
ar
X

iv
:2

40
7.

14
21

5v
2

 [
m

at
h.

O
C

]
 1

7
M

ar
 2

02
5

Two Typical Implementable Semismooth* Newton Methods for

Generalized Equations are G-Semismooth Newton Methods∗

Liang Chen† Defeng Sun‡ Wangyongquan Zhang§

March 18, 2025

Abstract

Semismooth* Newton methods have been proposed in recent years targeting multi-valued inclusion
problems and have been successfully implemented to deal with several concrete generalized equations.
In this paper, we show that two typical implementations of them that are available are exactly the
applications of G-semismooth Newton methods for solving nonsmooth equations localized from these
generalized equations. This new understanding expands the breadth of G-semismooth Newton methods in
theory, results in a few interesting problems regarding the two categories of nonsmooth Newton methods,
and more importantly, provides informative observations in facilitating the design and implementation
of practical Newton-type algorithms for solving generalized equations.

Keywords: semismooth* Newton method; semismooth Newton method; generalized equation; nons-
mooth analysis; variational analysis

MSC2000 subject classification: 49J52; 49J53; 90C31; 90C33; 49M15

1 Introduction

Starting from the seminal work of Kummer [41], Newton-type methods for solving nonsmooth equations have
evolved for several decades. The literature on this topic is abundant; one may refer to [51, 42, 54, 59, 28,
29, 32] and references therein. Nowadays, nonsmooth Newton methods have been heavily incorporated into
efficient numerical optimization software for large-scale optimization problems [64, 63, 44]. For generalized
equations (GEs), nonsmooth Newton methods have also been extensively studied. In the pioneering works
[33, 34] of this field, Josephy considered the GEs in the form of

0 ∈ H(x) + Θ(x),

where H : X → Y is a single-valued function, Θ : X ⇒ Y is a multifunction, and X and Y are finite-
dimensional real Hilbert spaces each endowed with an inner product and its induced norm. Studies in this
direction include [5, 9, 10, 15, 61, 18, 19, 31, 11, 7, 17, 2, 30, 1, 32, 12, 13, 14, 50], to name only a few.
In these algorithms, the single-valued part H is linearized while the multi-valued part Θ is kept. So, the
subproblems are linearized generalized equations. Alternatively, the constructions of Newton-type methods
for nonsmooth GEs by approximating the multi-valued part Θ have been investigated in [4, 8, 28, 17, 40].

Significant progress has also been made in Newton-type methods with subproblems being coderivative
(or graphical derivative) inclusions [49, 48, 35, 36, 37, 38, 3].

∗The research of the first author is supported by the National Key R&D Program of China [No. 2021YFA1001300], the
National Natural Science Foundation of China [No. 12271150], the Natural Science Foundation of Hunan Province [No.
2023JJ10001], the Science and Technology Innovation Program of Hunan Province [No. 2022RC1190], and the research of
the second author is supported by the Hong Kong RGC Senior Research Fellow Scheme [No. SRFS2223-5S02] and the GRF
Grants [Nos. 15307822 and 15307523].

†School of Mathematics, Hunan University, Changsha, China (chl@hnu.edu.cn).
‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

(defeng.sun@polyu.edu.hk).
§Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

(wangyongquan.zhang@connect.polyu.hk).

1

http://arxiv.org/abs/2407.14215v2
mailto:chl@hnu.edu.cn
mailto:defeng.sun@polyu.edu.hk
mailto:wangyongquan.zhang@connect.polyu.hk

Recently, a semismooth* Newton method was proposed in [23] for solving GEs in the form of

0 ∈ Φ(x), (1)

where Φ : X ⇒ Y is a set-valued mapping with closed graph, and was extended in [24] using subspace
containing derivatives (SCD). A particular property of these semismooth* Newton methods is that the
subproblems involved are linear systems of equations, which is different from the methods mentioned above
for solving (1). Moreover, since an inequality involving the target solution should be properly fulfilled in
the “approximation step” at each iteration of these algorithms, specific implementations of these algorithms
should be elaborately designed to make them practical.

These implementations are rarely available in the literature. However, the two executable representatives
of them, even seemingly sophisticated, are of practical value.

Specifically, on the one hand, the semismooth* Newton method in [23] for (1) was implemented in [23,
Section 5] for solving the GE

0 ∈ F (x) +∇G(x)ND(G(x)), (2)

where F : Rn → R
n is continuously differentiable, G : Rn → R

s is twice continuously differentiable, D ⊆ Rs

is a convex polyhedral set, ∇G(x) denotes the adjoint of the Jacobian operator G′(x), and ND(·) denotes
the normal cone mapping used in convex analysis. As mentioned in [23], the GE (2) arises frequently in
optimization and equilibrium models, and it is equivalent to the GE given by 0 ∈ F (x) +NG−1(D)(x) under
certain constraint qualifications [22, Proposition 2.1]. On the other hand, in [25], the SCD semismooth*
Newton method was applied to the GE

0 ∈ F (x) + ∂q(x), (3)

where ∂q is the subdifferential mapping of a given closed proper convex function q : Rn → (−∞,∞]. Such
an implementation was further extended in [21] to a more general class of GEs.

The GEs (2) and (3) are of significant importance for taking a closer look at these semismooth* Newton
methods. Since the corresponding subproblems for computing the Newton directions are linear systems of
equations, which are akin to the subproblems of semismooth Newton methods, it is natural to ask whether
these implementations admit a connection to the existing Newton-type methods for solving nonsmooth
equations. Note that, when Φ in (1) is single-valued and locally Lipschitz continuous around a point x̄,
it is easy to see that the semismooth* property of Φ at x̄ is exactly G-semismoothness (semismoothness
in the sense of Gowda [26]) of Φ at x̄, for example, by [23, Proposition 3.7]. Moreover, when solving a
locally Lipschitz continuous equation, the relationship between the semismooth* Newton method and the
G-semismooth Newton method of Kummer [41] (c.f. Section 2.2 for details) has been discussed in [23, Sect.
4]. For solving GEs beyond nonsmooth equations, the relationship between the two types of nonsmooth
Newton methods is unknown.

In this paper, by reformulating the GEs (2) and (3) as nonsmooth equations, which are proved to be
locally Lipschitz continuous, we show that the corresponding practical implementations of semismooth*
Newton methods are exactly the applications of G-semismooth Newton methods. Specifically, we show that
the algorithm implemented in [23, Section 5] for solving (2) is an application of a G-semismooth Newton
method for solving an implicitly defined equation. Furthermore, for the algorithm in [25] for solving (3),
we take the proximal residual mapping as the Lipschitz continuous localization of (3), and show that the
implemented SCD semismooth* Newton method is also an application of a G-semismooth Newton method.
Additionally, we show that the conditions for ensuring the convergence of these semismooth* Newton methods
are sufficient for the corresponding applications of the G-semismooth Newton methods. Therefore, one
can conclude that these implementable semismooth* Newton methods are G-semismooth Newton methods.
This leads to a concrete foundation for comprehending semismooth* Newton methods and is beneficial for
developing practical nonsmooth Newton methods for solving GEs, especially considering globalization.

Here, we emphasize that we focus on the local convergence properties. For globalizing the G-semismooth
Newton method, one may refer to the (inexact) smoothing Newton methods studied in [53, 16] (note
that though semismoothness was used in the cited two references, a quick examination reveals that G-
semismoothness is sufficient for convergence and rate of convergence analysis). In addition, we only con-
sider GEs or nonsmooth equations instead of C1,1 optimization problems, for which traditional globalized
G-semismooth Newton methods generally require the directional differentiability of the gradient mapping.
This requirement can be removed by involving the Lipschitz constant of the gradient mapping and a modulus

2

for local stability in the line search as in the recent coderivative-based nonsmooth Newton methods for C1,1

optimization problems or composite optimization problems with C1,1 envelopes [48, 36, 38]. Most recently,
the issue of globalizing the semismooth* Newton method for nonconvex composite optimization problems
has also been discussed [20].

The remaining parts of this paper are organized as follows. In Section 2, we collect some basic results in
variational analysis, and briefly introduce the G-semismooth Newton method.

In Section 3, the implementable semismooth* Newton methods in [23, Section 5] and [25] are introduced,
together with some intermediate results which are necessary for further discussions. In Section 4 and Sec-
tion 5, we show that these executable implementations of semismooth* Newton methods are applications
of G-semismooth Newton methods for solving nonsmooth equations involving locally Lipschitz continuous
functions. This constitutes the main contribution of this work. We conclude our paper in Section 6.

2 Preliminaries

This section presents the definitions and necessary tools from variational analysis [57, 47, 48]. It also provides
preliminary results and reviews the G-semismooth Newton method.

2.1 Basic variational analysis

Let X and Y be two finite-dimensional real Hilbert spaces each equipped with an inner product 〈·, ·〉 and its
induced norm ‖ · ‖. For any x ∈ X and δ > 0, Bδ(x) denotes the closed ball centered at x with radius δ,
and BX and BY are the unit balls in X and Y, respectively. Moreover, [x] denotes the subspace spanned by
the given vector x ∈ X . The notation (·; ·) means two vectors or linear operators are stacked symbolically in
column order. For a subspace X0 of X , we use X⊥

0 to denote its orthogonal complement in X . We use L(X ,Y)
to represent the space of all linear operators from X to Y, and write L(X) ≡ L(X ,X) for convenience. For
an arbitrary linear operator V , we use rgeV to denote its range space, kerV to denote its null space. If V is
a matrix, we use V ⊤ to denote its transpose.

For a nonempty set C ⊆ X , we use riC and intC to denote the relative interior and interior of C,
respectively. The lineality space of C, denoted by linC, is the largest linear subspace contained in C.
Meanwhile, we use spanC to denote the smallest linear subspace that contains C. When C is locally closed
at x̄ ∈ C, the contingent (Bouligand) cone TC(x̄), the regular (Fréchet) normal cone N̂C(x̄) and the limiting
(Mordukhovich) normal cone NC(x̄) to C at x̄ are defined, respectively, by

TC(x̄) := lim sup
tց0

C−x̄
t

, N̂C(x̄) := (TC(x̄))
◦, and NC(x̄) := lim sup

x→x̄,x∈C

N̂C(x).

Furthermore, KC(x̄, d) := TC(x̄) ∩ [d]⊥ is the critical cone to C at x̄ ∈ C with respect to d ∈ N̂C(x̄).
IfK ⊆ X is a closed convex cone, we use K◦ to denote its polar, i.e., K◦ := {x ∈ X | 〈x, x′〉 ≤ 0 ∀x′ ∈ K}.

In this case, one has linK = K ∩ (−K) and spanK = K + (−K). Moreover, it holds (linK)⊥ = spanK◦ and
(spanK)⊥ = linK◦.

For a set-valued mapping Φ : X ⇒ Y, we use gphΦ to denote its graph in X ×Y. The mapping Φ is called
outer semicontinuous at x if for any ε > 0 there exists δ > 0 such that Φ(x′) ⊆ Φ(x) + εBY holds for all x′ ∈
x+ δBX . When gphΦ is (locally) closed, the regular (Fréchet) coderivative and the limiting (Mordukhovich)

coderivative of Φ at (x̄, ȳ) are the multifunctions D̂∗Φ(x̄, ȳ) : Y ⇒ X and D∗Φ(x̄, ȳ) : Y ⇒ X , respectively,
such that {

D̂∗Φ(x̄, ȳ)(v∗) := {u∗ ∈ X | (u∗;−v∗) ∈ N̂gphΦ(x̄; ȳ)} ∀v∗ ∈ Y,

D∗Φ(x̄, ȳ)(v∗) := {u∗ ∈ X | (u∗;−v∗) ∈ NgphΦ(x̄; ȳ)} ∀v∗ ∈ Y.

If Φ is single-valued, one can write the two coderivatives as D̂∗Φ(x̄) and D∗Φ(x̄) for simplicity. If Φ is Fréchet

differentiable at x̄, by [47, Theorem 1.38] one has D̂∗Φ(x̄)(v∗) = {∇Φ(x̄)v∗}, where ∇Φ(x̄) is the adjoint
of the Fréchet derivative Φ′(x̄). If Φ is strictly differentiable at x̄, one also has D∗Φ(x̄)(v∗) = {∇Φ(x̄)v∗}.
If Φ is Lipschitz continuous in an open neighborhood Ω of x̄, from Rademacher’s theorem [55] we know Φ
is almost everywhere Fréchet differentiable in Ω. In this case, the Bouligand subdifferential of Φ(·) at x̄ is

3

defined by
∂BΦ(x̄) :=

{
lim
k→∞

Φ′(x(k)) | Φ is differentiable at x(k), x(k) → x̄
}

(4)

and Clarke’s generalized Jacobian of Φ at x̄ is defined by ∂Φ(x̄) := conv∂BΦ(x̄), i.e., by taking the convex
hull of the Bouligand subdifferential.

In [23], a generalization of the coderivatives was introduced. Specifically, for Φ : X ⇒ Y with closed

graph, one can let D̂∗Φ : gphΦ → (Y ⇒ X) be a mapping such that for every pair (x; y) in gphΦ, the set

gphD̂∗Φ(x, y) is a cone. One can define the associated limiting mapping D∗Φ : gphΦ → (Y ⇒ X) by

gphD∗Φ(x, y) := lim sup

(x′;y′)
gphΦ−→(x;y)

gphD̂∗Φ(x′, y′).

Here, D̂∗ and D∗ serve as the generalizations of the regular and limiting coderivatives D̂∗ and D∗, re-
spectively. In [23], the notion of semismoothness* was originally proposed for sets and is equivalent to the
semismoothness of sets in [27, Definition 2.3]. The following definition of generalized semismoothness* comes
from its application and generalization to gphΦ.

Definition 2.1 ([23, Definition 4.8]). Let Φ : X ⇒ Y and (x̄; ȳ) ∈ gphΦ, which is nonempty and closed.
Then, Φ is called semismooth* at (x̄, ȳ) with respect to D∗Φ if for every ǫ > 0 there is some δ > 0 such that

|〈x∗, x− x̄〉 − 〈y∗, y − ȳ〉| ≤ ǫ‖(x; y)− (x̄; ȳ)‖‖(x∗; y∗)‖ ∀(x; y) ∈ Bδ(x̄; ȳ), ∀(y
∗;x∗) ∈ gphD̂∗Φ(x, y).

Finally, we discuss proximal mappings and projections. For a maximal monotone mapping M : X ⇒ X ,
the corresponding proximal mapping is defined by proxλM := (I +λM)−1, λ > 0, which is single-valued and
Lipschitz continuous with unit Lipschitz constant, where I represents the identity operator. Given a closed
proper convex function q : X → (−∞,+∞] and a parameter λ > 0, its subdifferential mapping ∂q is always
maximal monotone. Taking M ≡ ∂q, it is easy to see that

proxλM(x) = Pλq(x) := argmin
z

{
q(z) +

1

2λ
‖z − x‖2

}
∀x ∈ X . (5)

Therefore, for a nonempty closed convex subset C ⊆ X with δC being its indicator function, the projection
mapping (with respect to ‖ · ‖) can be defined by ΠC(x) := PλδC (x) for any λ > 0. The following lemma
on the Bouligand subdifferential of the projection mapping onto a convex polyhedral set is necessary for
subsequent discussions.

Lemma 2.1. Let Q ⊂ Rl be a nonempty polyhedral convex set. Then for a given µ ∈ Rl,

∂BΠQ(µ) =
{
ΠspanG(·) | G is a face of K(µ) := KQ(ΠQ(µ), µ−ΠQ(µ))

}
.

Proof. Proof We know from [51, Lemma 5(i)] and the definition of K(µ) that for any ∆µ ∈ Rl with ‖∆µ‖
being sufficiently small, it holds that

ΠQ(µ+∆µ) = ΠQ(µ) + ΠK(µ)(∆µ). (6)

Moreover, if ΠQ is differentiable at µ+∆µ, one has from [51, Lemma 5(ii)] that

Π′
Q(µ+∆µ) = ΠlinK(µ+∆µ)(·) = ΠlinTQ(ΠQ(µ+∆µ))(·),

where the last equality comes from (2.3) of [23, Lemma 2.4]. Note that lim
∆µ→0

ΠK(µ)(∆µ) = 0. Therefore,

from [23, Lemma 2.4] we know that for every ∆µ with ‖∆µ‖ sufficiently small one has linK(µ+∆µ) = spanG
with G being a face of K(µ). Consequently, one has Π′

Q(µ+∆µ) = ΠspanG(·), so that

∂BΠQ(µ) ⊆ {ΠspanG(·) | G is a face of K(µ)}. (7)

On the other hand, let G be an arbitrary face of K(µ). It holds G = K(µ)∩ [ν]⊥ for some ν ∈ K(µ)◦. Since G
is a closed convex set, one has from [58, Theorem 6.2] that riG is nonempty. Let µ̃ ∈ riG ⊆ K(µ) be fixed. it

4

holds that TG(µ̃) = spanG. Moreover, from Moreau’s decomposition theorem [58, Theorem 31.5] one can get
ΠK(µ)(µ̃+ ν) = µ̃. Then, by [51, Lemma 5.1(i)] we know that for all ∆µ ∈ Rl with ‖∆µ‖ sufficiently small,
it holds that ΠK(µ)(µ̃+ν+∆µ) = µ̃+ΠTK(µ)(µ̃)∩[ν]⊥(∆µ) = µ̃+ΠspanG(∆µ). Thus, ΠK(µ)(·) is differentiable

at µ̃ + ν with Π′
K(µ)(µ̃ + ν) = ΠspanG(·). Note that for any integer k > 0, one has G = K(µ) ∩ [ν/k]⊥.

Meanwhile, as G is a closed convex cone, one has µ̃/k ∈ riG. Therefore, ΠK(µ)(·) is differentiable at (µ̃+ν)/k
for all k > 0 with Π′

K(µ)(µ̃/k + ν/k) = ΠspanG(·). Consequently, by (6) one has

Π′
Q(µ+ (µ̃/k + ν/k)) = Π′

K(µ)(µ̃/k + ν/k) = ΠspanG(·).

Taking limits in the above equality along with k → ∞, one gets ΠspanG(·) ∈ ∂BΠQ(µ). This, together with
(7), completes the proof of the lemma.

2.2 A G-semismooth Newton method

The terminology “G-semismoothness” was coined in [52] for distinguishing the definition of semismoothness
in [26] by Gowda from those in [46, 54] involving directional differentiability. Specifically, let Ω ⊆ X be an
open set, H : Ω → Y be a continuous function, and T : Ω ⇒ L(X ,Y) be a set-valued mapping. According
to [26, Defintion 2], we say H is called G-semismooth with respect to T at x ∈ Ω if for any h → 0 and
V ∈ T (x+h) it holds that H(x+h)−H(x)−V h = o(‖h‖). When H is locally Lipschitz continuous around
x, it is simply called G-semismooth at x if T is taken as ∂H , and this definition is invariant if ∂H is replaced
by ∂BH (cf. [26, Section 2.3]). The following G-semismooth Newton method, based on G-semismoothness,
is a trivial inexact extension of [41].

Algorithm 1: A G-semismooth Newton method for solving nonsmooth equations

Input : x(0) ∈ X , H : Ω ⊆ X → Y, T : X ⇒ L(X ,Y), and ̺ ≥ 0.
Output: {x(k)}.
for k = 0, 1, . . ., do

1. if H(x(k)) = 0, stop the algorithm;

2. select Vk ∈ L(X ,Y) such that dist(Vk, T (x(k))) ≤ ̺‖H(x(k))‖, compute ∆x(k) via solving
Vk∆x = −H(x(k)), and obtain x(k+1) := x(k) +∆x(k).

end

Theorem 2.1. Let Ω ⊆ X be an open set. Suppose that H : Ω → X is locally Lipschitz continuous (with
modulus ϑ > 0) and G-semismooth with respect to T : Ω ⇒ L(X ,Y) at x̄ such that H(x̄) = 0. Assume that
T (·) is compact valued and outer semicontinuous at x̄, and V −1 exists for all V ∈ T (x̄). Then there exists
a neighborhood of x̄ such that, for any x(0) in it, Algorithm 1 either terminates in finitely many steps or
generates an infinite sequence {x(k)} satisfying ‖x(k+1) − x̄‖ = o(‖x(k) − x̄‖) as k → ∞.

Proof. Proof Note that ‖H(x)‖ ≤ ϑ‖x−x̄‖ for all x sufficiently close to x̄. Meanwhile, the G-semismoothness
of H at x̄ implies that the multifunction T (x)+ϑ̺‖x−x̄‖BL(X ,Y) is a Newton map (c.f. [43] or [40, Definition
2] for the definition) for H at x̄. As T (·) is compact valued and outer semicontinuous at x̄ and all V ∈ T (x̄)
are nonsingular, the Newton-regularity condition [40, Definition 3] holds at x̄. So the convergence properties
of Algorithm 1 follow from [40, Theorem 4] (or [39, Lemma 10.1]).

3 Implementable semismooth* Newton methods for GEs

This section reviews the two typical semismooth* Newton methods which are implementable to concrete
GEs.

3.1 A semismooth* Newton method for the GE (2)

In [23, Section 5], the semismooth* Newton method [23, Algorithm 3] for solving the GE (1) was implemented
to (2) by introducing an auxiliary variable d ∈ Rs and solving the equivalent problem

0 ∈ H(x, d) :=

(
F (x) +∇G(x)ND(d)

G(x) − d

)
. (8)

5

Note that x̄ solves (2) if and only if (x̄, d̄) = (x̄, G(x̄)) solves (8). For convenience, define the Lagrangian
function

Lλ(x) := F (x) +∇G(x)λ ∀(x;λ) ∈ Rn ×Rs.

For a given point ẑ := ((x̂, d̂); (p̂∗, G(x̂) − d̂)) ∈ gphH, one can choose λ̂ ∈ ND(d̂) such that p̂∗ = L
λ̂
(x̂).

Moreover, one can define for all (p; q∗) ∈ Rn ×Rs the mapping

T(x̂, d̂, λ̂)(p, q∗) :=
{
(∇L

λ̂
(x̂)p+∇G(x̂)q∗, d∗) | d∗ + q∗ ∈ D̂∗ND(d̂, λ̂)(G′(x̂)p)

}
. (9)

In this case, according to [23, eq. (5.5)], the regular coderivative of H at ẑ satisfies

D̂∗H (ẑ) (p, q∗) ⊆ T(x̂, d̂, λ̂)(p, q∗). (10)

For implementing the semismooth* Newton method [23, Algorithm 3] to (8), a mapping D̂∗H that surrogates

D̂∗H has been specified based on (9). Furthermore, by defining D∗H as the outer limit of D̂∗H, it is know
from [23, Theorem 5.5] that the mapping H in (8) is semismooth* with respect to D∗H at every point
((x,G(x)); (0, 0)) ∈ gphH. Then, the “approximation step” in [23] was given as the following algorithm.

Algorithm 2: An approximation step

Input : x ∈ Rn.
Output: û ∈ Rn, x̂ ∈ Rn, λ̂ ∈ Rs, d̂ ∈ Rs, p̂∗ ∈ Rn.
1. compute

û = argmin
u∈Rn

{1
2
‖u‖2 + 〈F (x), u〉

∣∣ G(x) +G′(x)u ∈ D
}

(11)

together with a multiplier λ̂ ∈ ND(G(x) +G′(x)û) satisfying û+ F (x) +∇G(x)λ̂ = û+ L
λ̂
(x) = 0;

2. set x̂ := x, d̂ := G(x) +G′(x)û, p̂∗ := L
λ̂
(x̂), and ŷ :=

(
p̂∗, G(x̂)− d̂

)
.

The semismooth* Newton method in [23, Section 5] for solving (2) is given as Algorithm 3.

Algorithm 3: An implementable semismooth∗ Newton method for solving (2)

Input : F : Rn → R
n, G : Rn → R

s and x(0) ∈ Rn.
Output: {x(k)}.
for k = 0, 1, . . ., do

1. if x(k) solves (2), stop the algorithm;

2. run Algorithm 2 with input x(k) to compute λ̂(k), d̂(k) and L
λ̂(k)(x̂(k));

3. set l̂(k) = dim(linTD(d̂(k))) and compute an s× (s− l̂(k)) matrix Ŵ (k), whose columns form a

basis for spanND(d̂(k)) and then an n× (n− (s− l̂(k))) matrix Ẑ(k), whose columns are an

orthogonal basis for ker(Ŵ (k)⊤G′(x(k)));

4. set x(k+1) := x(k) +∆x(k) with the Newton direction ∆x(k) being a solution to the linear
system {

Ẑ(k)⊤
(
L′
λ̂(k)

(x(k))∆x(k) + L
λ̂(k)(x(k))

)
= 0,

Ŵ (k)⊤
(
G(x(k)) +G′(x(k))∆x(k) − d̂(k)

)
= 0.

(12)

end

Recall that a point (x, d) is called nondegenerate with modulus γ > 0 to the GE (2) if one has ‖∇G(x)λ‖ ≥
γ‖λ‖ for all λ ∈ spanND(d). It is called nondegenerate if the above condition holds with some γ > 0. The
following assumption [23, Assumption 1] is essential for Algorithm 2.

Assumption 3.1. (x̄, G(x̄)) is a nondegenerate solution to (8) with modulus γ̃ > 0.

Remark 3.1. The point (x, d) is called nondegenerate if and only if G′(x)Rn + linTD(d) = Rs. Moreover,

from [23, Remark 5.3 and Lemma 5.4] it holds that for any ẑ := ((x̂, d̂); (p̂∗, G(x̂) − d̂)) ∈ gphH with

(x̂, d̂) being nondegenerate, one has (10) holds as equality and there exists only one λ ∈ ND(d̂), denoted by

λ̂(x̂, d̂, p̂∗), such that p̂∗ = F (x̂) +∇G(x̂)λ.

6

Then one has the following result (there is a typo in [23, eq. (5.13)] we take the revised form).

Proposition 3.1 ([23, Proposition 5.7]). Under Assumption 3.1, there exists a positive radius ω and positive
reals β, βu, and βλ such that for all x ∈ Bω(x̄), the quadratic program in (11) is well-defined and admits a
unique solution û, and the output of Algorithm 2 satisfies

‖û‖ ≤ βu‖x̂− x̄‖, ‖((x̂; d̂); ŷ)− ((x̄;G(x̄)); (0; 0))‖ ≤ β‖x̂− x̄‖, and ‖λ̂− λ̄‖ ≤ βλ‖x̂− x̄‖,

where λ̄ is the unique multiplier for x̄.
Further, (x̂, d̂) is nondegenerate with modulus γ̃/2 and ND(d̂) ⊆ ND(G(x̄)).

The following assumption [23, Assumption 2] provides a regularity condition that guarantees that the
linear system (12) admits a unique solution (there is a typo in [23] and we use the corrected form here).

Assumption 3.2. For any face F of the critical cone KD(G(x̄), λ̄) there is a matrix ZF , whose columns
form an orthogonal basis of {u | G′(x̄)u ∈ spanF}, such that the matrix Z⊤

FL′
λ̄
(x̄)ZF is nonsingular.

According to [23, Theorem 5.12], under Assumptions 3.1 and 3.2, there exists a neighborhood U of x̄ such
that for every starting point x(0) ∈ U , Algorithm 3 either stops after finitely many iterations at a solution
of (2) or produces a sequence {x(k)} converging superlinearly to x̄.

3.2 An SCD semismooth* Newton method for the GE (3)

In [25], the SCD semismooth* Newton method proposed in [24] for (1) (with X ≡ Y) was implemented to the
GE (3). As was observed in [24], when applying the semismooth* Newton methods to (3), it is advantageous
to work with linear subspaces L ⊆ X ×X having the same dimension n with X and contained in the graph of
the limiting coderivative at a certain point (x; y) ∈ gphΦ, i.e., L ⊆ gphD∗Φ(x, y). Specifically, denote by Zn

the metric space of all n-dimensional subspaces of X × X equipped with the metric dZn
(L1, L2) := ‖ΠL1 −

ΠL2‖, where ΠLi
is the projection operator on Li, i = 1, 2. Further, define L∗ := {(−v∗;u∗) | (u∗; v∗) ∈ L⊥}

for any L ∈ Zn. According to [24, Definition 3.3], Φ : X ⇒ X with closed graph is called graphically smooth
of dimension n at (x, y), if (x; y) ∈ gphΦ and TgphΦ(x; y) ∈ Zn. Denote by OΦ the set of all points where Φ
is graphically smooth of dimension n. Then one can define for Φ the following set-valued mappings (from
gphΦ to Zn):

Ŝ∗
Φ(x, y) :=

{
{(TgphΦ(x; y))

∗} if (x, y) ∈ OΦ,

∅ else,
S∗
Φ(x, y) := lim sup

(u;v)
gphΦ−→(x;y)

Ŝ∗
Φ(u, v).

The following definition of SCD property also comes from [24, Definition 3.3].

Definition 3.1. Φ is said to have the SCD property at (x, y) if (x; y) ∈ gphΦ and S∗
Φ(x, y) 6= ∅. It has the

SCD property around (x, y) if (x; y) ∈ gphΦ and there is a neighborhood N of (x; y) such that Φ has the SCD
property at every (x′; y′) ∈ gphΦ∩N . It is called an SCD mapping if Φ has the SCD property at every point
(x, y) such that (x; y) ∈ gphΦ.

The following definition of SCD regularity was given in [24, Definition 4.1].

Definition 3.2. Define Z
reg
n := {L ∈ Zn | (y∗; 0) ∈ L ⇒ y∗ = 0}. A mapping Φ : X ⇒ X is called SCD

regular around (x, y) if (x; y) ∈ gphΦ, Φ has the SCD property around (x, y) and S∗
Φ(x, y) ⊆ Zreg

n . Moreover,
the modulus of SCD regularity of Φ around (x, y) is defined by

scd reg Φ(x, y) := sup{‖y∗‖ | (y∗;x∗) ∈ L,L ∈ S∗
Φ(x, y), ‖x

∗‖ ≤ 1}.

According to [24, Lemma 3.7], the SCD property was coined because for any subspace L ∈ S∗
Φ(x, y) one

has L ⊆ gphD∗Φ(x, y). Moreover, based on this property, the semismoothness∗ in Definition 2.1 can be
extended to the following SCD semismoothness∗.

7

Definition 3.3 ([24, Definition 5.1]). Let Φ : X ⇒ X and (x̄; ȳ) ∈ gphΦ, which is nonempty and closed.
Then, Φ is called SCD semismooth* at (x̄, ȳ) if Φ has the SCD property around (x̄, ȳ) and for every ǫ > 0
there exists some δ > 0 such that

|〈x∗, x− x̄〉 − 〈y∗, y − ȳ〉| ≤ ǫ‖(x; y)− (x̄; ȳ)‖‖(x∗; y∗)‖

∀(x; y) ∈ Bδ(x̄; ȳ), ∀(y∗;x∗) ∈
⋃
S∗
Φ(x, y) ⊆ gphD∗Φ(x, y).

Note that the GE (3) can be solved equivalently via finding (x; d) ∈ Rn ×Rn such that

0 ∈ J (x, d) :=

(
F (x) + ∂q(d)

x− d

)
. (13)

Given γ > 0, define the proximal residual mapping uγ : Rn → R
n by

uγ(x) := Pγ−1q

(
x− γ−1F (x)

)
− x ∀x ∈ Rn. (14)

In [25, Sect. 5], the following implementable SCD semismooth* Newton method was proposed for (3), which
is an application of [24, Algorithm 1] to (13).

Algorithm 4: An implementable SCD semismooth∗ Newton method for solving (3)

Input : x(0) ∈ Rn, F : Rn → R
n and q : Rn → R̄.

Output: {x(k)}.
for k = 0, 1, . . ., do

1. if 0 ∈ F (x(k)) + ∂q(x(k)), stop the algorithm;

2. select γ(k) > 0, and compute u(k) := uγ(k)(x(k)), d̂(k) := x(k) + u(k) and

d̂∗(k) := −γ(k)u(k) − F (x(k));

3. select (X∗(k), Y ∗(k)) with rge(Y ∗(k);X∗(k)) ∈ S∗
∂q

(
d̂(k), d̂∗(k)

)
, and compute the Newton

direction ∆x(k) from

(Y ∗(k)⊤F ′(x(k)) +X∗(k)⊤)∆x(k) = (γ(k)Y ∗(k)⊤ +X∗(k)⊤)u(k), (15)

and obtain the new iterate via x(k+1) := x(k) +∆x(k).
end

One has the following convergence theorem for Algorithm 4.

Theorem 3.1 ([25, Theorem 5.2]). Let x̄ be a solution of (3) and assume that ∂q is SCD semismooth∗ at
(x̄,−F (x̄)). In addition, suppose that F + ∂q is SCD regular around (x̄, 0). Then for every pair γ, γ̄ with

0 < γ ≤ γ̄ there exists a neighborhood U of x̄ such that for every starting point x(0) ∈ U Algorithm 4 produces

a sequence {x(k)} converging superlinearly to x̄, provided we choose in every iteration step γ(k) ∈ [γ, γ̄].

4 Proof of Algorithm 3 as a G-semismooth Newton method

In this section, we demonstrate that Algorithm 3 can be treated as an application of the G-semismooth
Newton method (Algorithm 1).

4.1 Lipschitz continuous localization

Let F , G and D be the functions and the polyhedral set in (2).
Suppose that Assumption 3.1 holds and ω > 0 is the radius given by Proposition 3.1 . Recall from

Proposition 3.1 that the output û by running Algorithm 2 can be locally represented via the solution
mapping

S(x) := {u | 0 ∈ u+ F (x) +∇G(x)ND(G(x) +G′(x)u)} ∀x ∈ Bω(x̄), (16)

which is well-defined and single-valued. Note that S(x) = 0 if and only if x is a solution of the GE (2)
on Bω(x̄). Moreover, the corresponding multiplier calculated from Algorithm 2 can also be defined as a

8

single-valued mapping Λ(·) on Bω(x̄). It has been established in Proposition 3.1 that S(·) is isolated calm
at point x̄ in the sense that ‖S(x)‖ ≤ βu‖x− x̄‖ ∀x ∈ Bω(x̄).

In fact, a more robust result can be obtained, for which the following consequence of the reduction
approach [6, Example 3.139] is necessary.

Lemma 4.1. Suppose that Assumption 3.1 holds and ω > 0 is the radius given by Proposition 3.1. Define
for x ∈ Bω(x̄) the parameterized nonsmooth equation

H̃(u, λ;x) :=

(
u+ F (x) +∇G(x)λ

G(x) +G′(x)u −ΠD(G(x) +G′(x)u + λ)

)
= 0. (17)

Then, for any x̃ ∈ Bω(x̄), the nondegeneracy condition holds at (x̃, d̃) := (x̃, G(x̃) + G′(x̃)S(x̃)) for all
x̃ ∈ Bω(x̄), where S(·) is defined by (16), in the sense that

G′(x̃)Rn + linTD(d̃) = Rs ∀x̃ ∈ Bω(x̄). (18)

Moreover, let l̃ be the dimension of linTD(d̃) and define Q := W̃⊤(TD(d̃)), where W̃ ∈ Rs×s−l̃ is any matrix

whose columns are linearly independent such that rgeW̃ = spanND(d̃). Then the nonsmooth equation (17) is
locally equivalent to

H̃
W̃
(u, µ;x) :=

(
u+ F (x) +∇G(x)W̃ µ

W̃⊤(G(x) +G′(x)u − d̃)−ΠQ
(
W̃⊤(G(x) +G′(x)u − d̃) + µ

)
)

= 0, (19)

in the sense that, when x is sufficiently close to x̃, (u, λ) solves (17) if and only if (u, µ) solves (19) and

λ = W̃µ.

Proof. Proof Since Assumption 3.1 holds, according to the proof of [23, Proposition 5.7], for any x̃ ∈ Bω(x̄)
one has that (ũ, λ̃) := (S(x̃),Λ(x̃)) is the unique point such that (17) holds at (ũ, λ̃; x̃). Moreover, from
Remark 3.1 and the proof of [23, Proposition 5.7] we know that the nondegeneracy condition (18) holds at

(x̃, d̃). From the definitions of d̃ and W̃ we know that the mapping d → W̃⊤(d− d̃) meets the requirements
in [6, Definition 3.135], so that D is C∞-cone reducible to Q, which is a pointed closed convex cone. Then,
it comes from [60, Section 4] that the nonsmooth equation (17) is locally equivalent to (19).

Based on the above lemma, the following result holds.

Proposition 4.1. Suppose that Assumption 3.1 holds and ω > 0 is the radius given by Proposition 3.1.
Then, both the mapping S(·) defined in (16) and the multiplier mapping Λ(·) are Lipschitz continuous in
Bω(x̄). Moreover, S(·) is G-semismooth in intBω(x̄).

Proof. Proof
Let x̃ ∈ Bω(x̄), and define (ũ, λ̃) := (S(x̃),Λ(x̃)) and d̃ := G(x̃)+G′(x̃)ũ. With l̃, Q and W̃ being defined

the same as those in Lemma 4.1, it comes from this lemma that the parameterized nonsmooth equation (17)

is locally equivalent to (19) around x̃, and (18) holds. In particular, H̃
W̃
(ũ, µ̃; x̃) = 0 with µ̃ ∈ Rs−l̃ being

the unique vector such that λ̃ = W̃ µ̃.
Moreover, it holds that

〈
∆u,

(
(ũ+ F (x̃))′u + (∇G(x̃)W̃ µ̃)′u

)
∆u
〉
= ‖∆u‖2.

Therefore, by following the proof of [45, Proposition 2] and using [45, Corollary 2] we know that there
exists a neighborhood O(x̃) of x̃ such that S(·) and Λ(·) are Lipschitz continuous. Since Bω(x̄) is a compact
set, for all x̃ ∈ Bω(x̄), one can always find a finite collection χ of x̃ such that the union of these open
neighborhoods ∪x̃∈χO(x̃) covers Bω(x̄). Therefore, S(·) and Λ(·) are Lipschitz continuous in Bω(x̄). Finally,
as the projection onto Q is strongly G-semismooth, by [45, Corollary 2] we know that S(·) is G-semismooth
with respect to ∂BS or ∂S. This completes the proof.

9

According to Rademacher’s theorem, the solution mapping S(·) defined in (16) is almost everywhere
differentiable in Bω(x̄) due to Proposition 4.1. It is not hard to compute the Frechét derivative of S when it
is differentiable, but it is hard to directly compute the corresponding Bouligand subdifferential (4) or Clarke’s
generalized Jacobian by taking limits, since S(·) is implicitly defined. Therefore, to implement Algorithm
1 to solve the nonsmooth equation S(x) = 0, the corresponding mapping T should be explicitly computed,
which will be done in the next part.

4.2 G-Semismoothness

The analysis in [45] for locally Lipschitz continuous homeomorphisms can be utilized to compute a set-valued
mapping such that the solution mapping S(·) defined in (16) is G-semismooth with respect to it. Specifically,
we have the following key result which gives the G-semismoothness of S around x̄.

Proposition 4.2. Suppose that Assumption 3.1 holds and ω > 0 is the radius given by Proposition 3.1.
Then the solution mapping S(·) defined in (16) is G-semismooth at every x̃ ∈ intBω(x̄) with respect to the
set-valued mapping

TS(x) :=

{
−L′

λ(x) +∇G(x)W
[
W⊤G′(x)∇G(x)W

]−1
W⊤(G′(x)L′

λ(x)− [G(x) +G′(x)u]′x)

| W has full column rank, rgeW = (spanF)⊥ with F being a face of KD(d, λ)

}
, (20)

where u := S(x), d := G(x) + G′(x)S(x) and λ := Λ(x). Moreover, TS(·) is outer semicontinuous at every
x̃ ∈ intBω(x̄).

Proof. Proof
Let x̃ ∈ intBω(x̄) and define ũ := S(x̃), d̃ := G(x̃) +G′(x̃)ũ, and λ̃ := Λ(x̃). Let l̃, W̃ and Q be the same

as those defined in Lemma 4.1. We know from Lemma 4.1 that the parameterized nonsmooth equation (17)
is locally equivalent to (19) around x̃, and (18) holds. Then by following the analysis of [45, Proposition 2]
the mapping

Ψ(v, ς, x) :=




v + F (x) +∇G(x)W̃ ς

W̃⊤[G(x) +G′(x)v − d̃]−ΠQ(W̃
⊤[G(x) +G′(x)v − d̃] + ς)

x




is locally Lipschitz homeomorphism around (ũ, µ̃, x̃), where µ̃ is the unique vector such that λ̃ = W̃ µ̃. Note
that (

W̃⊤[G(x) +G′(x)v − d̃] + ς
)′
(v, ς, x) =

(
W̃⊤G′(x), I, W̃⊤[G(x) +G′(x)v]′x

)
,

which is always surjective. Consequently, from [62, Lemma 2.1] we know that

∂BΨ(v, ς, x) =








I ∇G(x)W̃ L′
W̃ ς

(x)

(I − Ξ)W̃⊤G′(x) −Ξ (I − Ξ)W̃⊤[G(x) +G′(x)v]′x
0 0 I




| Ξ ∈ ∂BΠQ(W̃⊤[G(x) +G′(x)v − d̃] + ς)





. (21)

Since the projection operator ΠQ is (strongly) semismooth, one has Ψ is also semismooth, and it follows from

[45, Theorem 2] that Ψ−1 is semismooth at (0, 0, x̃) ∈ Rn × Rs−l̃ ×Rn. Moreover, from [45, Lemma 2] we
know that all the elements of ∂BΨ(v, ς, x) are nonsingular whenever (v, ς, x) is sufficiently close to (ũ, µ̃, x̃).
It can be observed from (21) that each element of ∂BΨ is nonsingular at (v, ς, x) if and only if each matrix

Ξ + (I − Ξ)W̃⊤G′(x)∇G(x)W̃ is nonsingular for all Ξ ∈ ∂BΠQ(W̃⊤[G(x) +G′(x)v − d̃] + ς). Therefore, for
all (v, ς, x) sufficiently close to (ũ, µ̃, x̃), it holds by elementary column transformations that

∂BΨ(v, ς, x) =








I −∇G(x)W̃ (Γ(Ξ))−1(I − Ξ)W̃⊤G′(x) ∇G(x)W̃ (Γ(Ξ))−1 ES(v, ς,Ξ)

(Γ(Ξ))−1(I − Ξ)W̃⊤G′(x) −(Γ(Ξ))−1 EΛ(v, ς,Ξ)

0 0 I




−1

∣∣ Γ(Ξ) := Ξ + (I − Ξ)W̃⊤G′(x)∇G(x)W̃ with Ξ ∈ ∂BΠQ(W̃⊤[G(x) +G′(x)u− d̃] + ς)





,

10

where




ES(v, ς,Ξ) := −L′

W̃ς
(x) +∇G(x)W̃ (Γ(Ξ))−1(I − Ξ)W̃⊤(G′(x)L′

W̃ς
(x)− [G(x) +G′(x)v]′x),

EΛ(v, ς,Ξ) := −(Γ(Ξ))−1(I − Ξ)W̃⊤(G′(x)L′

W̃ς
(x)− [G(x) +G′(x)v]′x).

Note that for all x sufficiently close to x̃, it holds that (u;µ;x) = Ψ−1(0, 0, x) where µ is the unique vector

such that λ = W̃µ. Since Ψ−1 is G-semismooth, the solution mapping S(·) is G-semismooth at x̃ with
respect to

ẼS(x) :=





−L′
λ(x) +∇G(x)W̃ (Γ(Ξ))−1(I − Ξ)W̃⊤(G′(x)L′

λ(x)− [G(x) +G′(x)u]′x)

| Γ(Ξ) := Ξ + (I − Ξ)W̃⊤G′(x)∇G(x)W̃ with Ξ ∈ ∂BΠQ(W̃⊤[G(x) +G′(x)u− d̃] + µ)



 .

Moreover, ẼS(·) is outer semicontinuous around x̃. According to Lemma 2.1, one has for all x sufficiently
close to x̃,

ẼS(x) =

{
−L′

λ(x) +∇G(x)W̃ (Γ̃G)−1Π(spanG)⊥W̃
⊤(G′(x)L′

λ(x)− [G(x) +G′(x)u]′x)

| Γ̃G := ΠspanG +Π(spanG)⊥W̃
⊤G′(x)∇G(x)W̃ , G is a face of KQ(W̃

⊤[d− d̃], µ)

}
. (22)

Let G be a face of KQ(W̃
⊤[d − d̃], µ). One can find two matrices U1 and U2, whose columns form an

orthonormal basis of spanG and (spanG)⊥, respectively. Note that ΠspanG = U1U
⊤
1 and Π(spanG)⊥ = U2U

⊤
2 .

Consequently,

(Γ̃G)−1Π(spanG)⊥ = [U1U
⊤
1 + U2U

⊤
2 W̃⊤G′(x)∇G(x)W̃]−1U2U

⊤
2 .

For any w and ν such that ν = [U1U
⊤
1 + U2U

⊤
2 W̃⊤G′(x)∇G(x)W̃]−1U2U

⊤
2 w, it holds that

U1U
⊤
1 ν + U2U

⊤
2 W̃⊤G′(x)∇G(x)W̃ ν = U2U

⊤
2 w

⇒ U⊤
1 ν = 0 and U⊤

2 W̃⊤G′(x)∇G(x)W̃ ν = U⊤
2 w

⇒ ν = U2ξ for some ξ, and U⊤
2 W̃⊤G′(x)∇G(x)W̃ U2ξ = U⊤

2 w.

Therefore, one gets ν = U2ξ = U2[U
⊤
2 W̃⊤G′(x)∇G(x)W̃U2]

−1U⊤
2 w, so that

W̃ (Γ̃G)
−1Π(spanG)⊥W̃

⊤ = W̃U2[U
⊤
2 W̃⊤G′(x)∇G(x)W̃U2]

−1U⊤
2 W̃⊤. (23)

Recall that λ = W̃µ, so that [λ]⊥ = {e | 〈W̃⊤e, µ〉 = 0}, which implies W̃⊤([λ]⊥) = [µ]⊥. One has from [57,
Theorem 6.31] that

KD(d, λ) = {e | e ∈ TD(d), 〈e, λ〉 = 0} = {e | W̃⊤e ∈ TQ(W̃
⊤[d− d̃]), 〈W̃⊤e, µ〉 = 0}. (24)

Therefore, it holds that
W̃⊤KD(d, λ) = KQ(W̃

⊤[d− d̃], µ). (25)

Consequently, one has for any given υ ∈ Rs−l̃,

sup
e∈KD(d,λ)

{〈W̃υ, e〉} = sup
e∈KD(d,λ)

{〈υ, W̃⊤e〉 | e ∈ KD(d, λ)} = sup
ν∈Rs−l̃

{〈υ, ν〉 | ν ∈ KQ(W̃
⊤[d− d̃], µ)}.

Therefore, υ ∈ KQ(W̃
⊤[d− d̃], µ)◦ if and only if W̃υ ∈ KD(d, λ)◦. Recall that G is a face of KQ(W̃

⊤[d− d̃], µ),

i.e., there exists a nonzero vector υ̃ ∈ Rs−l̃ in its polar such that G = KQ(W̃
⊤[d− d̃], µ) ∩ [υ̃]⊥. Note that

F̃ := {p | W̃⊤p ∈ G} = {p | W̃⊤p ∈ KQ(W̃
⊤[d− d̃], µ) ∩ [υ̃]⊥} = KD(d, λ) ∩ [W̃ υ̃]⊥.

Since W̃ υ̃ ∈ KD(d, λ)◦, the set F̃ is a face of KD(d, λ). Moreover, one has spanF̃ = {p | W̃⊤p ∈ spanG}.

Recall that rgeU1 = spanG, so that spanF̃ = {p | W̃⊤p ∈ rgeU1} = {p | U⊤
2 W̃⊤p = 0}. Therefore, if W is

11

a matrix with full column rank such that rgeW = (spanF̃)⊥ = rge(W̃U2), there exists a nonsingular square

matrix P such that W = W̃U2P . In this case, one has

W
[
W⊤G′(x)∇G(x)W

]−1
W⊤ = W̃U2P

[
P⊤(W̃U2)

⊤G′(x)∇G(x)W̃ U2P
]−1

P⊤(W̃U2)
⊤

= W̃U2P
[
(W̃U2)

⊤G′(x)∇G(x)W̃ U2P
]−1

(P⊤)−1P⊤(W̃U2)
⊤

= W̃U2

[
(W̃U2)

⊤G′(x)∇G(x)W̃ U2

]−1
(W̃U2)

⊤.

Such an equality, together with (20), (22), and (23), implies that

ẼS(x) ⊆ TS(x). (26)

Next, we show that the inclusion in (26) is an equality. Let F be an arbitrary face of KD(d, λ), i.e., there

exists λ̆ ∈ KD(d, λ)◦ = ND(d) + span[λ] ⊆ spanND(d) ⊆ spanND(d̃) such that F = KD(d, λ) ∩ [λ̆]⊥. Since

λ̆ ∈ rgeW̃ , one has λ̆ = Π
rgeW̃

(λ̆) = W̃ [W̃⊤W̃]−1W̃⊤λ̆. Then by (24) one can get

KD(d, λ) ∩ [λ̆]⊥ =
{
e | W̃⊤e ∈ TQ(W̃

⊤(d− d̃)), 〈W̃⊤e, µ〉 = 0, 〈W̃⊤e, [W̃⊤W̃]−1W̃⊤λ̆〉 = 0
}
.

Therefore, it holds that W̃⊤F = KQ(W̃
⊤[d−d̃], µ)∩[(W̃⊤W̃)−1W̃⊤λ̆]⊥. Then, from (25) one has [W̃⊤W̃]−1W̃⊤λ̆ ∈

(W̃⊤KD(d, λ))◦ = (KQ(W̃
⊤[d− d̃], µ))◦. Therefore, it holds that

〈[W̃⊤W̃]−1W̃⊤λ̆, W̃⊤d̂〉 = 〈W̃ [W̃⊤W̃]−1W̃⊤λ̆, d̂〉 = 〈λ̆, d̂〉 ≤ 0 ∀d̂ ∈ KD(d, λ).

Consequently, W̃⊤F is exactly a face of KQ(W̃
⊤[d− d̃], µ). Thus, the inclusion in (26) holds as an equality,

i.e., TS(x) = ẼS(x) for all x sufficiently close to x̃. Therefore, TS(·) is also outer semicontinuous at any
x̃ ∈ intBω(x̄). This completes the proof.

4.3 Regularity conditions

The following result is crucial for using Algorithm 1 to solve S(x) = 0.

Proposition 4.3. Under Assumption 3.1, it holds that Assumption 3.2 is equivalent to the regularity con-
dition that every element of TS(x̄) defined in (20) is nonsingular.

Proof. Proof Since Assumption 3.1 holds, one has ū = S(x̄). Then by Proposition 4.2 it holds that

TS(x̄) =





−L′
λ̄
(x̄) +∇G(x̄)W

[
W⊤G′(x̄)∇G(x̄)W

]−1
W⊤(G′(x̄)L′

λ̄
(x̄)−G′(x̄))

≡ −(I −Πrge(∇G(x̄)W))L
′
λ̄
(x̄)−Πrge(∇G(x̄)W)

| W has full column rank, rgeW = (spanF)⊥ with F being a face of KD(d̄, λ̄)





,

where d̄ := G(x̄) +G′(x̄)S(x̄) and λ̄ := Λ(x̄). Let F be an arbitrary face of KD(G(x̄), λ̄) with W having full
column rank such that rgeW = (spanF)⊥. Let Z be an arbitrary matrix (with full column rank) such that
rgeZ = {u | G′(x̄)u ∈ spanF} = ker(W⊤G′(x̄)). Note that rge(∇G(x̄)W) = kerZ⊤. Therefore, it holds that

−(I −Πrge(∇G(x̄)W))L
′
λ̄
(x̄)ν −Πrge(∇G(x̄)W)ν 6= 0 ∀ν 6= 0

⇔ (I −Πrge(∇G(x̄)W))L
′
λ̄
(x̄)ν 6= 0 ∀ν 6= 0 such that Πrge(∇G(x̄)W)ν = 0

⇔ Z(Z⊤Z)−1Z⊤L′
λ̄
(x̄)ν 6= 0 ∀0 6= ν ∈ rgeZ

⇔ Z⊤L′
λ̄
(x̄)ν 6= 0 ∀0 6= ν ∈ rgeZ.

Thus, Assumption 3.2 is equivalent to the condition that every element of TS(x̄) is nonsingular. This
completes the proof.

12

4.4 Equivalence to a G-Semismooth Newton method

We are ready to show that the semismooth* Newton method in algorithm 3 is exactly a special case of the
G-semismooth Newton method in Algorithm 1. Suppose that Assumptions 3.1 and 3.2 hold. Let ω be the
parameter defined in Proposition 3.1. For any x̃ ∈ Bω(x̄) with d̃ = G(x̃) +G′(x̃)S(x̃) and ũ = S(x̃), one has
λ̃ ∈ ND(d̃). Moreover, it is easy to see that F̄ := linTD(d̃) = linKD(d̃, λ̃) is a face of KD(d̃, λ̃). In fact, from

the proof of Proposition 4.2 one can see that F̄ is exactly the face such that W̃⊤F̄ = G ≡ {0}, where W̃ is

a matrix with full column rank such that rgeW̃ = spanND(d̃), while G is a face of KQ(0, µ̃) = W̃⊤KD(d̃, λ̃).

Consequently, the columns of W̃ form a basis of (spanF̄)⊥, so that by (20) one can get

Vx̃ : = −L′
λ̃
(x̃) +∇G(x̃)W̃

[
W̃⊤G′(x̃)∇G(x̃)W̃

]−1
W̃⊤(G′(x̃)L′

λ̃
(x̃)− [G(x̃) +G′(x̃)ũ]′x)

= −ΠZL′
λ̃
(x̃)−ΠW −∇G(x̃)W̃

[
W̃⊤G′(x̃)∇G(x̃)W̃

]−1
W̃⊤(G′(x̃)ũ)′x ∈ TS(x̃),

(27)

where W := rge(∇G(x̃)W̃) and Z := W⊥. Based on the results established in the previous two subsections,
we can apply Algorithm 1 to solve problem (2). The resulting implementation is given as follows.

Algorithm 5: A G-Semismooth Newton method for solving (2)

Input : F : Rn → R
n, G : Rn → R

s, D ⊂ Rs, x(0) ∈ Rn, and ̺ ≥ 0.
Output: {x(k)}.
for k = 0, 1, . . ., do

1. if x(k) solves (2), stop the algorithm;

2. run the approximation step in Algorithm 2 with input x(k) to compute û(k), λ̂(k), d̂(k) and
L
λ̂(k)(x(k));

3. compute V (k) such that dist(V (k), TS(x
(k))) ≤ ̺‖û(k)‖ with TS being given in (20);

4. compute the Newton direction ∆x(k) satisfying V (k)∆x(k) + û(k) = 0, and set
x(k+1) := x(k) +∆x(k).

end

The following result shows that Algorithm 3 is a special case of Algorithm 5.

Theorem 4.1. Suppose that Assumptions 3.1 and 3.2 hold. Then, Algorithm 3 is an instance of Algorithm
1 (in the form of Algorithm 5) in the sense that the local superlinear convergence of Algorithm 3 can be
obtained from Theorem 2.1.

Proof. Proof Let {x(k)} be the sequence generated by Algorithm 3. For a fixed k̄ ≥ 1 such that x(k̄) is
well-defined, we assume that x(k̄−1) is also the output of the final step at the iteration indexed by (k̄− 1) of
Algorithm 5. Then, the first two steps at the iteration indexed by k̄ of Algorithm 5 are the same as the first
two steps at the iteration indexed by k̄ of Algorithm 3. During the third step of Algorithm 5 at iteration k̄,
one can take

W(k̄) := rge(∇G(x(k̄))Ŵ (k̄)), Z(k̄) := (W(k̄))⊥ and V (k̄) := −ΠZ(k̄)L′
λ̂(k̄)(x

(k̄))−ΠW(k̄) ,

where Ŵ (k̄) comes from the third step of Algorithm 3 at the iteration indexed by k̄. Then, from (27) one
has

dist
(
V

(k̄)
, TS(x

(k̄))
)
≤ ‖∇G(x(k̄))Ŵ (k̄)

[
(Ŵ (k̄))⊤G′(x(k̄))∇G(x(k̄))Ŵ (k̄)

]−1
(Ŵ (k̄))⊤(G′(x(k̄))û(k̄))′x‖,

where û(k̄) := S(x(k̄)). Then, the corresponding ∆x(k̄) computed by the final step at the iteration indexed
by k̄ of Algorithm 5 is the same as the one calculated by (12) at the iteration indexed by k̄. Let ω be
the parameter specified in Proposition 3.1. Recall that for any x̃ ∈ Bω(x̄), Vx̃ in (27) is independent of

the specific choice of the corresponding W̃ in (27). Without loss of generality, one can assume that W̃ in

(27) is uniformly bounded. One has [W̃⊤G′(x̃)∇G(x̃)W̃]−1 is well-defined and uniformly bounded since
the nondegeneracy condition holds and G is continuously differentiable. Furthermore, since G′(·) is also
continuously differentiable, one can get dist(V (k̄), TS(x(k̄))) ≤ ̺‖û(k̄)‖ with

̺ := sup
x̃∈Bω(x̄)

{
‖∇G(x̃)W̃

[
W̃⊤G′(x̃)∇G(x̃)W̃

]−1
W̃⊤G′′(x̃)‖

}
< ∞.

13

Consequently, the iteration sequence {x(k)} generated by Algorithm 3 can be viewed as the one generated
by Algorithm 5.

Hence, if x(0) is sufficiently close to x̄, one has from Proposition 4.2 and Proposition 4.3 that the local
superlinear convergence of Algorithm 3 is guaranteed by Theorem 2.1. This completes the proof.

5 Proof of Algorithm 4 as a G-semismooth Newton method

In this section, we show that Algorithm 4 is also an application of Algorithm 1. The methodology developed
here also can be used to show that the implementable SCD semismooth* Newton method in the more recent
work [21] is also a G-semismooth Newton method.

We first provide the following two preliminary results.

Lemma 5.1. Let q be the function in (3) and Pγ−1q be the proximal mapping defined by (5) with γ > 0.
For any y, z ∈ Rn such that (z; y) ∈ gphPγ−1q, it holds that

{rge(I;B) | B ∈ ∂BPγ−1q(z)} = S∗
P

γ−1q
(z, y)

=
{
{(−(e∗ + γe);−γe) | (e; e∗) ∈ L} | L ∈ S∗

∂q(y, γ(z − y))
}
,

(28)

where the definitions of S∗
P

γ−1q
and S∗

∂q come from Definition 3.1.

Proof. Proof Since q is a closed proper convex function, one has for any y, z ∈ Rn,

(z; y) ∈ gphPγ−1q ⇔ γ(z − y) ∈ ∂q(y) ⇔ φ(z, y) := (y; γ(z − y)) ∈ gph∂q. (29)

Meanwhile, one has φ′(z, y) =

(
0 I
γI −γI

)
, which is nonsingular for all γ > 0. Note that

(
0 −I
I 0

)(
0 γI
I −γI

)(
0 −I
I 0

)⊤(
e
e∗

)
=

(
−(e∗ + γe)

−γe

)
.

Thus from [24, Lemma 3.11 and Proposition 3.14] and [57, Theorem 13.52] one gets (28).

Lemma 5.2. Let uγ be the function defined in (14) with γ > 0. Suppose that x̄ is a solution to the GE (3).
For any x ∈ Rn, by setting u := uγ(x), z := x− γ−1F (x) and z̄ := x̄− γ−1F (x̄), one has

‖u+ x− x̄‖2 + ‖F (x̄)− F (x) − γu‖2 ≤ max{1, γ2}‖z − z̄‖2.

Proof. Proof Note that u + x = Pγ−1q(z). One has (u + x;−F (x) − γu) =
(
u+ x; γ(z − (u + x))

)
∈ gph∂q

from (29). Moreover, one has x̄ = Pγ−1q(z̄), so that

‖u+ x− x̄‖2 + ‖F (x̄)− F (x)− γu‖2

= ‖Pγ−1q(z)− Pγ−1q(z̄)‖
2 + ‖F (x̄)− F (x)− γ(Pγ−1q(z)− x)‖2

= ‖Pγ−1q(z)− Pγ−1q(z̄)‖
2 + ‖F (x̄)− γx̄+ γx− F (x)− γ(Pγ−1q(z)− x̄)‖2

= ‖Pγ−1q(z)− Pγ−1q(z̄)‖
2 + γ2‖z − z̄ − (Pγ−1q(z)− Pγ−1q(z̄))‖

2 ≤ max{1, γ2}‖z − z̄‖2,

where the last inequality comes from [56, Proposition 1(c)]. This completes the proof.

5.1 Lipschitz continuous localization and G-semismoothness

Recall that the GE in (3) is equivalent to the nonsmooth equation uγ(x) = 0 (for any γ > 0) with uγ in (14).
Let U be a neighborhood of x̄ such that F is Lipschitz continuous on it with modulus ℓ > 0. According to
[25, eq. (5.13)] one has

‖uγ(x) − uγ(x
′)‖ ≤ 2‖x− x′‖+ γ−1‖F (x)− F (x′)‖ ≤

(
2 + ℓ

γ

)
‖x− x′‖ ∀x, x′ ∈ U.

14

Therefore, for any γ > 0, the function uγ(·) is Lipschitz continuous on U . It is not easy to calculate the
Bouligand subdifferential of uγ(·) although locally it is almost everywhere differentiable. Instead, it is more
reasonable to consider using the composite mapping Tuγ

: Rn
⇒ R

n×n defined by

Tuγ
(x) = ∂BPγ−1q(·) |x−γ−1F (x) ·

(
I − γ−1F ′(x)

)
− I. (30)

Note that for any γ > 0 the mapping Tuγ
(·) defined in (30) is outer semicontinuous at x̄.

Next, we show that uγ (γ > 0) defined in (14) is G-semismooth at a solution x̄ to the GE (3) with respect
to Tuγ

defined by (30). For convenience of comparison, we take identical values for all parameters here to
those used in the conditions in [25].

Proposition 5.1. Let x̄ be a solution to the GE (3), and Br(x̄) be the ball such that F is Lipschitz continuous
on it with modulus ℓ ≥ 0. For any ǫ > 0, let δ and δq be two positive constants (depending on ǫ) such that

δ ≤ min{ δq
1+ℓ

, r},

|〈e∗, d− x̄〉 − 〈e, d∗ + F (x̄)〉| ≤ ǫ

2
√
2(ℓ+1)

‖(e; e∗)‖‖(d− x̄; d∗ + F (x̄))‖

∀(d; d∗) ∈ gph∂q ∩ Bδq (x̄;−F (x̄)), ∀(e; e∗) ∈ L ∈ S∗
∂q(d, d

∗),
(31)

and
‖F (x)− F (x̄)− F ′(x)(x − x̄)‖ ≤ ǫ

2
√
2(ℓ+1)

‖x− x̄‖ ∀x ∈ Bδ(x̄). (32)

Then, for any x̂ ∈ Rn satisfying ‖x̂− x̄‖ ≤ min
{ min{δq,r}
(1+ ℓ

γ
)max{1,γ} , δ

}
the following results hold:

(a) For any v ∈ Rn and any B ∈ ∂BPγ−1q(x̂− γ−1F (x̂)), one has

∣∣〈γv, uγ(x̂)〉 −
(
〈γBv, (I − γ−1F ′(x̂))(x̂ − x̄)〉 − 〈γv, x̂− x̄〉

)∣∣
≤ ǫ

2
√
2(l+1)

(
‖(Bv; γ(I −B)v)‖max{1, γ}(1 + ℓ

γ
) + ‖Bv‖

)
‖x̂− x̄‖.

(33)

(b) For any B ∈ ∂BPγ−1q(x̂ − γ−1F (x̂)) such that C := B(I − γ−1F ′(x̂)) − I ∈ Tuγ
(x̂) is nonsingular, by

taking M := γC⊤ one has

||C−1uγ(x̂)− (x̂− x̄)|| ≤ ǫ

2
√
2(ℓ+1)

(
max{1, γ}(1 + ℓ

γ
)‖(BM−1; γ(I −B)M−1)‖F + ‖BM−1‖F

)
‖x̂− x̄‖.

Proof. Proof (a) Note that whenever x̂ satisfies ‖x̂− x̄‖ ≤ min{δq,r}
(1+ l

γ
)max{1,γ} , one can get from Lemma 5.2 that

‖(ŷ − x̄; γ(ẑ − ŷ) + F (x̄))‖ = ‖(û+ x̂− x̄;F (x̄)− F (x̂)− γû)‖

≤ max{1, γ}‖ẑ − z̄‖ ≤ max{1, γ}(1 + ℓ
γ
)‖x̂− x̄‖ ≤ min{δq, r},

where û := uγ(x̂), ẑ := x̂− γ−1F (x̂), ŷ := û+ x̂ = Pγ−1q(ẑ), and z̄ := x̄ − γ−1F (x̄). Therefore, whenever x̂

satisfies ‖x̂− x̄‖ ≤
min{δq ,r}

(1+ l
γ
)max{1,γ} , one can take (d; d∗) = (ŷ; γ(ẑ − ŷ)) ∈ gph∂q ∩ Bδq (x̄,−F (x̄)) in (31) such

that for all (e; e∗) ∈ L ∈ S∗
∂q(d, d

∗),

|〈γe, ẑ − z̄〉 − 〈e∗ + γe, ŷ − x̄〉|

= |〈e∗ + γe, ŷ − x̄〉 − 〈γe, ẑ − x̄+ 1
γ
F (x̄)〉| = |〈e∗, ŷ − x̄〉 − 〈e, γ(ẑ − ŷ) + F (x̄)〉|

≤ ǫ

2
√
2(ℓ+1)

‖(e; e∗)‖‖(ŷ − x̄; γ(ẑ − ŷ) + F (x̄))‖ ≤ ǫ

2
√
2(ℓ+1)

‖(e; e∗)‖max{1, γ}(1 + ℓ
γ
)‖x̂− x̄‖.

(34)

Also, by using (28) of Lemma 5.1 one can get

S∗
∂q(ŷ, γ(ẑ − ŷ)) = {rge(−γ−1B;−(I −B)) | B ∈ ∂BPγ−1q(ẑ)} = {rge(B; γ(I −B)) | B ∈ ∂BPγ−1q(ẑ)}.

Thus, (e; e∗) ∈ L if and only if (e; e∗) = (Bv; γ(I −B)v) for some v ∈ Rn, where B ∈ ∂BPγ−1q(ẑ) is the
symmetric positive semidefinite n × n matrix such that L = rge(B; γ(I − B)). Moreover, in this case, one
has from (28) that (e∗ + γe; γe) = (γ(I −B)v + γBv; γBv) = γ(v;Bv) ∈ S∗

Pγ−1q
(z, y).

15

Therefore, if x̂ satisfies ‖x̂ − x̄‖ ≤ min{δq,r}
(1+ l

γ
)max{1,γ} , one can obtain from (34) that for any v ∈ Rn and any

B ∈ ∂BPγ−1q(x̂− γ−1F (x̂)) it holds that

|〈γBv, ẑ − z̄〉 − 〈γv, ŷ − x̄〉| ≤ ǫ

2
√
2(ℓ+1)

‖(Bv; γ(I −B)v)‖max{1, γ}(1 + ℓ
γ
)‖x̂− x̄‖. (35)

Note that both (32) and (35) hold if x̂ satisfies ‖x̂− x̄‖ ≤ min
{ min{δq,r}

(1+ ℓ
γ
)max{1,γ} , δ

}
≤ min

{ δq
1+ℓ

, r
}
. In this case,

one has
∣∣〈γv, uγ(x̂)〉 −

(
〈γBv, (I − γ−1F ′(x̂))(x̂ − x̄)〉 − 〈γv, x̂− x̄〉

)∣∣
= |〈γv, û〉+ 〈γv, x̂− x̄〉 − 〈γBv, x̂− x̄− γ−1(F (x̂)− F (x̄))− γ−1F ′(x̂)(x̂− x̄) + γ−1(F (x̂)− F (x̄))〉|

≤ |〈γv, ŷ − x̄〉 − 〈γBv, ẑ − z̄〉|+ |〈Bv, F (x̂)− F (x̄)− F ′(x̂)(x̂ − x̄)〉|

≤ ǫ

2
√
2(ℓ+1)

‖(Bv; γ(I −B)v)‖max{1, γ}(1 + ℓ
γ
)‖x̂− x̄‖+ ǫ

2
√
2(ℓ+1)

‖Bv‖‖x̂− x̄‖,

which completes the proof of (a).
(b) When C is not singular, we can take vi in (33) as the i-th column of M−1 = (γC⊤)−1 for i = 1, ..., n,

that is, γv⊤i is the i-th row of C−1. Consequently,

‖C−1uγ(x̂)− (x̂− x̄)‖
= ‖C−1uγ(x̂)− C−1B(I − γ−1F ′(x̂))(x̂ − x̄) + C−1(x̂− x̄)‖

=
(∑n

i=1

∣∣〈γvi, uγ(x̂)〉 −
(
〈γBvi, (I − γ−1F ′(x̂))(x̂ − x̄)〉 − 〈γvi, x̂− x̄〉

)∣∣2) 1
2

≤ ǫ

2
√
2(ℓ+1)

(∑n
i=1

(
max{1, γ}(1 + ℓ

γ
)‖(Bvi; γ(I −B)vi)‖ + ‖Bvi‖

)2) 1
2

‖x̂− x̄‖

≤ ǫ

2
√
2(ℓ+1)

(
max{1, γ}(1 + ℓ

γ
)
(∑n

i=1 ‖(Bvi; γ(I −B)vi)‖2
) 1

2 +
(∑n

i=1 ‖Bvi‖2
) 1

2
)
‖x̂− x̄‖

= ǫ

2
√
2(ℓ+1)

(
max{1, γ}(1 + ℓ

γ
)‖(BM−1; γ(I −B)M−1)‖F + ‖BM−1‖F

)
‖x̂− x̄‖,

where the last inequality comes from the triangle inequality and the final equality comes from the definition
of the Frobenius norm. This completes the proof of (b).

The G-semismoothness of uγ with respect to Tuγ
is given as follows.

Corollary 5.1. Let x̄ be a solution to the GE (3), and Br(x̄) be the ball such that F is Lipschitz continuous
on it with modulus ℓ ≥ 0. Assume that ∂q is SCD semismooth∗ at (x̄,−F (x̄)). For any γ > 0 the mapping
uγ defined in (14) is G-semismooth with respect to Tuγ

given in (30) at x̄.

Proof. Proof Let ǫ > 0 be arbitrarily given. Note that one can find two positive constants δ and δq with

δ ≤ min{
δq
1+ℓ

, r} such that (31) and (32) hold. Then by Proposition 5.1(a) we know that for any x̂ ∈ Rn

satisfying ‖x̂− x̄‖ ≤ min
{ min{δq,r}

(1+ ℓ
γ
)max{1,γ} , δ

}
, it holds for any v ∈ Rn and any B ∈ ∂BPγ−1q(x̂−γ−1F (x̂)) that

∣∣〈γv, uγ(x̂)〉 −
(
〈γBv, (I − γ−1F ′(x̂))(x̂ − x̄)〉 − 〈γv, x̂− x̄〉

)∣∣
≤ ǫ

2
√
2(ℓ+1)

(
‖(Bv; γ(I −B)v)‖max{1, γ}(1 + ℓ

γ
) + ‖Bv‖

)
‖x̂− x̄‖.

Since B is a firmly nonexpansive mapping by [24, Proposition 3.22], one can get that ‖(Bv; γ(I − B)v)‖ ≤
max{1, γ}‖v‖. Therefore, by taking v as the vector such that ‖γv‖ = 1 and

〈γv, uγ(x̂)− (B(I − γ−1F ′(x̂))− I)(x̂ − x̄)〉 = ‖uγ(x̂)− (B(I − γ−1F ′(x̂))− I)(x̂ − x̄)‖,

one can get ‖Bv‖ ≤ max{1, 1
γ
} and

‖uγ(x̂)− (B(I − γ−1F ′(x̂))− I)(x̂− x̄)‖ ≤ ǫ

2
√
2(ℓ+1)

(
max{1, γ2}‖v‖(1 + ℓ

γ
) + ‖Bv‖

)
‖x̂− x̄‖.

Consequently, uγ is G-semismooth with respect to Tuγ
, and this completes the proof.

16

5.2 Regularity conditions

When using Tuγ
in (30) as a generalized Jacobian in a G-semismooth Newton method for solving the

nonsmooth equation uγ(x) = 0, conditions for ensuring Tuγ
being nonsingular around a reference solution

should be verified. On the other hand, Algorithm 4 is well-defined only if the coefficient matrix of the linear
equation (15) is nonsingular. In fact, we have the following results on the equivalence between the two
regularity conditions mentioned above.

Lemma 5.3. Let γ > 0 and uγ be the function defined in (14). For any x ∈ Rn, every element of Tuγ
(x) is

nonsingular if and only if (Y ∗⊤F ′(x) +X∗⊤) is nonsingular for all X∗ ∈ Rn×n and Y ∗ ∈ Rn×n such that
rge(Y ∗;X∗) ∈ S∗

∂q

(
x+ uγ(x),−γuγ(x) − F (x)

)
.

Proof. Proof For convenience, denote u := uγ(x), z := x−γ−1F (x), and y := u+x = Pγ−1q(z). It is easy to
see from (5) that γ(z − y) ∈ ∂q(y), so that

(
x+ uγ(x);−γuγ(x) − F (x)

)
= (y; γ(z − y)) ∈ gph∂q. By using

(28) of Lemma 5.1 we have

S∗
∂q

(
x+ uγ(x),−γuγ(x)− F (x)

)
=
{
rge(B; γ(I −B)) | B ∈ ∂BPγ−1q(z)

}
. (36)

By (30) one has Tuγ
(x) = {B(I − γ−1F ′(x)) − I | B ∈ ∂BPγ−1q(z)}. Thus, it is sufficient to prove that for

every B ∈ ∂BPγ−1q(z), the matrix B(I − γ−1F ′(x)) − I is nonsingular if and only if Y ∗⊤F ′(x) + X∗⊤ is
nonsingular for all X∗ ∈ Rn×n and Y ∗ ∈ Rn×n such that rge(Y ∗;X∗) = rge(B; γ(I −B)).

Fix B ∈ ∂BPγ−1q(z). On the one hand, suppose that B(I−γ−1F ′(x))−I ∈ Tuγ
(x) is singular. By taking

Y ∗ = B and X∗ = γ(I−B) one has Y ∗⊤F ′(x)+X∗⊤ = BF ′(x)+γ(I−B) = −γ(B(I−γ−1F ′(x))−I), which
is also singular. On the other hand, if Y ∗⊤F ′(x) + X∗⊤ is singular with rge(Y ∗;X∗) = rge(B; γ(I − B)),
i.e., there exists a nonzero vector v ∈ Rn such that Y ∗⊤F ′(x)v +X∗⊤v = 0, one has for every w ∈ Rn,

w⊤Y ∗⊤F ′(x)v + w⊤X∗⊤v = (Y ∗w)⊤F ′(x)v + (X∗w)⊤v =
(
(Y ∗w)⊤F ′(x) + (X∗w)⊤

)
v = 0.

Since rge(Y ∗;X∗) = rge(B; γ(I −B)), one has

w⊤ (BF ′(x) + γ(I −B)) v =
(
(Bw)⊤F ′(x) + (γ(I −B)w)⊤

)
v = 0 ∀w ∈ Rn.

Therefore, we have (BF ′(x) + γ(I −B)) v = 0, which implies that the matrix −γ(B(I − γ−1F ′(x)) − I) is
nonsingular. This completes the proof.

Corollary 5.2. Let x̄ be a solution to the GE (3). Then, F + ∂q is SCD regular around (x̄, 0) if and only
if every element of Tuγ

(x̄) defined in (30) is nonsingular for any γ > 0.

Proof. Proof According to [25, Proposition 5.1(ii)] we know that F + ∂q is SCD regular around (x̄, 0) if
and only if Y ∗⊤F ′(x̄) + X∗⊤ is nonsingular for all X∗ ∈ Rn×n and Y ∗ ∈ Rn×n such that rge(Y ∗;X∗) ∈
S∗
∂q

(
x̄,−F (x̄)

)
. Thus, the conclusion follows from Lemma 5.3. This completes the proof.

The following result is also a consequence of Lemma 5.3.

Lemma 5.4. Let uγ (γ > 0) be the function defined in (14), and J be the mapping defined in (13). For
any x ∈ Rn such that every element of Tuγ

(x) is nonsingular, one has

S∗
J
(
(x, x + uγ(x)), (F (x) + d∗,−uγ(x))

)
=
{
rge (CB ; I) | B ∈ ∂BPγ−1q(x − γ−1F (x))

}
, (37)

where CB :=

(
BM̃−1 BM̃−1

γ(I −B)M̃−1 γ(I −B)M̃−1 − I

)
with M̃ := F ′(x)⊤B + γ(I −B).

Proof. Proof According to [25, Proposition 5.1(1)] we know that, for any (x; d) ∈ R2n and d∗ ∈ ∂q(d),

S∗
J ((x, d), (F (x) + d∗, x− d)) =

{
rge

((
Y ∗ 0
0 −I

)
;

(
F ′(x)⊤Y ∗ −I

X∗ I

)) ∣∣∣ rge(Y ∗;X∗) ∈ S∗
∂q(d, d

∗)

}
.

17

From Lemma 5.3 we know that every element of Tuγ
(x) is nonsingular if and only if (Y ∗⊤F ′(x) +X∗⊤) is

nonsingular for all X∗ and Y ∗ such that rge(Y ∗;X∗) ⊆ S∗
∂q

(
x + uγ(x),−γuγ(x) − F (x)

)
. Moreover, (36)

holds in this case, so that with z := x− γ−1F (x) one has

S∗
J
(
(x, x + uγ(x)), (F (x) + d∗,−uγ(x))

)

=

{
rge

((
Y ∗ 0
0 −I

)(
F ′(x)⊤Y ∗ −I

X∗ I

)−1

; I

)∣∣∣
rge(Y ∗;X∗) = rge(B; γ(I −B)),

B ∈ ∂BPγ−1q(z)

}
.

(38)

Fix B ∈ ∂BPγ−1q(z) and choose (Y ∗;X∗) such that rge(Y ∗;X∗) = rge(B; γ(I−B)). Since that (B; γ(I−B))
has full column rank, there exists a nonsingular matrix P ∈ Rn×n such that Y ∗ = BP and X∗ = γ(I −
B)P . Moreover, since M := F ′(x)⊤Y ∗ + X∗ = (F ′(x)⊤B + γ(I − B))P is nonsingular, one has M−1 =
P−1(F ′(x)⊤B + γ(I −B))−1 and

(
Y ∗ 0
0 −I

)(
F ′(x)⊤Y ∗ −I

X∗ I

)−1

=

(
BP 0
0 −I

)(
F ′(x)⊤BP −I
γ(I −B)P I

)−1

=

(
BP 0
0 −I

)(
M−1 M−1

−γ(I −B)PM−1 I − γ(I −B)PM−1

)
=

(
BPM−1 BPM−1

γ(I −B)PM−1 γ(I −B)PM−1 − I

)

=

(
B(F ′(x)⊤B + γ(I −B))−1 B(F ′(x)⊤B + γ(I −B))−1

γ(I −B)(F ′(x)⊤B + γ(I −B))−1 γ(I −B)(F ′(x)⊤B + γ(I −B))−1 − I

)
.

Therefore, one can remove the dependence on the precise choice of (Y ∗;X∗) and use only the information
of B in (38). So we obtain (37). This completes the proof.

5.3 Equivalence to a G-semismooth Newton method

Based on the discussions in the previous subsections, a G-semismooth Newton method (Algorithm 1) for
solving (3) via its equivalent form (14) can be given as follows.

Algorithm 6: A G-semismooth Newton method for solving (3)

Input : x(0) ∈ Rn, F : Rn → R
n, and q : Rn → R̄.

Output: {x(k)}.
for k = 0, 1, . . ., do

1. if 0 ∈ F (x(k)) + ∂q(x(k)), stop the algorithm;
m

2. select γ(k) > 0, and compute u(k) := uγ(k)(x(k));
m

3. select V (k) ∈ Tu
γ(k)

(x(k)) via (30), then compute the Newton direction ∆x(k) from

V (k)∆x(k) = −u(k), and obtain the new iterate via x(k+1) := x(k) +∆x(k).
end

Note that Algorithm 6 is essentially a “uniform” version of Algorithm 1 for solving a family of problems,
i.e., {uγ(x) = 0, γ > 0}, sharing the common solutions. In each iteration, one selects one instance of these
problems and performs the G-semismooth Newton step via Tuγ

. In the following, we show that Algorithm
6 is well-defined if Algorithm 4 is, and vice versa. Moreover, a sequence generated by one of them can be
treated as the one generated by the other.

Lemma 5.5. Given x(0) ∈ Rn and {γ(k)}. Suppose that both Algorithm 4 and Algorithm 6 generate the
same point x(k̄) after the iteration indexed by (k̄ − 1) ≥ 0, and B(k̄) ∈ ∂BPγ(k̄)−1

q
(·) |

x(k̄)−γ(k̄)−1
F (x(k̄))

is

chosen such that

rge(Y ∗(k̄);X∗(k̄)) := rge(B(k̄); γ(k̄)(I −B(k̄))) and V (k̄) := B(k̄)(I − γ(k̄)−1
F ′(x(k̄)))− I. (39)

Then, one has rge(Y ∗(k̄);X∗(k̄)) ∈ S∗
∂q

(
d̂(k̄), d̂∗(k̄)

)
and V (k̄) ∈ Tu

γ(k̄)
(x(k̄)). Moreover, both the two algorithms

generate the same x(k̄+1) if (39) is used in them.

18

Proof. Proof Recall that, in iteration indexed by k̄ of Algorithm 4, the Newton direction ∆x(k̄) generated
by (15), i.e. the linear system

(Y ∗(k̄)⊤F ′(x(k̄)) +X∗(k̄)⊤)∆x(k̄) = (γ(k̄)Y ∗(k̄)⊤ +X∗(k̄)⊤)u(k̄), (40)

where u(k̄) := uγ(k̄)(x(k̄)), d̂(k̄) := x(k̄) + u(k̄) and d̂∗(k̄) := −γ(k̄)u(k̄) − F (x(k̄)). Thus, by denoting W as the

nonsingular transition matrix such that Y ∗(k̄) = B(k̄)W and X∗(k̄) = γ(k̄)(I −B(k̄))W , (40) is equivalent to

(W⊤B(k̄)F ′(x(k̄)) + γ(k̄)W⊤(I −B(k̄)))∆x(k̄) = (γ(k̄)W⊤B(k̄) + γ(k̄)W⊤(I −B(k̄)))u(k̄),

or equivalently,
(
B(k̄)

(
I − 1

γ(k̄)F
′(x(k̄))

)
− I

)
∆x(k̄) = −u(k̄), which is exactly the Newton system of the

G-semismooth Newton method using Tu
γ(k̄)

(Algorithm 6). This completes the proof.

Next, we show that the local superlinear convergence of Algorithm 6 can be obtained under the assump-
tions made in Theorem 3.1 (i.e., [25, Theorem 5.2]).

Proposition 5.2. Let x̄ be a solution of (3). Assume that ∂q is SCD semismooth∗ at (x̄,−F (x̄)) and ∂q+F
is SCD regular around (x̄, 0). Then for every pair γ, γ̄ with 0 < γ ≤ γ̄ there exists a neighborhood U of x̄

such that for every starting point x(0) ∈ U Algorithm 6 produces a sequence {x(k)} converging superlinearly
to x̄, provided we choose in every iteration step γ(k) ∈ [γ, γ̄].

Proof. Proof From [25, Proposition 5.1] we know ∂q + F is SCD regular around (x̄, 0) if and only if the
mapping J defined in (13) is SCD regular around ((x̄, x̄), (0, 0)). Moreover, according to [24, Proposition
4.8], for every κ > scd regJ ((x̄, x̄), (0, 0)), one can find a positive radius ρ > 0 such that for every γ ∈ [γ, γ]
and every x ∈ Rn such that (x, x + uγ(x)) ∈ Bρ(x̄, x̄), the mapping J is also SCD regular around ((x, x +
uγ(x)), (−γuγ(x),−uγ(x))) and κ > scd regJ ((x, x+ uγ(x)), (−γuγ(x),−uγ(x))). Thus, by Lemma 5.3 and
[25, Proposition 5.1(1)], each element of Tuγ

(x) is nonsingular. Moreover, by combining [24, eq. (34)] and
Lemma 5.4, we obtain for any B ∈ ∂BPγ−1q(·) |x−γ−1F (x),

∥∥∥∥∥

(
B[F ′(x)⊤B + γ(I − B)]−1 B[F ′(x)⊤B + γ(I −B)]−1

γ(I −B)[F ′(x)⊤B + γ(I −B)]−1 γ(I −B)[F ′(x)⊤B + γ(I −B)]−1 − I

)∥∥∥∥∥ ≤ κ. (41)

Let Br(x̄) be the ball such that F is Lipschitz continuous on it with modulus ℓ ≥ 0. Take 0 < ξ < 1 and

ǫ := 2
√
2(ℓ+1)ξ√

nκ max
γ∈[γ,γ]

(max{1,γ}(1+ ℓ
γ
)+1)

.

Then, for any x̂ satisfying ‖x̂ − x̄‖ ≤ min
{ min{δq,r}

(1+ ℓ
γ
)max{1,γ} , δ

}
and (x̂, x̂ + uγ(x̂)) ∈ Bρ(x̄, x̄), where δq and

δ ≤ min{ δq
1+ℓ

, r} are the positive constants (depending on ǫ) such that (31) and (32) holds, one can obtain

from Proposition 5.1(b) the nonsingularity of each element Ĉ := B̂(I − γ−1F ′(x̂)) − I ∈ Tuγ
(x̂) with

B̂ ∈ ∂BPγ−1q(x̂− γ−1F (x̂)), and

||Ĉ−1uγ(x̂)− (x̂− x̄)||

≤ ǫ

2
√
2(ℓ+1)

(
max{1, γ}(1 + ℓ

γ
)‖(B̂M−1; γ(I − B̂)M−1)‖F + ‖B̂M−1‖F

)
‖x̂− x̄‖

≤
√
nκǫ

2
√
2(ℓ+1)

max
γ∈[γ,γ]

(
max{1, γ}(1 + ℓ

γ
) + 1

)
‖x̂− x̄‖ = ξ‖x̂− x̄‖,

where M := γĈ⊤ ≡ −F ′(x̂)⊤B̂ − γ(I − B̂), and the last inequality comes from (41). Then by letting

U :=
{
x̂
∣∣∣ ‖x̂− x̄‖ ≤ min

{ min{δq ,r}
(1+ ℓ

γ
)max{1,γ} , δ

}
, (x̂, x̂+ uγ(x̂)) ∈ Bρ(x̄, x̄) ∀γ ∈ [γ, γ]

}
,

one can get the convergence of Algorithm 6 provided that x(0) ∈ U . The superlinear convergence rate comes
from further shrinking the value of ǫ, and this completes the proof.

Finally, we have the following result, showing that Algorithm 4 is an instance of Algorithm 6.

Theorem 5.1. Under the assumptions of Theorem 3.1, Algorithm 4 is an instance of Algorithm 6, and the
local superlinear convergence of Algorithm 4 (i.e., Theorem 3.1) can be guaranteed by Proposition 5.2.

Proof. Proof The conclusion of the theorem follows immediately from Lemma 5.5 and Proposition 5.2.

19

6 Conclusions

This paper showed that the two typical implementable semismooth* Newton methods are applications of G-
semismooth Newton methods. This further enriches the comprehension of G-semismooth Newton methods
and helps design practical Newton-type methods for GEs. Accordingly, a natural question is whether an
implementable semismooth* Newton method is achievable for solving a GE that cannot be reformulated to
locally Lipschitz continuous equations. Moreover, the relationship between the generic semismooth* Newton
methods and G-semismooth Newton methods is still unclear, so another question is whether one can obtain
generalizations of G-semismooth Newton methods, involving certain tractable “approximation steps”, that
can solve a broader class of problems. We leave these questions for future research.

References

[1] Aragón Artacho FJ, Dontchev AL, Gaydu M, Geoffroy MH, Veliov VM (2011) Metric regularity of Newton’s iteration.
SIAM J. Control Optim. 49(2):339-362.

[2] Aragón Artacho FJ, Belyakov A, Dontchev AL, Lopez M (2014) Local convergence of quasi-Newton methods under metric
regularity. Comput. Optim. Appl. 58(1):225–247.

[3] Aragón Artacho FJ, Mordukhovich BS, Pérez Aros P (2024) Coderivative-based semi-Newton method in nonsmooth differ-
ence programming. Math. Program. 1–48.

[4] Azé D, Chou CC (1995) On a Newton type iterative method for solving inclusions. Math. Oper. Res. 20(4):790–800.
[5] Bonnans JF (1994) Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl.

Math. Optim. 29:161–186.
[6] Bonnans JF, Shapiro A (2000) Perturbation Analysis of Optimization Problems (Springer, New York).
[7] Cibulka R, Dontchev AL, Geoffroy MH (2011) Inexact Newton methods and Dennis–Moré theorems for nonsmooth gener-

alized equations. SIAM J. Control Optim. 49(2):339–362.
[8] Dias JM, Smirnov G (2012) On the Newton method for set-valued maps. Nonlinear Anal. 75:1219–1230.
[9] Dontchev AL (1996) Local convergence of the Newton method for generalized equations. Comptes Rendus de l’Académie

des Sciences - Series I - Mathematics. 322(4):327–331.
[10] Dontchev AL (1996) Local analysis of a Newton-type method based on partial linearization. Renegar J, Shub M, and Smale

S, eds. The mathematics of numerical analysis (AMS, Providence, RI) 295–306.
[11] Dontchev AL, Rockafellar RT (2010) Newton’s method for generalized equations: a sequential implicit function theorem.

Math. Program. 123(1):139–159.
[12] Ferreira OP (2015) A robust semi-local convergence analysis of Newton’s method for cone inclusion problems in Banach

spaces under affine invariant majorant condition. J. Comput. Appl. Math. 279:318–335.
[13] Ferreira OP, Silva GN (2017) Kantorovich’s theorem on Newton’s method for solving strongly regular generalized equation.

SIAM J. Optim. 27(2):910–926.
[14] Ferreira OP, Silva GN (2018) Local convergence analysis of Newton’s method for solving strongly regular generalized

equations. J. Math. Anal. Appl. 458(1):481–496.
[15] Fischer A (1999) Modified Wilson’s method for nonlinear programs with nonunique multipliers.Math. Program. 24:699–727.
[16] Gao Y, Sun DF (2009), Calibrating least squares semidefinite programming with equality and inequality constraints. SIAM

J. Matrix Anal. Appl. 31:1432–1457.
[17] Gaydu M, Geoffroy MH (2013) A Newton iteration for differentiable set-valued maps. J. Math. Anal. Appl. 399(1):213–224.
[18] Geoffroy MH, Piétrus A (2004) Local convergence of some iterative methods for generalized equations. J. Math. Anal.

Appl. 290(2):497–505.
[19] Geoffroy MH, Piétrus A (2005) A general iterative procedure for solving nonsmooth generalized equations. Comput. Optim.

Appl. 31(1):57–67.
[20] Gfrerer H. (2025) On a globally convergent semismooth* Newton method in nonsmooth nonconvex optimization. Comput.

Optim. Appl. online, https://doi.org/10.1007/s10589-025-00658-z.
[21] Gfrerer H, Mandlmayr M, Outrata JV, Valdman J (2023) On the SCD semismooth* Newton method for generalized

equations with application to a class of static contact problems with Coulomb friction. Comput. Optim. Appl. 86:1159–
1191.

[22] Gfrerer H., Mordukhovich BS (2019) Second-order variational analysis of parametric constraint and variational systems.
SIAM J. Optim. 29(1):423–453.

[23] Gfrerer H, Outrata JV (2021) On a semismooth* Newton method for solving generalized equations. SIAM J. Optim.
31(1):489–517.

[24] Gfrerer H, Outrata JV (2022) On (local) analysis of multifunctions via subspaces contained in graphs of generalized
derivatives. J. Math. Anal. Appl. 508(2):125895.

[25] Gfrerer H, Outrata JV, Valdman J (2022) On the application of the SCD semismooth* Newton method to variational
inequalities of the second kind. Set-Valued Var. Anal. 30:1453–1484.

[26] Gowda MS (2004) Inverse and implicit function theorems for H-differentiable and semismooth functions. Optim. Methods
Softw. 19:443–461.

[27] Henrion R, Outrata JV (2001) A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258:110–130.
[28] Hoheisel T, Kanzow C, Mordukhovich BS, Phan H (2012) Generalized Newton’s method based on graphical derivatives.

Nonlinear Anal. 75(3):1324–1340.

20

[29] Hoheisel T, Kanzow C, Mordukhovich BS, Phan H (2013) Erratum to “Generalized Newton’s method based on graphical
derivatives” [Nonlinear Anal. TMA 75 (2012) 1324–1340]. Nonlinear Anal. 86:157–158.

[30] Izmailov A, Solodov M (2014) Newton-Type Methods for Optimization and Variational Problems (Springer, New York).
[31] Izmailov A, Solodov M (2010) Inexact Josephy–Newton framework for generalized equations and its applications to local

analysis of Newtonian methods for constrained optimization. Comput. Optim. Appl. 46(2):347–368.
[32] Izmailov A, Solodov M (2015) Newton-type methods: A broader view. J. Optim. Theory Appl. 164:577–620.
[33] Josephy N (1979) Newton’s Method for Generalized Equations And The PIES Energy Model. Ph.D. dissertation (University

of Wisconsin-Madison).
[34] Josephy N (1979) Quasi-Newton method for generalized equations. Technical summary report (University of Wisconsin-

Madison).
[35] Khanh PD, Mordukhovich BS, Phat VT (2023) A generalized Newton method for subgradient systems. Math. Oper. Res.

48(4):1811–1845.
[36] Khanh PD, Mordukhovich BS, Phat VT, Tran DB (2023) Generalized damped Newton algorithms in nonsmooth opti-

mization via second-order subdifferentials. J. Global Optim. 86(1): 93–122.
[37] Khanh PD, Mordukhovich BS, Phat VT (2024) Coderivative-based Newton methods in structured nonconvex and nons-

mooth optimization. ArXiv preprint, https://arxiv.org/abs/2403.04262.
[38] Khanh PD, Mordukhovich BS, Phat VT, Tran DB (2024) Globally convergent coderivative-based generalized Newton

methods in nonsmooth optimization. Math. Program. 205(1):373–429.
[39] Klatte D, Kummer B (2002) Nonsmooth Equations in Optimization (Kluwer Academic Publishers, New York).
[40] Klatte D, Kummer B (2018) Approximation and generalized Newton methods. Math. Program. 168:673–716.
[41] Kummer B (1988) Newton’s method for non-differentiable functions. Guddat J et al., eds. Advances in mathematical

optimization (De Gruyter, Berlin), 114–125.
[42] Kummer B (1992) Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis. Oettli

W, Pallaschke D, eds. Advances in Optimization (Springer, Berlin, Heidelberg), 171–194.
[43] Kummer B (2000) Generalized Newton and NCP-methods: Convergence, regularity, actions. Discuss. Math. Differ. Incl.

Control Optim. 20(2):209–244.
[44] Li X, Sun DF, Toh K-C (2018) A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso

problems. SIAM J. Optim. 28(1):433–458.
[45] Meng F, Sun DF, Zhao G (2005) Semismoothness of solutions to generalized equations and the Moreau-Yosida regulariza-

tion. Math. Program. 104:561–581.
[46] Mifflin R (1977) Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15:957–972.
[47] Mordukhovich BS (2006) Variational Analysis and Generalized Differentiation I: Basic Theory (Springer, Berlin).
[48] Mordukhovich BS (2024) Second-Order Variational Analysis in Optimization, Variational Stability, and Control: Theory,

Algorithms, Applications (Springer, Cham, Switzerland).
[49] Mordukhovich BS, Sarabi ME (2021) Generalized Newton algorithms for tilt-stable minimizers in nonsmooth optimization.

SIAM J. Optim. 31(2):1184–1214.
[50] de Oliveira F, Ferreira O, Silva G (2019) Newton’s method with feasible inexact projections for solving constrained

generalized equations. Comput. Optim. Appl. 72:159–177.
[51] Pang JS (1990) Newton’s method for B-differentiable equations. Math. Oper. Res. 15(2):311–341.
[52] Pang JS, Sun DF, Sun J (2003) Semismooth homeomorphisms and strong stability of semidefinite and Lorentz comple-

mentarity problems. Math. Oper. Res. 28(1):39–63.
[53] Qi L, Sun DF, Zhou G (2000) A new look at smoothing Newton methods for nonlinear complementarity problems and

box constrained variational inequalities. Math. Program. 87:1–35.
[54] Qi L, Sun J (1993) A nonsmooth version of Newton’s method. Math. Program. 58:353–367.
[55] Rademacher H (1919) Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die

Transformation der Doppelintegrale. Math. Ann. 79:340-359.
[56] Rockafellar RT (1976) Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5):877–898.
[57] Rockafellar RT, Wets RJB (1998) Variational Analysis (Springer, Berlin).
[58] Rockafellar RT (1970) Convex Analysis (Princeton University Press, Princeton).
[59] Robinson S (1994) Newton’s method for a class of nonsmooth functions. Set-Valued Anal. 2:291–305.
[60] Shapiro A (2003) Sensitivity analysis of generalized equations. J. Math. Sci. (N. Y.) 115:2554–2565.
[61] Solodov MV, Svaiter BF (2002) A new proximal-based globalization strategy for the Joseph-Newton method for variational

inequalities. Optim. Methods Softw. 17(5):965–983.
[62] Sun DF (2006) The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite pro-

gramming and their implications. Math. Oper. Res. 31(4):761–776.
[63] Yang L, Sun DF, Toh K-C (2015) SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for

semidefinite programming with nonnegative constraints. Math. Program. Comput. 7(3):1–36.
[64] Zhao X, Sun DF, Toh K-C (2010) A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J.

Optim. 20(4):1737–1765.

21

	Introduction
	Preliminaries
	Basic variational analysis
	A G-semismooth Newton method

	Implementable semismooth* Newton methods for GEs
	A semismooth* Newton method for the GE (2)
	An SCD semismooth* Newton method for the GE (3)

	Proof of Algorithm 3 as a G-semismooth Newton method
	Lipschitz continuous localization
	G-Semismoothness
	Regularity conditions
	Equivalence to a G-Semismooth Newton method

	Proof of Algorithm 4 as a G-semismooth Newton method
	Lipschitz continuous localization and G-semismoothness
	Regularity conditions
	Equivalence to a G-semismooth Newton method

	Conclusions

