.6), and the firm nonexpansiveness of \widetilde \scrT . Moreover, it follows
from [3, Exercise 4.13] that for any \rho \in (0,2], \widetilde \scrF \rho is nonexpansive. Finally, from the

proof of Theorem 2.14 in [9], we obtain \scrC \ast Fix \widehat \scrT = Fix \widetilde \scrT . Combining this with the
fact \scrT  - 1(0) = Fix \widehat \scrT , we conclude the proof.

2.2. An accelerated degenerate proximal point method. In this subsec-
tion, we consider the acceleration of the dPPM with a fixed relaxation parameter
\rho \in (0,2]. Specifically, the dPPM in (2.4) can be reformulated as

w0 \in \scrH , wk+1 = \widehat \scrF \rho w
k,(2.7)

where \widehat \scrF \rho defined in (2.5) is\scrM -nonexpansive for \rho \in (0,2] according to Proposition 2.3.

Leveraging the \scrM -nonexpansiveness of \widehat \scrF \rho , we propose the accelerated dPPM pre-
sented in Algorithm 2.1.

Remark 2.6. The proposed accelerated dPPM can be regarded as applying either
Halpern's iteration [36] or the fast KM iteration [8] to the dPPM in (2.7), depending
on the choice of \alpha . On the one hand, when \alpha = 2, Step 3 in Algorithm 2.1 at the kth
iteration is

wk+1 =wk +
1

k+ 2
( \^wk+1  - wk) +

k

k+ 2

\bigl( 
\^wk+1  - \^wk

\bigr) 
.
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1172 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

Algorithm 2.1 An accelerated dPPM for solving the inclusion problem (2.1).

1: Input: Let \^w0 =w0 \in \scrH , \alpha \geq 2, and \rho \in (0,2]. For k= 0,1, . . . , perform the
following steps in each iteration.

2: Step 1. \=wk = \widehat \scrT wk.

3: Step 2. \^wk+1 = \widehat \scrF \rho w
k = (1 - \rho )wk + \rho \=wk.

4: Step 3. wk+1 =wk + \alpha 
2(k+\alpha ) ( \^w

k+1  - wk) + k
k+\alpha 

\bigl( 
\^wk+1  - \^wk

\bigr) 
.

Multiplying both sides of the above relation by (k+ 2) and rearranging it, we have

(k+ 2)wk+1  - (k+ 1) \^wk+1 = (k+ 1)wk  - k \^wk.(2.8)

Define the sequence \{ sk\} as follows:

sk := (k+ 1)wk  - k \^wk \forall k\geq 0.

From (2.8), we can obtain sk+1 = s0 for all k\geq 0. This implies

wk+1 =
1

k+ 2
w0 +

k+ 1

k+ 2
\^wk+1 \forall k\geq 0,(2.9)

which is exactly the Halpern iteration [26, 36] applied to the dPPM in (2.7). On the
other hand, when \alpha > 2, the proposed accelerated dPPM is equivalent to the fast KM
iteration applied to (2.7) with a unit step size, as described in formula (12) of [8].

Let \scrM = \scrC \scrC \ast be a decomposition of \scrM according to Proposition 2.2 with \scrC :
\scrU \rightarrow \scrH . To discuss the global convergence and convergence rate of the accelerated
dPPM in Algorithm 2.1, we introduce two shadow sequences \{ uk\} and \{ \=uk\} defined
as follows:

uk := \scrC \ast wk and \=uk := \scrC \ast \=wk \forall k\geq 0,(2.10)

where the sequences \{ wk\} and \{ \=wk\} are generated by Algorithm 2.1. This leads to
the following identity:

uk+1 = uk +
\alpha 

2(k+ \alpha )
( \widetilde \scrF \rho u

k  - uk) +
k

k+ \alpha 

\Bigl( \widetilde \scrF \rho u
k  - \widetilde \scrF \rho u

k - 1
\Bigr) 

\forall k\geq 1,(2.11)

where \widetilde \scrF \rho = (1 - \rho )\scrI + \rho \widetilde \scrT . Based on the shadow sequences in (2.10) and the equiv-
alence outlined in Remark 2.6, we establish the global convergence of the proposed
accelerated dPPM in the following theorem.

Theorem 2.7. Let \scrT :\scrH \rightarrow 2\scrH with \scrT  - 1(0) \not = \emptyset be a maximal monotone operator,
and let \scrM be an admissible preconditioner with a closed range such that (\scrM + \scrT ) - 1

is continuous. Suppose that \scrM = \scrC \scrC \ast is a decomposition of \scrM according to Propo-
sition 2.2 with \scrC : \scrU \rightarrow \scrH . The following conclusions hold for the sequences \{ \=wk\} ,
\{ \^wk\} , and \{ wk\} generated by the accelerated dPPM in Algorithm 2.1:

(a) If \alpha = 2, then the sequence \{ \=wk\} converges strongly to a fixed-point w\ast =
(\scrM +\scrT ) - 1\scrC \Pi \scrC \ast \scrT  - 1(0)(\scrC \ast w0) in \scrT  - 1(0), where \Pi \scrC \ast \scrT  - 1(0)(\cdot ) is the projection
operator onto the closed convex set \scrC \ast \scrT  - 1(0); moreover, if \rho \in (0,2), then
the sequences \{ wk\} and \{ \^wk\} also converge strongly to w\ast ;

(b) If \alpha > 2, then the sequence \{ \=wk\} converges weakly to a fixed-point in \scrT  - 1(0).
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ACCELERATED PRECONDITIONED ADMM 1173

Proof. We first establish the statement in part (a), where \alpha = 2. According to
the connection between the accelerated dPPM and the Halpern iteration outlined in
(2.9), and the relationship between \{ uk\} and \{ wk\} in (2.10), we can obtain that

uk+1 =
1

k+ 2
u0 +

k+ 1

k+ 2
\widetilde \scrF \rho u

k \forall k\geq 0.(2.12)

Note that \widetilde \scrF \rho is nonexpansive for any \rho \in (0,2] by Proposition 2.5. It follows from the
global convergence of the Halpern iteration in [53, Theorem 2] that

uk \rightarrow \Pi Fix \widetilde \scrT (u0).(2.13)

By utilizing Proposition 2.5, we have

\scrC \ast \scrT  - 1(0) = \scrC \ast Fix \widehat \scrT =Fix \widetilde \scrT .

Let w\ast = (\scrM +\scrT ) - 1\scrC \Pi \scrC \ast \scrT  - 1(0)(u
0). Consequently, by the relationship between \{ uk\} 

and \{ wk\} in (2.10), and (2.13), we can obtain

\=wk = (\scrM + \scrT ) - 1\scrC \scrC \ast wk = (\scrM + \scrT ) - 1\scrC uk \rightarrow (\scrM + \scrT ) - 1\scrC \Pi \scrC \ast \scrT  - 1(0)(u
0) =w\ast ,

(2.14)

where the continuity of (\scrM + \scrT ) - 1\scrC is derived from the composition of a continuous
function (\scrM + \scrT ) - 1 and a linear operator \scrC . Hence, \{ \=wk\} converges strongly to w\ast .
Furthermore, since \widetilde \scrT \Pi \scrC \ast \scrT  - 1(0)(u

0) =\Pi \scrC \ast \scrT  - 1(0)(u
0), we have

\widehat \scrT w\ast = (\scrM + \scrT ) - 1\scrC \scrC \ast (\scrM + \scrT ) - 1\scrC \Pi \scrC \ast \scrT  - 1(0)(u
0)

= (\scrM + \scrT ) - 1\scrC \widetilde \scrT \Pi \scrC \ast \scrT  - 1(0)(u
0)

= (\scrM + \scrT ) - 1\scrC \Pi \scrC \ast \scrT  - 1(0)(u
0) =w\ast ,

which implies that w\ast \in Fix \widehat \scrT = \scrT  - 1(0). It remains to show that \{ wk\} and \{ \^wk\} also
converge strongly to w\ast for \rho \in (0,2). According to (2.9), we have

\| wk+1  - w\ast \| 

=

\bigm\| \bigm\| \bigm\| \bigm\| 1

k+ 2
(w0  - w\ast ) +

k+ 1

k+ 2
((1 - \rho )(wk  - w\ast ) + \rho ( \=wk  - w\ast ))

\bigm\| \bigm\| \bigm\| \bigm\| 
\leq k+ 1

k+ 2
| 1 - \rho | \| wk  - w\ast \| + 1

k+ 2
\| w0  - w\ast \| + k+ 1

k+ 2
\rho \| \=wk  - w\ast \| .

(2.15)

For any k \geq 0, define qk := k+1
k+2 | 1 - \rho | and \beta k := 1

k+2\| w
0  - w\ast \| + k+1

k+2\rho \| \=w
k  - w\ast \| . It

is evident that 0\leq qk < 1, \beta k \geq 0 for any k\geq 0, and

\infty \sum 
k=0

(1 - qk) =

\infty \sum 
k=0

1 - 
\biggl( 
k+ 1

k+ 2

\biggr) 
| 1 - \rho | =

\infty \sum 
k=0

1

k+ 2
+

\biggl( 
k+ 1

k+ 2

\biggr) 
(1 - | 1 - \rho | ) =+\infty .

(2.16)

Furthermore, due to the convergence of \{ \=wk\} , we can deduce

\beta k

1 - qk
\rightarrow 0 \forall \rho \in (0,2).(2.17)

It follows from (2.16), (2.17), and [43, Lemma 3 in subsection 2.2.1] that

\| wk+1  - w\ast \| \rightarrow 0,
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1174 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

which in accordance with (2.9) implies

\| \^wk  - w\ast \| \rightarrow 0.

Hence, \{ wk\} and \{ \^wk\} also converge strongly to w\ast for \rho \in (0,2).
Now, we shall prove part (b) where \alpha > 2. According to the identity in (2.11),

the nonexpansiveness of \widetilde \scrF \rho , and the convergence result of the fast KM [8, Theorem

3.4], we can obtain that \{ uk\} converges weakly to an element in Fix \widetilde \scrT . Similar to
(2.14), we can deduce that \{ \=wk\} converges weakly to a point in \scrT  - 1(0).

Remark 2.8. The acceleration step (Step 3) in Algorithm 2.1 can be replaced
by other acceleration techniques [51]. Following a similar approach to the proof of
Theorem 2.7, we can obtain the global convergence of the sequence \{ \=wk\} if the shadow
sequence \{ uk\} converges.

The following proposition provides convergence rates for the accelerated dPPM.

Proposition 2.9. Let \scrT : \scrH \rightarrow 2\scrH with \scrT  - 1(0) \not = \emptyset be a maximal monotone
operator, and let \scrM be an admissible preconditioner with closed range. The sequences
\{ wk\} and \{ \^wk\} generated by Algorithm 2.1 satisfy the following:

(a) if \alpha = 2, then

\| wk  - \^wk+1\| \scrM \leq 
2
\bigm\| \bigm\| w0  - w\ast 

\bigm\| \bigm\| 
\scrM 

k+ 1
\forall k\geq 0 and w\ast \in \scrT  - 1(0);(2.18)

(b) if \alpha > 2, then

\| wk+1  - wk\| \scrM = o

\biggl( 
1

k+ 1

\biggr) 
and \| wk  - \^wk+1\| \scrM = o

\biggl( 
1

k+ 1

\biggr) 
as k\rightarrow +\infty .

(2.19)

Proof. Let \scrM = \scrC \scrC \ast be a decomposition of \scrM according to Proposition 2.2 with
\scrC : \scrU \rightarrow \scrH . If \alpha = 2, then the shadow sequence \{ uk\} satisfying (2.12) is exactly the
Halpern iteration. By Proposition 2.5, we know that \widetilde \scrF \rho is nonexpansive for \rho \in (0,2].
It follows from [36, Theorem 2.1] that

\| uk  - \widetilde \scrF \rho u
k\| \leq 

2
\bigm\| \bigm\| u0  - u\ast 

\bigm\| \bigm\| 
k+ 1

\forall k\geq 0 and u\ast \in Fix \widetilde \scrF \rho .(2.20)

Due to Proposition 2.5, we also have Fix \widetilde \scrF \rho = \scrC \ast \scrT  - 1(0). Thus, for any u\ast \in Fix \widetilde \scrF \rho ,
there exists a point w\ast = (\scrM +\scrT ) - 1\scrC u\ast \in \scrT  - 1(0) such that \scrC \ast w\ast = u\ast . Hence, (2.20)
can be rewritten as

\| \scrC \ast wk  - \scrC \ast \widehat \scrF \rho w
k\| \leq 

2
\bigm\| \bigm\| \scrC \ast w0  - \scrC \ast w\ast 

\bigm\| \bigm\| 
k+ 1

\forall k\geq 0 and w\ast \in \scrT  - 1(0),

which implies

\| wk  - \^wk+1\| \scrM = \| wk  - \widehat \scrF \rho w
k\| \scrM \leq 

2
\bigm\| \bigm\| w0  - w\ast 

\bigm\| \bigm\| 
\scrM 

k+ 1
\forall k\geq 0 and w\ast \in \scrT  - 1(0).

If \alpha > 2, then the shadow sequence \{ uk\} satisfying (2.11) is exactly the fast KM
iteration. It follows from [8, Theorem 3.5] that

\| uk+1  - uk\| = o

\biggl( 
1

k+ 1

\biggr) 
and \| uk  - \widetilde \scrF \rho u

k\| = o

\biggl( 
1

k+ 1

\biggr) 
as k\rightarrow +\infty .
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ACCELERATED PRECONDITIONED ADMM 1175

Similar to the previous case with \alpha = 2, we can conclude that

\| wk+1  - wk\| \scrM = o

\biggl( 
1

k+ 1

\biggr) 
and \| wk  - \^wk+1\| \scrM = o

\biggl( 
1

k+ 1

\biggr) 
as k\rightarrow +\infty ,

which completes the proof.

Remark 2.10. The convergence rates discussed in Proposition 2.9 are essentially
inherited from the results of the Halpern iteration [36] and the fast KM iteration
[8] applied to the nonexpansive operator \widetilde \scrF \rho defined in Proposition 2.5. Moreover,
without acceleration, similar to [12, Proposition 8], we can obtain that the dPPM
with \rho = 1 has an O(1/

\surd 
k) convergence rate with respect to \| wk  - wk - 1\| \scrM \forall k\geq 1.

The following corollary demonstrates that even when the proximal term \scrM is
positive semidefinite, the accelerated dPPM can achieve an O(1/k) convergence rate
in terms of the operator residual under the norm.

Corollary 2.11. Let \scrT : \scrH \rightarrow 2\scrH with \scrT  - 1(0) \not = \emptyset be a maximal monotone
operator, and let \scrM be an admissible preconditioner with closed range such that (\scrM +
\scrT ) - 1 is L-Lipschitz. Suppose that \scrM = \scrC \scrC \ast is a decomposition of \scrM according to
Proposition 2.2 with \scrC : \scrU \rightarrow \scrH . Let \| \scrC \| := sup\| w\| \leq 1 \| \scrC w\| represent the norm of

the linear operator \scrC . Choose \alpha = 2 and \rho = 1. Then the sequences \{ wk\} and \{ \=wk\} 
generated by Algorithm 2.1 satisfy

\| wk  - \=wk\| \leq 1

k+ 1
\| w0  - w\ast \| + (5k+ 1)L\| \scrC \| 

(k+ 1)2
\| w0  - w\ast \| \scrM \forall k\geq 0 and w\ast \in \scrT  - 1(0).

Proof. Set \alpha = 2 and \rho = 1. Then according to (2.9), we have

wk+1 =
1

k+ 2
w0 +

k+ 1

k+ 2
\widehat \scrT wk \forall k\geq 0.(2.21)

Since (\scrM + \scrT ) - 1 is L-Lipschitz, we have for all w\prime ,w\prime \prime \in \scrH 

\| \widehat \scrT w\prime  - \widehat \scrT w\prime \prime \| =
\bigm\| \bigm\| (\scrM + \scrT ) - 1\scrC \scrC \ast w\prime  - (\scrM + \scrT ) - 1\scrC \scrC \ast w\prime \prime \bigm\| \bigm\| \leq L\| \scrC \| \| w\prime  - w\prime \prime \| \scrM ,

which, together with (2.21), yields that for any w\ast \in \scrT  - 1(0) and k\geq 0,

\| wk+1  - \widehat \scrT wk+1\| 

= \| 1

k+ 2
[(w0  - w\ast ) + (w\ast  - \widehat \scrT wk+1)] +

k+ 1

k+ 2
(\widehat \scrT wk  - \widehat \scrT wk+1)\| 

\leq 1

k+ 2

\Bigl( 
\| w0  - w\ast \| + \| w\ast  - \widehat \scrT wk+1\| 

\Bigr) 
+

k+ 1

k+ 2
\| \widehat \scrT wk  - \widehat \scrT wk+1\| 

\leq 1

k+ 2

\bigl( 
\| w0  - w\ast \| +L\| \scrC \| \| w\ast  - wk+1\| \scrM 

\bigr) 
+

k+ 1

k+ 2
L\| \scrC \| 

\bigm\| \bigm\| wk  - wk+1
\bigm\| \bigm\| 
\scrM .

(2.22)

Next, we shall estimate \| wk  - wk+1\| \scrM . Indeed, from (2.21), we have

\| wk  - wk+1\| \scrM 

=

\bigm\| \bigm\| \bigm\| \bigm\| 1

k+ 2
[(w0  - w\ast ) + (w\ast  - wk)] +

k+ 1

k+ 2
(\widehat \scrT wk  - wk)

\bigm\| \bigm\| \bigm\| \bigm\| 
\scrM 

\leq 1

k+ 2

\bigl( 
\| w0  - w\ast \| \scrM + \| w\ast  - wk\| \scrM 

\bigr) 
+

k+ 1

k+ 2
\| \widehat \scrT wk  - wk\| \scrM .

(2.23)
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1176 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

Now, we claim that \| wk  - w\ast \| \scrM \leq \| w0  - w\ast \| \scrM for any k \geq 0. Assume \| wk  - 
w\ast \| \scrM \leq \| w0  - w\ast \| \scrM for some k \geq 0 (this is true for k = 0 trivially). Since \widehat \scrT is
\scrM -nonexpansive by Proposition 2.3, we have

\| wk+1  - w\ast \| \scrM =

\bigm\| \bigm\| \bigm\| \bigm\| 1

k+ 2

\bigl( 
w0  - w\ast \bigr) + k+ 1

k+ 2
(\widehat \scrT wk  - w\ast )

\bigm\| \bigm\| \bigm\| \bigm\| 
\scrM 

\leq 1

k+ 2
\| w0  - w\ast \| \scrM +

k+ 1

k+ 2
\| wk  - w\ast \| \scrM 

\leq \| w0  - w\ast \| \scrM .

In particular, this implies that \| w1 - w\ast \| \scrM \leq \| w0 - w\ast \| \scrM . Thus, we derive from the
induction that

\| wk  - w\ast \| \scrM \leq \| w0  - w\ast \| \scrM \forall k\geq 0.(2.24)

Thus, from (2.22), (2.23), and (2.24), we can deduce that for any k\geq 0,

\| wk+1  - \widehat \scrT wk+1\| \leq 1

k+ 2

\bigl( 
\| w0  - w\ast \| +L\| \scrC \| \| w\ast  - w0\| \scrM 

\bigr) 
+

k+ 1

k+ 2
L\| \scrC \| 

\biggl( 
2

k+ 2
\| w0  - w\ast \| \scrM +

k+ 1

k+ 2
\| \widehat \scrT wk  - wk\| \scrM 

\biggr) 
.

(2.25)

Also, from Proposition 2.9, we have for \rho = 1

\| wk  - \widehat \scrT wk\| \scrM \leq 
2
\bigm\| \bigm\| w0  - w\ast 

\bigm\| \bigm\| 
\scrM 

k+ 1
\forall k\geq 0 and w\ast \in \scrT  - 1(0),

which together with (2.25) yields that for any k\geq 0,

\| wk+1  - \widehat \scrT wk+1\| \leq 1

k+ 2
\| w0  - w\ast \| + 5k+ 6

(k+ 2)2
L\| \scrC \| \| w0  - w\ast \| \scrM .

Note that for k= 0, we also have

\| w0  - \widehat \scrT w0\| \leq \| w0  - w\ast \| + \| \widehat \scrT w0  - w\ast \| 
\leq \| w0  - w\ast \| +L\| \scrC \| \| w0  - w\ast \| \scrM .

Hence, for any k\geq 0,

\| wk  - \widehat \scrT wk\| \leq 1

k+ 1
\| w0  - w\ast \| + 5k+ 1

(k+ 1)2
L\| \scrC \| \| w0  - w\ast \| \scrM ,

which completes the proof.

3. Acceleration of the pADMM. In this section, we first establish the equiva-
lence between the pADMM and the dPPM. Subsequently, we introduce an accelerated
pADMM based on the accelerated dPPM. Finally, we present the global convergence
of the accelerated pADMM and discuss its convergence rate.

3.1. The equivalence between the pADMM and the dPPM. We first
introduce some quantities for further analysis. Specifically, we consider the self-adjoint
linear operator \scrM :\BbbW \rightarrow \BbbW defined by

\scrM =

\left[  \sigma B\ast 
1B1 + \scrT 1 0 B\ast 

1

0 \scrT 2 0
B1 0 \sigma  - 1\scrI 

\right]  .(3.1)
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ACCELERATED PRECONDITIONED ADMM 1177

Furthermore, since f1 and f2 are proper closed convex functions, there exist two
self-adjoint and positive semidefinite operators \Sigma f1 and \Sigma f2 such that for all y, \^y \in 
dom(f1), \phi \in \partial f1(y), and \^\phi \in \partial f1(\^y),

f1(y)\geq f1(\^y) + \langle \^\phi ,y - \^y\rangle + 1

2
\| y - \^y\| 2\Sigma f1

and \langle \phi  - \^\phi ,y - \^y\rangle \geq \| y - \^y\| 2\Sigma f1
,

and for all z, \^z \in dom(f2),\varphi \in \partial f2(z), and \^\varphi \in \partial f2(\^z),

f2(z)\geq f2(\^z) + \langle \^\varphi ,z  - \^z\rangle + 1

2
\| z  - \^z\| 2\Sigma f2

and \langle \varphi  - \^\varphi ,z  - \^z\rangle \geq \| z  - \^z\| 2\Sigma f2
.

On the other hand, it follows from [44, Corollary 28.3.1] that (y\ast , z\ast ) \in \BbbY \times \BbbZ is
an optimal solution to problem (1.1) if and only if there exists x\ast \in \BbbX such that
(y\ast , z\ast , x\ast ) satisfies the following KKT system:

 - B\ast 
1x

\ast \in \partial f1(y
\ast ),  - B\ast 

2x
\ast \in \partial f2(z

\ast ), B1y
\ast +B2z

\ast  - c= 0,(3.2)

where \partial f1 and \partial f2 are the subdifferential mappings of f1 and f2, respectively. Then,
solving problem (1.1) is equivalent to finding w \in \BbbW such that 0 \in \scrT w, where the
maximal monotone operator \scrT is defined by

\scrT w=

\left(  \partial f1(y) +B\ast 
1x

\partial f2(z) +B\ast 
2x

c - B1y - B2z

\right)  \forall w= (y, z,x)\in \BbbW .(3.3)

Now, we make the following assumptions.

Assumption 1. The KKT system (3.2) has a nonempty solution set.

Assumption 2. Both \Sigma f1 +B\ast 
1B1 + \scrT 1 and \Sigma f2 +B\ast 

2B2 + \scrT 2 are positive definite.

Under Assumption 2 originated from [22], each step of the pADMM is well defined
due to the strong convexity of the objective functions in the subproblems. Assump-
tion 2 holds automatically if either Bi is injective or fi is strongly convex (for i= 1,2).
Han et al. [27] presented an example where neither is Bi injective nor is fi strongly
convex (for i= 1,2), yet Assumption 2 can still hold easily. Furthermore, the following
lemma shows that (\scrM + \scrT ) - 1 is Lipschitz continuous under Assumption 2.

Lemma 3.1. Suppose that Assumption 2 holds. Consider the operators \scrT defined
in (3.3) and \scrM defined in (3.1). Then, (\scrM + \scrT ) - 1 is Lipschitz continuous.

Proof. We begin by establishing that (\scrM + \scrT ) - 1 is single-valued by proof of
contradiction. Assume, for the sake of contradiction, that (\scrM + \scrT ) - 1 is not single-
valued. Then, there exist distinct \=w1 = (\=y1, \=z1, \=x1)\in \BbbW and \=w2 = (\=y2, \=z2, \=x2)\in \BbbW such
that \=w1 \in (\scrM + \scrT ) - 1v and \=w2 \in (\scrM + \scrT ) - 1v for some v = (vy, vz, vx) \in \BbbW , which
implies, for i= 1,2,

vy \in \partial f1(\=yi) + (\sigma B\ast 
1B1 + \scrT 1)\=yi + 2B\ast 

1 \=xi,(3.4)

vz \in \partial f2(\=zi) +B\ast 
2 \=xi + \scrT 2\=zi,(3.5)

vx = c - B2\=zi + \sigma  - 1\=xi.(3.6)

Using the definitions of \Sigma f1 and \Sigma f2 , we derive the following inequalities from (3.4),
(3.5), and (3.6):
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1178 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

\langle  - (\sigma B\ast 
1B1 + \scrT 1)(\=y1  - \=y2) - 2B\ast 

1(\=x1  - \=x2), \=y1  - \=y2\rangle \geq \| \=y1  - \=y2\| 2\Sigma f1
,(3.7)

\langle  - \scrT 2(\=z1  - \=z2) - B\ast 
2(\=x1  - \=x2), \=z1  - \=z2\rangle \geq \| \=z1  - \=z2\| 2\Sigma f2

,(3.8)

\sigma B2(\=z1  - \=z2) = \=x1  - \=x2.(3.9)

Substituting (3.9) into (3.8), we have

0\geq \| \=z1  - \=z2\| 2\Sigma f2
+\scrT 2+\sigma B\ast 

2B2
.

As \Sigma f2 + \scrT 2 + \sigma B\ast 
2B2 is positive definite by Assumption 2, we conclude that

\=z1  - \=z2 = 0,(3.10)

which together with (3.9) yields that

\=x1  - \=x2 = 0.(3.11)

Similarly, substituting (3.11) into (3.7), we can deduce from the positive definiteness
of \Sigma f1 + \scrT 1 + \sigma B\ast 

1B1 by Assumption 2 that

\=y1  - \=y2 = 0.(3.12)

Therefore, (3.10), (3.11), and (3.12) show that \=w1 = \=w2, contradicting our assumption.
Thus, we conclude that (\scrM + \scrT ) - 1 is indeed single-valued.

To show the Lipschitz continuity of (\scrM +\scrT ) - 1, consider \=wi = (\=yi, \=zi, \=xi)\in \BbbW such
that \=wi = (\scrM + \scrT ) - 1vi, where vi = (viy, viz, vix) for i = 1,2. Similar to (3.4), (3.5),
and (3.6), we have, for i= 1,2,

viy  - 2B\ast 
1 \=xi \in (\partial f1 + \sigma B\ast 

1B1 + \scrT 1)\=yi,(3.13)

viz  - \sigma B\ast 
2(vix  - c)\in (\partial f2 + \sigma B\ast 

2B2 + \scrT 2)\=zi,(3.14)

vix = c - B2\=zi + \sigma  - 1\=xi.(3.15)

By [44, Corollary 23.5.1], we can obtain, for i= 1,2,

\=yi \in (\partial f1 + \sigma B\ast 
1B1 + \scrT 1) - 1(viy  - 2B\ast 

1 \=xi),

\=zi \in (\partial f2 + \sigma B\ast 
2B2 + \scrT 2) - 1(viz  - \sigma B\ast 

2(vix  - c)).

Since \partial f2+\sigma B\ast 
2B2+\scrT 2 is strongly monotone by Assumption 2, (\partial f2+\sigma B\ast 

2B2+\scrT 2) - 1

is Lipschitz continuous by [47, Proposition 12.54]. Therefore, there exists a constant
L2 such that

\| \=z1  - \=z2\| \leq L2\| (v1z  - v2z) - \sigma B\ast 
2(v1x  - v2x)\| 

\leq L2\| v1z  - v2z\| + \sigma L2\| B\ast 
2\| \| v1x  - v2x\| .

(3.16)

Hence, by (3.15) and (3.16), we can obtain

\| \=x1  - \=x2\| = \| \sigma (v1x  - v2x +B2(\=z1  - \=z2))\| 
\leq \sigma (1 + \sigma L2\| B2\| \| B\ast 

2\| )\| v1x  - v2x\| + \sigma L2\| B2\| \| v1z  - v2z\| .
(3.17)

Similarly, since \partial f1+\sigma B\ast 
1B1+\scrT 1 is strongly monotone by Assumption 2, there exists

a constant L1 such that

\| \=y1  - \=y2\| \leq L1\| (v1y  - v2y) - 2B\ast 
1(\=x1  - \=x2)\| 

\leq L1(\| v1y  - v2y\| + 2\| B\ast 
1\| \| \=x1  - \=x2\| )

\leq L1(\| v1y  - v2y\| + 2\| B\ast 
1\| \sigma (1 + \sigma L2\| B2\| \| B\ast 

2\| )\| v1x  - v2x\| 
+ 2\| B\ast 

1\| \sigma L2\| B2\| \| v1z  - v2z\| ).

(3.18)
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ACCELERATED PRECONDITIONED ADMM 1179

Therefore, by (3.16), (3.17), and (3.18), there exists a constant L such that \| \=w1 - \=w2\| \leq 
L\| v1  - v2\| .

Inspired by the interpretation of pADMM as a (partial) PPM in [14] (for \rho = 1)
and [56] (for \rho \in \BbbR ), below we rigorously establish an important one-to-one correspon-
dence between pADMM and dPPM.

Proposition 3.2. Suppose that Assumption 2 holds. Consider the operators
\scrT defined in (3.3) and \scrM defined in (3.1). Then the sequence

\bigl\{ 
wk

\bigr\} 
generated by

the pADMM in Algorithm 1.1 coincides with the sequence
\bigl\{ 
wk

\bigr\} 
generated by the

dPPM in (2.4) with the same initial point w0 \in \BbbW . Additionally, \scrM is an admissible
preconditioner such that (\scrM + \scrT ) - 1 is Lipschitz continuous.

Proof. Similar to the proof establishing the equivalence of the pADMM and the
(partial) PPM, as outlined in Appendix B of [56], we can obtain that under Assump-
tion 2, the sequence

\bigl\{ 
wk

\bigr\} 
generated by Algorithm 1.1 coincides with the sequence\bigl\{ 

wk
\bigr\} 
generated by the following scheme:

\scrM wk \in (\scrM + \scrT ) \=wk, wk+1 = (1 - \rho k)w
k + \rho k \=w

k.

Since (\scrM + \scrT ) - 1 is single-valued according to Lemma 3.1, we have

\=wk = (\scrM + \scrT ) - 1\scrM wk, wk+1 = (1 - \rho k)w
k + \rho k \=w

k.

Note that for an arbitrary choice of wk \in \BbbW , each step in Algorithm 1.1 is well defined
under Assumption 2. Hence, based on the equivalence established, we conclude that
(\scrM + \scrT ) - 1\scrM has full domain. Combining this result with Lemma 3.1, we deduce
that \scrM is an admissible preconditioner such that (\scrM +\scrT ) - 1 is Lipschitz continuous,
which completes the proof.

The convergence of Algorithm 1.1 with the uniform relaxation factor \rho \in (0,2)
has already been established in [54] under Assumptions 1 and 2 by borrowing the
proofs from [22]. In contrast, by leveraging the equivalence between the dPPM and
the pADMM, as detailed in Proposition 3.2, we can directly deduce the convergence
of Algorithm 1.1 with varying relaxation factors \rho k \in (0,2) for k \geq 0 by applying the
convergence results of the dPPM, as presented in Theorem 2.4.

Corollary 3.3. Suppose that Assumptions 1 and 2 hold. If 0 < infk \rho k \leq 
supk \rho k < 2, then the sequence \{ wk\} = \{ (yk, zk, xk)\} generated by Algorithm 1.1 con-
verges to the point w\ast = (y\ast , z\ast , x\ast ), where (y\ast , z\ast ) is a solution to problem (1.1) and
x\ast is a solution to problem (1.2).

3.2. An accelerated pADMM. Based on the equivalence stated in Proposi-
tion 3.2, we can employ the accelerated dPPM introduced in Algorithm 2.1 to derive
an accelerated pADMM, as outlined in Algorithm 3.1.

Remark 3.4. When \scrT i = 0 for i = 1,2 in Algorithm 3.1, we can obtain an accel-
erated ADMM. As will be shown in Theorem 3.7, this accelerated ADMM exhibits
a nonergodic convergence rate of O(1/k) for both the KKT residual and the primal
objective function value gap, which is similar to the findings in [57]. Furthermore,
by setting \scrT i = \sigma (\lambda max(B

\ast 
i Bi)\scrI  - B\ast 

i Bi) for i = 1,2 in Algorithm 3.1, we can obtain
an accelerated LADMM. Compared to the algorithm in [30], the \scrT i for i = 1,2 in
Algorithm 3.1 will not tend to infinity as k increases, which implies that this accel-
erated LADMM has a larger primal step length. Additionally, both \scrT 1 and \scrT 2 in
Algorithm 3.1 can be positive semidefinite under Assumption 2, which is a significant
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1180 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

Algorithm 3.1 An accelerated pADMM for solving two-block convex optimization
problem (1.1).

1: Input: Let \scrT 1 and \scrT 2 be two self-adjoint positive semidefinite linear operators \BbbY 
and \BbbZ , respectively. Choose an initial point w0 = (y0, z0, x0)\in dom(f1)\times 
dom(f2)\times \BbbX . Let \^w0 :=w0. Set parameters \sigma > 0, \alpha \geq 2, and \rho \in (0,2]. For
k= 0,1, . . . , perform the following steps in each iteration.

2: Step 1. \=zk = argmin
z\in \BbbZ 

\bigl\{ 
L\sigma 

\bigl( 
yk, z;xk

\bigr) 
+ 1

2\| z  - zk\| 2\scrT 2

\bigr\} 
.

3: Step 2. \=xk = xk + \sigma (B1y
k +B2\=z

k  - c).
4: Step 3. \=yk = argmin

y\in \BbbY 

\bigl\{ 
L\sigma 

\bigl( 
y, \=zk; \=xk

\bigr) 
+ 1

2\| y - yk\| 2\scrT 1

\bigr\} 
.

5: Step 4. \^wk+1 = (1 - \rho )wk + \rho \=wk.
6: Step 5. wk+1 =wk + \alpha 

2(k+\alpha ) ( \^w
k+1  - wk) + k

k+\alpha 

\bigl( 
\^wk+1  - \^wk

\bigr) 
.

difference compared to work of [49]. Finally, the accelerated pADMM introduced in
[56], where both \scrT 1 and \scrT 2 are positive definite, is a special case of Algorithm 3.1 with
\alpha = 2.

According to the convergence result of the accelerated dPPM in Theorem 2.7, we
can obtain the global convergence of Algorithm 3.1 in the following corollary.

Corollary 3.5. Suppose that Assumptions 1 and 2 hold. The sequence \{ \=wk\} =
\{ (\=yk, \=zk, \=xk)\} generated by Algorithm 3.1 converges to the point w\ast = (y\ast , z\ast , x\ast ),
where (y\ast , z\ast ) is a solution to problem (1.1) and x\ast is a solution to problem (1.2).

Proof. The proof follows from Theorem 2.7 and Proposition 3.2.

To analyze the convergence rate of Algorithm 3.1, we begin by considering the
residual mapping associated with the KKT system (3.2), as introduced in [27]:

\scrR (w) :=

\left(  y - Proxf1(y - B\ast 
1x)

z  - Proxf2(z  - B\ast 
2x)

c - B1y - B2z

\right)  \forall w= (y, z, x)\in \BbbW .(3.19)

It is clear that w\ast = (y\ast , z\ast , x\ast ) satisfies the KKT system (3.2) if and only if\scrR (w\ast ) = 0.
Let \{ (\=yk, \=zk)\} be the sequence generated by Algorithm 3.1. To estimate the primal
objective function value gap, we define

h(\=yk, \=zk) := f1(\=y
k) + f2(\=z

k) - f1(y
\ast ) - f2(z

\ast ) \forall k\geq 0,

where (y\ast , z\ast ) is the limit point of the sequence \{ (\=yk, \=zk)\} . The next lemma provides
the lower and upper bounds for the primal objective function value gap.

Lemma 3.6. Suppose that Assumptions 1 and 2 hold. Let \{ (\=yk, \=zk, \=xk)\} be the
sequence generated by Algorithm 3.1. Then for all k \geq 0, we have the following
bounds:

h(\=yk, \=zk)\leq 
\bigl\langle 
\sigma B1(y

\ast  - \=yk) - \=xk, (B1\=y
k +B2\=z

k  - c)
\bigr\rangle 

+
\bigl\langle 
y\ast  - \=yk,\scrT 1(\=yk  - yk)

\bigr\rangle 
+
\bigl\langle 
z\ast  - \=zk,\scrT 2(\=zk  - zk)

\bigr\rangle (3.20)

and

h
\bigl( 
\=yk, \=zk

\bigr) 
\geq 
\bigl\langle 
B1\=y

k +B2\=z
k  - c, - x\ast \bigr\rangle ,(3.21)

where (y\ast , z\ast , x\ast ) is the limit point of the sequence \{ (\=yk, \=zk, \=xk)\} .
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ACCELERATED PRECONDITIONED ADMM 1181

Proof. For notational convenience, for any x\in \BbbX , define

df1(x) := f\ast 
1 ( - B\ast 

1x) + \langle x, c\rangle , df2(x) := f\ast 
2 ( - B\ast 

2x) ,

and

\widetilde xk := \=xk + \sigma (B1\=y
k +B2\=z

k  - c) \forall k\geq 0.

On the one hand, from the optimality conditions of the subproblems of Algorithm 3.1,
we have, for any k\geq 0,

 - B\ast 
2 \=x

k  - \scrT 2(\=zk  - zk)\in \partial f2(\=z
k),  - B\ast 

1\widetilde xk  - \scrT 1(\=yk  - yk)\in \partial f1(\=y
k).

It follows from [44, Theorem 23.5] that for any k\geq 0,\left\{   f\ast 
1

\bigl( 
 - B\ast 

1\widetilde xk  - \scrT 1(\=yk  - yk)
\bigr) 
=
\bigl\langle 
\=yk, - B\ast 

1\widetilde xk  - \scrT 1(\=yk  - yk)
\bigr\rangle 
 - f1

\bigl( 
\=yk
\bigr) 
,

f\ast 
2

\bigl( 
 - B\ast 

2 \=x
k  - \scrT 2(\=zk  - zk)

\bigr) 
=
\bigl\langle 
\=zk, - B\ast 

2 \=x
k  - \scrT 2(\=zk  - zk)

\bigr\rangle 
 - f2

\bigl( 
\=zk
\bigr) 
.

Summing them up, we can obtain that for any k\geq 0,

f\ast 
1

\bigl( 
 - B\ast 

1\widetilde xk  - \scrT 1(\=yk  - yk)
\bigr) 
+ f\ast 

2

\bigl( 
 - B\ast 

2 \=x
k  - \scrT 2(\=zk  - zk)

\bigr) 
+ \langle \widetilde xk, c\rangle 

= - f1
\bigl( 
\=yk
\bigr) 
 - f2

\bigl( 
\=zk
\bigr) 
 - 
\bigl\langle 
(B1\=y

k +B2\=z
k  - c), \=xk + \sigma (B1\=y

k  - c)
\bigr\rangle 

 - 
\bigl\langle 
\=yk,\scrT 1(\=yk  - yk)

\bigr\rangle 
 - 
\bigl\langle 
\=zk,\scrT 2(\=zk  - zk)

\bigr\rangle 
.

(3.22)

On the other hand, from the KKT conditions in (3.2) and [44, Theorem 23.5], we
have

y\ast \in \partial f\ast 
1 ( - B\ast 

1x
\ast ), z\ast \in \partial f\ast 

2 ( - B\ast 
2x

\ast ).

Thus, it follows from the convexity of f\ast 
1 and f\ast 

2 that for any k\geq 0,\left\{         
f\ast 
1

\bigl( 
 - B\ast 

1\widetilde xk  - \scrT 1(\=yk  - yk)
\bigr) 
+ \langle \widetilde xk, c\rangle  - df1(x

\ast )

\geq 
\bigl\langle 
y\ast , - B\ast 

1\widetilde xk  - \scrT 1(\=yk  - yk) +B\ast 
1x

\ast \bigr\rangle + \langle c, \widetilde xk  - x\ast \rangle ,

f\ast 
2

\bigl( 
 - B\ast 

2 \=x
k  - \scrT 2(\=zk  - zk)

\bigr) 
 - df2(x

\ast )\geq 
\bigl\langle 
z\ast , - B\ast 

2 \=x
k  - \scrT 2(\=zk  - zk) +B\ast 

2x
\ast \bigr\rangle .

Summing them up and by noting B1y
\ast +B2z

\ast = c, we have, for any k\geq 0,

f\ast 
1

\bigl( 
 - B\ast 

1\widetilde xk  - \scrT 1(\=yk  - yk)
\bigr) 
+ f\ast 

2

\bigl( 
 - B\ast 

2 \=x
k  - \scrT 2(\=zk  - zk)

\bigr) 
+ \langle \widetilde xk, c\rangle 

\geq df1(x
\ast ) + df2(x

\ast ) - 
\bigl\langle 
B1y

\ast  - c,\sigma (B1\=y
k +B2\=z

k  - c)
\bigr\rangle 

 - 
\bigl\langle 
y\ast ,\scrT 1(\=yk  - yk)

\bigr\rangle 
 - 
\bigl\langle 
z\ast ,\scrT 2(\=zk  - zk)

\bigr\rangle 
.

(3.23)

Combing (3.22) and (3.23), we can deduce that for any k\geq 0,

f1
\bigl( 
\=yk
\bigr) 
+ f2

\bigl( 
\=zk
\bigr) 
+ df1(x

\ast ) + df2(x
\ast )

\leq 
\bigl\langle 
\sigma B1(y

\ast  - \=yk) - \=xk, (B1\=y
k +B2\=z

k  - c)
\bigr\rangle 

+
\bigl\langle 
y\ast  - \=yk,\scrT 1(\=yk  - yk)

\bigr\rangle 
+
\bigl\langle 
z\ast  - \=zk,\scrT 2(\=zk  - zk)

\bigr\rangle 
.

Since df1(x
\ast ) + df2(x

\ast ) =  - f1(y
\ast ) - f2(z

\ast ) from [44, Theorem 28.4], we can derive,
for any k\geq 0,

h(\=yk, \=zk)\leq 
\bigl\langle 
\sigma B1(y

\ast  - \=yk) - \=xk, (B1\=y
k +B2\=z

k  - c)
\bigr\rangle 

+
\bigl\langle 
y\ast  - \=yk,\scrT 1(\=yk  - yk)

\bigr\rangle 
+
\bigl\langle 
z\ast  - \=zk,\scrT 2(\=zk  - zk)

\bigr\rangle 
.
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1182 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

Finally, according to the KKT conditions in (3.2), we have, for any k\geq 0,

f1(\=y
k) - f1(y

\ast )\geq \langle  - B\ast 
1x

\ast , \=yk  - y\ast \rangle , f2(\=z
k) - f2 (z

\ast )\geq \langle  - B\ast 
2x

\ast , \=zk  - z\ast \rangle .

Thus, the inequality (3.21) holds since B1y
\ast +B2z

\ast = c. This completes the proof of
the lemma.

Now, we are ready to present the complexity result for Algorithm 3.1.

Theorem 3.7. Suppose that Assumptions 1 and 2 hold. Let \{ (\=yk, \=zk, \=xk)\} be the
sequence generated by Algorithm 3.1, and let w\ast = (y\ast , z\ast , x\ast ) be the limit point of the
sequence \{ (\=yk, \=zk, \=xk)\} and R0 = \| w0  - w\ast \| \scrM .

(a) If \alpha = 2, then for all k\geq 0, we have the following bounds:

\| \scrR ( \=wk)\| \leq 
\biggl( 
\sigma \| B\ast 

1\| + 1\surd 
\sigma 

+ \| 
\sqrt{} 
\scrT 2\| + \| 

\sqrt{} 
\scrT 1\| 

\biggr) 
2R0

\rho (k+ 1)
(3.24)

and \biggl( 
 - 1\surd 
\sigma 
\| x\ast \| 

\biggr) 
2R0

\rho (k+ 1)
\leq h(\=yk, \=zk)\leq 

\biggl( 
3R0 +

1\surd 
\sigma 
\| x\ast \| 

\biggr) 
2R0

\rho (k+ 1)
.(3.25)

(b) If \alpha > 2, then we have the following bounds:

\| \scrR ( \=wk)\| =
\biggl( 
\sigma \| B\ast 

1\| + 1\surd 
\sigma 

+ \| 
\sqrt{} 
\scrT 2\| + \| 

\sqrt{} 
\scrT 1\| 

\biggr) 
o

\biggl( 
1

k+ 1

\biggr) 
as k\rightarrow +\infty 

(3.26)

and

| h(\=yk, \=zk)| = o

\biggl( 
1

k+ 1

\biggr) 
as k\rightarrow +\infty .(3.27)

Proof. Consider the case where \alpha = 2. We first estimate the convergence rate of
\scrR ( \=wk) for any k\geq 0. According to Proposition 2.9, we have

\| \^wk+1  - wk\| 2\scrM \leq 4R2
0

(k+ 1)2
\forall k\geq 0.

By the definition of \scrM in (3.1), this can be rewritten as

\| \^yk+1  - yk\| 2\scrT 1
+

1

\sigma 
\| \sigma B1(\^y

k+1  - yk) + (\^xk+1  - xk)\| 2 + \| \^zk+1  - zk\| 2\scrT 2
(3.28)

\leq 4R2
0

(k+ 1)2
\forall k\geq 0.

Also, from Step 4 in Algorithm 3.1, we can obtain that for any k\geq 0,\left\{     
\^yk+1  - yk = \rho (\=yk  - yk),

\^zk+1  - zk = \rho (\=zk  - zk),

\^xk+1  - xk = \rho (\=xk  - xk).

Thus, we can rewrite (3.28) as

\| \=yk  - yk\| 2\scrT 1
+

1

\sigma 
\| \sigma B1(\=y

k  - yk) + (\=xk  - xk)\| 2 + \| \=zk  - zk\| 2\scrT 2
\leq 4R2

0

\rho 2(k+ 1)2
\forall k\geq 0.

(3.29)
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ACCELERATED PRECONDITIONED ADMM 1183

Due to Step 2 in Algorithm 3.1, we can deduce that for any k\geq 0,

\| \sigma B1(\=y
k  - yk) + (\=xk  - xk)\| = \| \sigma B1(\=y

k  - yk) + \sigma (B1y
k +B2\=z

k  - c)\| 
= \sigma \| B1\=y

k +B2\=z
k  - c\| ,

which together with (3.29) yields that

\| B1\=y
k +B2\=z

k  - c\| \leq 2R0\surd 
\sigma \rho (k+ 1)

\forall k\geq 0.(3.30)

Moreover, from the optimality conditions of the subproblems in Algorithm 3.1, we
have, for any k\geq 0,\left\{   \=zk =Proxf2(\=z

k  - B\ast 
2 \=x

k  - \scrT 2(\=zk  - zk)),

\=yk =Proxf1(\=y
k  - B\ast 

1(\=x
k + \sigma (B1\=y

k +B2\=z
k  - c)) - \scrT 1(\=yk  - yk)),

(3.31)

which together with (3.29) yields that for any k\geq 0,

\| \=zk  - Proxf2(\=z
k  - B\ast 

2 \=x
k)\| 

= \| Proxf2(\=zk  - B\ast 
2 \=x

k  - \scrT 2(\=zk  - zk)) - Proxf2(\=z
k  - B\ast 

2 \=x
k)\| 

\leq \| \scrT 2(\=zk  - zk)\| 
\leq \| 

\sqrt{} 
\scrT 2\| \| \=zk  - zk\| \scrT 2

\leq \| 
\sqrt{} 
\scrT 2\| 

2R0

\rho (k+ 1)
.

(3.32)

Similarly, from (3.29), (3.30), and (3.31), we also have, for any k\geq 0,

\| \=yk  - Proxf1(\=y
k  - B\ast 

1 \=x
k)\| 

\leq \| B\ast 
1\sigma (B1\=y

k +B2\=z
k  - c) + \scrT 1(\=yk  - yk)\| 

\leq \sigma \| B\ast 
1\| \| B1\=y

k +B2\=z
k  - c\| + \| \scrT 1(\=yk  - yk)\| 

\leq (
\surd 
\sigma \| B\ast 

1\| + \| 
\sqrt{} 
\scrT 1\| )

2R0

\rho (k+ 1)
.

(3.33)

Therefore, by (3.30), (3.32), and (3.33), we can obtain that for any k\geq 0,

\| \scrR ( \=wk)\| \leq 

\sqrt{} \biggl( 
1

\sigma 
+ \| 

\sqrt{} 
\scrT 2\| 2 + (

\surd 
\sigma \| B\ast 

1\| + \| 
\sqrt{} 

\scrT 1\| )2
\biggr) 

2R0

\rho (k+ 1)

\leq 
\biggl( 
\sigma \| B\ast 

1\| + 1\surd 
\sigma 

+ \| 
\sqrt{} 
\scrT 2\| + \| 

\sqrt{} 
\scrT 1\| 

\biggr) 
2R0

\rho (k+ 1)
.

(3.34)

Now, we estimate the complexity result concerning the primal function value gap. For
the lower bound of the primal function value gap, from (3.21) and (3.30), we have,
for all k\geq 0,

h(\=yk, \=zk)\geq \langle B1\=y
k +B2\=z

k  - c, - x\ast \rangle 
\geq  - \| x\ast \| \| B1\=y

k +B2\=z
k  - c\| 

\geq  - 2R0\| x\ast \| \surd 
\sigma \rho (k+ 1)

.
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1184 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

On the other hand, \widehat \scrF \rho is \scrM -nonexpansive for \rho \in (0,2] by Proposition 2.3. Similar
to (2.24), we can derive from the induction that

\| wk  - w\ast \| \scrM \leq R0 \forall k\geq 0.

Hence, from the \scrM -nonexpansiveness of \widehat \scrT by Proposition 2.3, we have

\| \=wk  - w\ast \| \scrM = \| \widehat \scrT wk  - w\ast \| \scrM \leq \| wk  - w\ast \| \scrM \leq R0 \forall k\geq 0,

which implies

\| \=yk  - y\ast \| 2\scrT 1
+

1

\sigma 
\| \sigma B1(\=y

k  - y\ast ) + (\=xk  - x\ast )\| 2 + \| \=zk  - z\ast \| 2\scrT 2
\leq R2

0 \forall k\geq 0.

This inequality together with (3.20), (3.29), and (3.30) yields that for all k\geq 0,

h(\=yk, \=zk)\leq (\| \sigma B1(\=y
k  - y\ast ) + (\=xk  - x\ast )\| + \| x\ast \| )\| B1\=y

k +B2\=z
k  - c\| 

+ \| y\ast  - \=yk\| \scrT 1
\| \=yk  - yk\| \scrT 1

+ \| z\ast  - \=zk\| \scrT 2
\| \=zk  - zk\| \scrT 2

\leq (
\surd 
\sigma R0 + \| x\ast \| ) 2R0\surd 

\sigma \rho (k+ 1)
+

4R2
0

\rho (k+ 1)

=

\biggl( 
3R0 +

1\surd 
\sigma 
\| x\ast \| 

\biggr) 
2R0

\rho (k+ 1)
.

Now, we establish the complexity results for the case where \alpha > 2. According to
Proposition 2.9, we have

\| wk  - \^wk+1\| \scrM = o

\biggl( 
1

k+ 1

\biggr) 
as k\rightarrow +\infty .

Similar to the previous case with \alpha = 2, we can obtain

\| \scrR ( \=wk)\| =
\biggl( 
\sigma \| B\ast 

1\| + 1\surd 
\sigma 

+ \| 
\sqrt{} 
\scrT 2\| + \| 

\sqrt{} 
\scrT 1\| 

\biggr) 
o

\biggl( 
1

k+ 1

\biggr) 
as k\rightarrow +\infty .

In addition, since \| \=wk - w\ast \| is bounded due to Corollary 3.5, from (3.20), there exists
a constant C1 such that

h(\=yk, \=zk)\leq C1

\bigl( 
\| B1\=y

k +B2\=z
k  - c\| + \| \=yk  - yk\| \scrT 1

+ \| \=zk  - zk\| \scrT 2

\bigr) 
.

Hence, following the proof of the previous case with \alpha = 2, we can similarly demon-
strate that

| h(\=yk, \=zk)| = o

\biggl( 
1

k+ 1

\biggr) 
as k\rightarrow +\infty ,

which completes the proof.

Remark 3.8. For convex optimization problem (1.1), f1(\cdot ) and f2(\cdot ) are often of
a composite structure, i.e., f1 = g1 + p1, and f2 = g2 + p2, where g1 :\BbbY \rightarrow ( - \infty ,+\infty )
and g2 : \BbbZ \rightarrow ( - \infty ,+\infty ) are two continuously differentiable convex functions (e.g.,
convex quadratic functions), and p1 :\BbbY \rightarrow ( - \infty ,+\infty ] and p2 :\BbbZ \rightarrow ( - \infty ,+\infty ] are two
proper closed convex functions. In this case, it is more convenient for computational
purposes to define the following KKT residual mapping:

\widetilde \scrR (w) :=

\left(  y - Proxp1(y - \nabla g1(y) - B\ast 
1x)

z  - Proxp2
(z  - \nabla g2(z) - B\ast 

2x)
c - B1y - B2z

\right)  \forall w= (y, z, x)\in \BbbW .(3.35)
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ACCELERATED PRECONDITIONED ADMM 1185

By substituting \widetilde \scrR (\cdot ) into (3.32) and (3.33), and replacing (3.31) with the relations\Biggl\{ 
\=zk =Proxp2(\=z

k  - \nabla g2(\=z
k) - B\ast 

2 \=x
k  - \scrT 2(\=zk  - zk)),

\=yk =Proxp1(\=y
k  - \nabla g1(\=y

k) - B\ast 
1(\=x

k + \sigma (B1\=y
k +B2\=z

k  - c)) - \scrT 1(\=yk  - yk)),

one can verify in a straightforward way that the iteration complexity results in The-
orem 3.7 remain valid for \widetilde \scrR (\cdot ). In the numerical experiments for solving convex QP
problems, we use \widetilde \scrR (\cdot ) in (3.35) instead of \scrR (\cdot ) in (3.19) to construct the stopping
criterion.

4. Numerical experiments. In this section, we will utilize the convex QP
problem as an illustrative case to compare the performance of the pADMM in Algo-
rithm 1.1 and the accelerated pADMM (acc-pADMM) in Algorithm 3.1. Specifically,
the high-dimensional convex QP problems can be formulated in the following standard
form:

min
x\in \BbbR n

\biggl\{ 
1

2
\langle x,Qx\rangle + \langle c,x\rangle | Ax= b, x\in C

\biggr\} 
,(4.1)

where c \in \BbbR n, b \in \BbbR m, and C = \{ x\in \BbbR n : l\leq x\leq u\} , with \ell , u \in \BbbR n being given
vectors satisfying  - \infty \leq l\leq u\leq +\infty . Furthermore, A\in \BbbR m\times n has full row rank, and
Q\in \BbbR n\times n is a symmetric positive semidefinite matrix. The corresponding restricted-
Wolfe dual [32] of problem (4.1) can be expressed as follows:

min
(z1,z2,y)\in \BbbR n\times \BbbR m\times \BbbR n

\biggl\{ 
1

2
\langle y,Qy\rangle + \delta \ast C( - z1) - \langle b, z2\rangle |  - Qy+ z1 +A\ast z2 = c, y \in \scrY 

\biggr\} 
,

(4.2)

where \scrY represents any subspace of \BbbR n containing the range space of Q denoted by
Range(Q), and \delta \ast C(\cdot ) represents the convex conjugate of the indicator function \delta C(\cdot )
of the set C. In this article, we assume that \scrY =Range(Q). Let y \in \BbbR n, z = (z1, z2)\in 
\BbbR n \times \BbbR m, B1 =  - Q, B2 = [I,A\ast ], f1(y) =

1
2 \langle y,Qy\rangle , and f2(z) = \delta \ast C( - z1)  - \langle b, z2\rangle .

Consequently, problem (4.2) can be reformulated as a two-block convex optimization
problem in (1.1).

Given \sigma > 0, we define the augmented Lagrangian function L\sigma (y, z1, z2;x) asso-
ciated with problem (4.2) for any (y, z1, z2, x)\in \scrY \times \BbbR n \times \BbbR m \times \BbbR n as follows:

L\sigma (y, z1, z2;x) =
1

2
\langle y,Qy\rangle + \delta \ast C( - z1) - \langle b, z2\rangle 

+
\sigma 

2

\bigm\| \bigm\|  - Qy+ z1 +A\ast z2  - c+ \sigma  - 1x
\bigm\| \bigm\| 2  - 1

2\sigma 
\| x\| 2.

To simplify the solution of subproblems involving the variable z = (z1, z2), we intro-
duce a specific operator \scrT 2 called the sGS operator [31, 33]. Specifically, given \sigma > 0,
we define a self-adjoint linear operator \widetilde B :\BbbR n \times \BbbR m \rightarrow \BbbR n \times \BbbR m as follows:

\widetilde B := \sigma B\ast 
2B2 = \sigma 

\biggl[ 
I A\ast 

A AA\ast 

\biggr] 
.

Then we decompose \widetilde B as

\widetilde B =U \widetilde B +D \widetilde B +U\ast \widetilde B ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/3

1/
25

 to
 1

58
.1

32
.1

3.
16

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1186 D. SUN, Y. YUAN, G. ZHANG, AND X. ZHAO

where

U \widetilde B = \sigma 

\biggl[ 
0 A\ast 

0 0

\biggr] 
, D \widetilde B = \sigma 

\biggl[ 
I 0
0 AA\ast 

\biggr] 
.

The sGS operator associated with \widetilde B denoted by sGS( \widetilde B) : \BbbR n \times \BbbR m \rightarrow \BbbR n \times \BbbR m can
be defined as follows:

sGS( \widetilde B) =U \widetilde BD - 1\widetilde B U\ast \widetilde B .
Let \scrT 1 = 0 and \scrT 2 = sGS( \widetilde B). We can obtain

\sigma B\ast 
1B1 + \scrT 1 +\Sigma f1 = \sigma Q2 +Q,

which is positive definite in \scrY . Furthermore, according to [33, Theorem 1], we also
know that

\sigma B\ast 
2B2 + \scrT 2 +\Sigma f2 =

\widetilde B + sGS( \widetilde B)

is positive definite. As a result, we can apply the acc-pADMM, presented in Algo-
rithm 4.1, to solve problem (4.2), thereby also effectively solving problem (4.1). Note
that according to [33, Theorem 1], Step 1 (1-2-3) in Algorithm 4.1 is equivalent to

(\=zk1 , \=z
k
2 ) = argmin

(z1,z2)\in \BbbR n\times \BbbR m

\biggl\{ 
L\sigma (y

k, z1, z2;x
k) +

1

2
\| z  - zk\| 2

sGS( \widetilde B)

\biggr\} 
.

In addition, by omitting Step 5 in Algorithm 4.1 and choosing \rho \in (0,2), we can derive
a pADMM for solving problem (4.2).

In our experiments, we analyze the performance of all tested algorithms using a
collection of 25 QP problems selected from the Maros--M\'esz\'aros repository [39]. Since
the data in the Maros--M\'esz\'aros repository is relatively sparse, we use the sparse
Cholesky decomposition to obtain solutions for the linear systems encountered in the
subproblems. In our implementation, we adopt the following stopping criterion based
on the relative KKT residual for the acc-pADMM and the pADMM:

KKTres =max

\biggl\{ 
\| Ax - b\| 
1 + \| b\| 

,
\|  - Qy+ z1 +A\ast z2  - c\| 

1 + \| c\| 
,

\| Qx - Qy\| 
1 + \| Qx\| + \| Qy\| 

,

\| x - \Pi C (x - z1)\| 
1 + \| x\| + \| z1\| 

\biggr\} 
\leq 10 - 5.

Algorithm 4.1 An accelerated pADMM for solving problem (4.2).

Input: Choose w0 = (y0, z01 , z
0
2 , x

0)\in \scrY \times \BbbR n \times \BbbR m \times \BbbR n. Let \^w0 :=w0. Set
parameters \sigma > 0, \alpha \geq 2, and \rho \in (0,2]. For k= 0,1, . . . , perform the following
steps in each iteration.
1: Step 1-1. \=zk\prime 2 = argmin

z2\in \BbbR m

\bigl\{ 
L\sigma (y

k, zk1 , z2;x
k)
\bigr\} 
.

2: Step 1-2. \=zk1 = argmin
z1\in \BbbR n

\bigl\{ 
L\sigma (y

k, z1, \=z
k\prime 
2 ;xk)

\bigr\} 
.

3: Step 1-3. \=zk2 = argmin
z2\in \BbbR m

\bigl\{ 
L\sigma (y

k, \=zk1 , z2;x
k)
\bigr\} 
.

4: Step 2. \=xk = xk + \sigma ( - Qyk + \=zk1 +A\ast \=zk2  - c).
5: Step 3. \=yk = argmin

y\in \scrY 

\bigl\{ 
L\sigma (y, \=z

k
1 , \=z

k
2 ; \=x

k)
\bigr\} 
.

6: Step 4. \^wk+1 = (1 - \rho )wk + \rho \=wk.
7: Step 5. wk+1 =wk + \alpha 

2(k+\alpha ) ( \^w
k+1  - wk) + k

k+\alpha 

\bigl( 
\^wk+1  - \^wk

\bigr) 
.
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ACCELERATED PRECONDITIONED ADMM 1187

We check the KKTres every 50 steps and choose \rho = 1.9 for the pADMM and \rho = 2
for the acc-pADMM. Recognizing the sensitivity of algorithm performance to param-
eter \sigma , we employ an adaptive adjustment strategy for \sigma similar to [35] to mitigate
its impact. We expect that each algorithm can adaptively select an appropriate \sigma .
Furthermore, we have observed that restarting significantly enhances the performance
of acc-pADMM. Therefore, in this paper, we will restart the acc-pADMM every 200
steps or whenever \sigma varies. Finally, we set the maximum number of iterations as
10000 for all tested algorithms. All the numerical experiments in this paper are ob-
tained by running MATLAB R2022b on a desktop with Intel(R) Core i9-12900HQ
CPU @2.40 GHz.

We summarize the computational results for the tested 25 problems in Table 1.
For detailed numerical results of each problem, one may refer to Table 2. Here, we
highlight some key observations: (1) First, the acc-pADMM demonstrates superior
performance compared to the pADMM in the majority of examples. Specifically, the
acc-pADMM reduces the number of iterations by an average of 60\% compared to the
pADMM. Moreover, while the acc-pADMM takes slightly more time per iteration than
the pADMM, the acc-pADMM with \alpha = 15 can still reduce the average time by 47\%
compared to the pADMM. (2) Second, the acceleration effect of the acc-pADMM
becomes increasingly significant as the iteration number of the pADMM increases.
Notably, the acc-pADMM demonstrates its ability to successfully solve challenging
problems that pose difficulties for the pADMM, as evidenced by the results of solving
problems 8, 11, and 16 in Table 2. In contrast, when the iteration number of the
pADMM is very small, the acceleration effect is generally less noticeable, and there
are instances where even the acc-pADMM performs worse than the pADMM, as seen
in the results of solving problems 1, 2, and 7 in Table 2. (3) Third, the parameter \alpha 
also plays a crucial role in the performance of the acc-pADMM. As shown in Table 1,
we observe that the iteration number of the acc-pADMM decreases as \alpha increases
within an appropriate interval. However, when \alpha exceeds a certain threshold, the
iteration number of the acc-pADMM starts to increase. To visualize this observation,
we present the variations of KKTres as the acc-pADMM solves problem 4 with different
choices of \alpha in Figure 1. Specifically, it is evident from Figure 1 that the acc-pADMM
with \alpha = 30 achieves a satisfactory solution in the fewest iterations. Conversely, when
\alpha > 30, the acc-pADMM requires more iterations to return a satisfactory solution.

To further verify the complexity results outlined in Theorem 3.7, we utilize prob-
lem 11 listed in Table 2 as an illustrative example. In this experiment, we fix \sigma = 1
and do not employ the restart strategy. The numerical results of KKTres and the rel-
ative primal function value gap denoted by | h(y, z)| /(f1(y\ast )+f2(z

\ast )) are presented in
Figure 2. Figure 2 illustrates that the acc-pADMM achieves nonasymptotic O(1/k)
convergence rates when \alpha = 2, and it attains asymptotic o(1/k) convergence rates
when \alpha > 2. This numerical result is in concordance with the theoretical findings
presented in Theorem 3.7.

5. Conclusion. In this paper, we proposed an accelerated dPPM with both as-
ymptotic o(1/k) and nonasymptotic O(1/k) convergence rates by unifying the Halpern
iteration and the fast Krasnosel'ski\u {\i}--Mann iteration. Leveraging the equivalence be-
tween the pADMM and the dPPM, we derived an accelerated pADMM, which ex-
hibited both asymptotic o(1/k) and nonasymptotic O(1/k) convergence rates with
respect to the KKT residual and the primal objective function value gap. Numeri-
cal experiments demonstrated the superior performance of the accelerated pADMM
over the pADMM when solving convex QP problems. Recently, Kong and Monteiro
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Fig. 1. The KKT\mathrm{r}\mathrm{e}\mathrm{s} for problem 4 (CONT-101) obtained by the acc-pADMM with different \alpha .
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Fig. 2. The KKT\mathrm{r}\mathrm{e}\mathrm{s} and relative primal function value gap for problem 11 (QSCAGR25) ob-
tained by the acc-pADMM with different \alpha .

[29] have introduced a dampened proximal ADMM for solving linearly constrained
nonseparable nonconvex optimization problems, which can obtain an approximate
first-order stationary point within O(\varepsilon  - 3) iterations for a given tolerance \varepsilon > 0 under

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/3

1/
25

 to
 1

58
.1

32
.1

3.
16

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ACCELERATED PRECONDITIONED ADMM 1191

a basic Slater point condition. As a future research direction, it would be interesting
to extend the acceleration techniques presented in this paper to devise a novel accel-
erated pADMM variant for tackling nonconvex optimization problems with a better
complexity result than O(\varepsilon  - 3).

After the announcement of the first version of this paper, there have been several
new developments that deserve to be mentioned. In particular, an implementation of
our accelerated pADMM based on the Halpern iteration, referred to as HPR-LP [15],
has shown promising performance in solving large-scale linear programming problems
on GPUs, outperforming the award-winning solver PDLP [1, 2, 38]. This underscores
the great potential of the accelerated pADMM for efficiently addressing large-scale
convex optimization problems. More recently, Bo\c t et al. [6] derived a generalized
fast KM method with more flexible parameters. It will be very interesting to see how
this method can be incorporated into the accelerated pADMM framework to further
improve its practical performance.
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