
Unsupervised Feature Selection via NOCRM

Unsupervised Feature Selection via Nonnegative Orthogonal
Constrained Regularized Minimization

Yan Li li-yan20@mails.tsinghua.edu.cn
Department of Mathematical Sciences
Tsinghua University
Beijing 100084, China

Defeng Sun defeng.sun@polyu.edu.hk
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Liping Zhang∗ lipingzhang@tsinghua.edu.cn

Department of Mathematical Sciences

Tsinghua University

Beijing 100084, China

Editor:

Abstract

Unsupervised feature selection has drawn wide attention in the era of big data since it is
a primary technique for dimensionality reduction. However, many existing unsupervised
feature selection models and solution methods were presented for the purpose of application,
and lack of theoretical support, e.g., without convergence analysis. In this paper, we first
establish a novel unsupervised feature selection model based on regularized minimization with
nonnegative orthogonal constraints, which has advantages of embedding feature selection
into the nonnegative spectral clustering and preventing overfitting. An effective inexact
augmented Lagrangian multiplier method is proposed to solve our model, which adopts the
proximal alternating minimization method to solve subproblem at each iteration. We show
that the sequence generated by our method globally converges to a Karush-Kuhn-Tucker
point of our model. Extensive numerical experiments on popular datasets demonstrate
the stability and robustness of our method. Moreover, comparison results of algorithm
performance show that our method outperforms some existing state-of-the-art methods.

Keywords: unsupervised feature selection, orthogonal constraint, augmented Lagrangian
multiplier method, alternating minimization method, Karush-Kuhn-Tucker point

1. Introduction

Due to large amounts of data produced by rapid development of technology, processing
high-dimensional data is one of the most challenging problems in many fields, such as action
recognition (Klaser et al., 2011), image classification (Gui et al., 2014), computational
biology (Chen et al., 2020). Generally, not all the features are equally important for
the data with high-dimensional features. There are some redundant, irrelevant and noisy
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features, which not only increase computational cost and storage burden, but also reduce the
performance of learning tasks. Dimensionality reduction methods can be roughly divided
into two types: feature extraction (Lee and Seung, 1999; Charte et al., 2021; Lian et al., 2018)
and feature selection (Kittler, 1986; Li et al., 2021; Roffo et al., 2020; Yu et al., 2019). They
project the high-dimensional feature space to a low-dimensional space to squeeze features.
The low-dimensional space generated by the former is usually composed of linear or nonlinear
combinations of original features, but irrelevant, redundant and even noisy features are
involved in the process of reducing dimension, which may affect the subsequent learning tasks
to some extent. However, the latter evaluates each dimension feature of high dimensional
data and directly select the optimal feature subset from the original high-dimensional feature
set by using certain criteria to achieve compact and accurate data representation (Liu et al.,
2004; Molina et al., 2002). Compared with the former, the latter has better interpretability.
Feature selection maintains the semantic information of the original features and it aims
to select valuable and discriminative feature subsets from the original high-dimensional
feature set, while feature extraction changes the original meanings of the feature and the
new features usually lose the physical meanings of the original features. Therefore, feature
selection enjoys tremendous popularity in a wide range of applications from data mining to
machine learning. Many feature selection methods (Nie et al., 2016; Hou et al., 2013; Nie
et al., 2019) are proposed to better explore the properties of high-dimensional data.

According to whether the class label information is available or not, feature selection
methods can be roughly grouped into two categories, i.e., supervised feature selection, and
unsupervised feature selection (Dash et al., 1997; He et al., 2005). Benefiting from the sample-
wise annotations, supervised feature selection algorithms, e.g., Fisher score (Duda and Hart,
2001), robust regression (Nie et al., 2010), minimum redundancy maximum relevance (Peng
et al., 2005) and trace radio (Nie et al., 2008), are able to select discriminative features and
achieve superior classification accuracy and reliability. With the fact that the labeled data
is often inadequate or completely unobtainable in many practical applications, traditional
supervised feature selection methods cannot deal with such problems. In addition, annotating
the unlabeled data requires an excessive cost in human resources and is time-consuming.
Therefore, for the high-dimensional data with missing labels, it is an effective means to
solve above mentioned problems by using unsupervised approaches to reduce the feature
dimension. Compared to supervised feature selection, unsupervised feature selection is a
more challenging task since the label information of the training data is unavailable (He
et al., 2005). Many studies have been conducted on unsupervised feature selection methods,
such as spectral analysis (Zhao and Liu, 2007; Cai et al., 2010; Li et al., 2012), matrix
factorization (Wang et al., 2015; Qian and Zhai, 2013), dictionary learning (Zhu et al., 2016)
and so on.

Unsupervised feature selection methods (Nie et al., 2019; Chen et al., 2022) generally select
features according to the intrinsic structural characteristics of data and have achieved pretty
good performance, which can alleviate the undesirable influence of noise and redundant
features in the original data. For example, MaxVar (Krzanowski, 1987) is a statistical
method, which selects features corresponding to the maximum variance. Laplacian Score (He
et al., 2005) is a similarity preserving method, which evaluates the importance of a feature
by its power of locality preservation; SPEC (Zhao and Liu, 2007) selects features using
spectral regression. RSR (Zhu et al., 2015) is a data reconstruction method, which uses
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the l2,1-norm to measure the fitting error and to promote sparsity; CPFS (Masaeli et al.,
2010) relaxes the feature selection problem into a continuous convex optimization problem;
REFS (Li et al., 2017) embeds the reconstruction function learning process to feature
selection. MCFS (Cai et al., 2010) selects features based on spectral analysis and sparse
regression problem, UDFS (Yang et al., 2011a) which selects features by preserving the
structure based on discriminative information; UDPFS (Wang et al., 2020) introduces
fuzziness into sub-space learning to learn a discriminative projection for feature selection;
NDFS (Li et al., 2012) selects features by leveraging a joint framework of nonnegative
spectral analysis and l2,1-norm regularization. However, numerical algorithms proposed in
these unsupervised feature selection methods are often without global convergence analysis
and then lack of theoretical support (Shi et al., 2016). Furthermore, these methods may be
greatly affected by disturbance and do not have good performance, and then they may not
have good stability and strong robustness.

Motivated by this, we establish a novel unsupervised feature selection model based on
regularized minimization with nonnegative orthogonal constraints, which has two advantages
of embedding feature selection into the nonnegative spectral clustering and preventing
overfitting. In our model, the l2,1-regularized term will enable the subproblem from our
proposed algorithm has closed-form optimal solution, and the Frobenius-norm regularization
will explicitly control the overfitting, which is the main difference from NDFS (Li et al.,
2012). And the nonnegative orthogonal constraints can embed feature selection into the
nonnegative spectral clustering. However, it is hard to handle the orthogonal constraints
in general (Absil et al., 2009). Some existing popular solution methods, such as the
multiplicative update method (Ding et al., 2006; Yoo and Choi, 2008) and the greedy
orthogonal pivoting algorithm (Zhang et al., 2019), require the objective function to be
differentiable and have the special formulation. So, they are not applicable to our model. This
prompts us to design an effective solution method for our model. Based on the algorithmic
frameworks of the augmented Lagrangian method (Andreani et al., 2008) and the proximal
alternating minimization (Attouch et al., 2013), we propose an effective inexact augmented
Lagrangian multiplier (ALM) method to solve our model, which uses the proximal alternating
minimization (PAM) method to solve subproblems at each iteration. We show that the
sequence generated by our ALM method globally converges to a Karush-Kuhn-Tucker point
of our model. Numerical experiments on popular datasets demonstrate the stability and
robustness of our method. Moreover, comparison results of algorithm performance show
that our method outperforms some existing state-of-the-art methods.

The main contribution of this paper is summarized as follows:

• We establish a novel l2,1-regularized optimization model with nonnegative orthogonal
constraints for unsupervised feature selection, which has two advantages of embedding
feature selection into the nonnegative spectral clustering and preventing overfitting.
Specifically, we use the spectral clustering technique to learn pseudo class labels, and
then select features which are most discriminative to pseudo class labels.

• We propose an effective inexact ALM method to solve our model. At each iteration,
we use the PAM method to solve subproblems, which has the advantage of making
each subproblem have a closed form solution. This helps us to show that the sequence
generated by our ALM method globally converges to a Karush-Kuhn-Tucker point of
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our model without any further assumption. Numerical results on popular datasets are
reported to show the efficiency, stability and robustness of our method.

The rest of this paper is organized as follows. In Section 2, some preliminaries for nons-
mooth optimization are collected. In Section 3, we establish a novel model for unsupervised
feature selection. In Section 4, an inexact ALM method is proposed to solve our model, and
its convergence analysis is also given. Numerical experiments and concluding remarks are
given in the last two sections.

2. Preliminaries

In this section, we recall some preliminaries on nonsmooth optimization and give some
notations. Throughout this paper, matrices are written as capital letters (e.g., A,B, · · · ) and
vectors are denoted as boldface lowercase letters (e.g., x,y, · · · ). For any positive integer n,
denote [n] = {1, 2, . . . , n}. Given a matrix Y = (Yi,j) ∈ Rn×m, its maximum (elementwise)
norm is denoted by

∥Y ∥∞ := max{|Yi,j | : i ∈ [n], j ∈ [m]}.

The Frobenius norm of Y is denoted by

∥Y ∥F :=

√√√√ n∑
i=1

m∑
j=1

Y 2
i,j ,

and its l2,1-norm is defined as

∥Y ∥2,1 :=
n∑

i=1

√√√√ m∑
j=1

Y 2
i,j =

n∑
i=1

∥Yi∥2,

where Yi is the i-th row of Y and ∥ · ∥2 is Euclidean norm. Let Vec(Y ) be an mn× 1 vector
with Vec(Y ) := [Y ⊺

1 , Y
⊺
2 , · · · , Y

⊺
m]⊺. For any v ∈ Rn, let [v]i denote its ith component, and let

diag(v) ∈ Rn×n denote the diagonal matrix with diagonal entries {[v]i}ni=1. Given a square
matrix Y , Y ≻ 0 denotes that Y is a positive definite matrix and the trace of Y , i.e., the
sum of the diagonal elements of Y , is denoted by Tr(Y ). E is a matrix whose elements are
all 1. O is a matrix whose elements are all 0. O ≤ X ≤ E denotes that each element of X
satisfies 0 ≤ Xi,j ≤ 1. 0 ≤ v ≤ 1 denotes that each element of v satisfies 0 ≤ [v]i ≤ 1. Given
a set Ω, ΠΩY denotes the projection of Y on Ω. For an index sequence K = {k0, k1, k2, . . .}
that satisfies kj+1 > kj for any j ≥ 0, we denote limk∈K xk := limj→∞ xkj . For any set S,
its indicator function is defined by

δS(X) =

{
0, if X ∈ S,

+∞, otherwise.
(1)

Let us recall some definitions of sub-differential calculus (see, e.g., Rockafellar and Wets,
2009).
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Definition 1 Let C ⊆ Rn and x ∈ C. A vector v is normal to C at x in the regular sense,
or a regular normal, written v ∈ N̂C(x), if

⟨v,x− x⟩ ≤ o(∥x− x∥) for x ∈ C.

A vector is normal to C at x in the general sense, written v ∈ NC(x), if there exists sequence
{xk}k ⊂ C, {vk}k such that xk → x and vk → v with vk ∈ N̂C(xk). The cone NC(x) is
called the normal cone to C at x.

Definition 2 Let f :Rn → R ∪ {+∞} be a proper lower semicontinuous function.

1) The domain of f is defined and denoted by dom f :={x ∈ Rn :f(x)< + ∞}.

2) For each x ∈ dom f , the vector x∗ ∈ Rn is said to be a regular subgradient of f at x,
written x∗ ∈ ∂̂f(x), if f(y) ≥ f(x) + ⟨x∗,y− x⟩ + o(∥x− y∥).

3) The vector x∗ ∈ Rn is said to be a (limiting) subgradient of f at x ∈ dom f , written
x∗ ∈ ∂f(x), if there exists {xn}n, {x∗n}n such that xn → x, f(xn) → f(x) and x∗n ∈
∂̂f(xn) with x∗n → x∗.

4) For each x ∈ dom f , x is called (limiting)-critical if 0 ∈ ∂f(x).

Remark 3 (Closedness of ∂f) Let (xk,x
∗
k) ∈ Graph ∂f be a sequence that converges to

(x,x∗). By the definition of ∂f(x), if f(xk) converges to f(x) then (x,x∗) ∈ Graph ∂f .

Remark 4 (Rockafellar and Wets, 2009, Example 6.7) Let S be a closed nonempty subset
of Rn, then

∂δS(x) = NS(x), x ∈ S.

Furthermore, for a smooth mapping G : Rn → Rm, i.e., G(x) := (g1(x), · · · , gm(x))⊺, define

S = G−1(0) ⊂ Rn. Set ∇G(x) := [
∂gj
∂xi

(x)]n,mi,j=1 ∈ Rn×m. If ∇G(x) has full rank m at a point
x ∈ S, with G(x) = 0, then its normal cone to S can be explicitly written as

NS(x) = {∇G(x)y | y ∈ Rm}.

3. A New Unsupervised Feature Selection Model

Let X = [x1,x2, · · · ,xn] ∈ Rd×n be the data matrix with each column xi ∈ Rd×1 being the
i-th data point. Let d and n be the number of features and the number of sample, respectively.
Suppose these n samples are sampled from c classes. Denote F = [f1, · · · , fn]⊺ ∈ {0, 1}n×c,
where fi ∈ {0, 1}c×1 is the cluster indicator vector for xi. That is, the j-th element of fi is
1, if xi is assigned to the j-th cluster, otherwise 0. Following the notation in Yang et al.
(2011b), the scaled cluster indicator matrix Y is defined as

Y = [y1,y2, · · · ,yn]⊺ = F (F ⊺F )−
1
2 ,

where yi is the scaled cluster indicator of xi. It turns out that

Y ⊺Y = (F ⊺F )−
1
2F ⊺F (F ⊺F )−

1
2 = Ic,
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where Ic ∈ Rc×c is an identity matrix.
At first, we use the clustering techniques to learn the scaled cluster indicators of data

points, which can be regarded as pseudo class labels. Given a set of data points x1,x2, · · · ,xn

and some notion of similarity si,j ≥ 0 between all pairs of data points xi and xj , the intuitive
goal of clustering is to divide the data points into several groups such that points in the
same group are similar and points in different groups are dissimilar to each other. Spectral
clustering is widely used in that it can effectively generate the pseudo labels from the graphs.
In our method, we construct a k-nearest neighbors graph and choose the Gaussian kernel as
the weight (see Cai et al., 2005). Specially, we define the affinity graph S as follows:

Si,j =

{
exp(−∥xi−xj∥2

2σ2 ), xi ∈ Nk(xj) or xj ∈ Nk(xi)
0, otherwise,

where Nk(x) is the set of k-nearest neighbors of x. The corresponding degree matrix can
be constructed to D with Dii =

∑
j Si,j , and Laplacian matrix L of the normalized graph

(see Von Luxburg, 2007) is calculated with L = D− 1
2 (D − S)D− 1

2 . Therefore, the local
geometrical structure of data points can be obtained by:

min
Y

Tr(Y ⊺LY ) s.t. Y = F (F ⊺F )−
1
2 . (2)

This is a discrete optimization problem as the entries of the feasible solution are only allowed
to take two particular values, and of course it is a NP-hard problem. A well-known method
is to discard the discreteness condition and relax the problem by allowing the entries of the
matrix Y to take arbitrary real values. Then, the relaxed problem becomes:

min
Y ∈Rn×c

Tr(Y ⊺LY ) s.t. Y ⊺Y = Ic. (3)

The next stage is to construct a sparse transformation W on the data matrix X by
employing the scaled cluster indicator matrix Y , joined with two regularization terms. We
can formulate it as:

min
W∈Rd×c

∥Y −X⊺W∥2,1 + β∥W∥2,1 + γ∥W∥2F , (4)

where W is a linear and low dimensional transformation matrix, and β and γ are the
regularization parameters. In the objection function of the problem (4), the first term
represents the linear transformation model to measure the association between the features
and the pseudo class labels. The second term constructs the sparsity on the rows of the
transformation matrix W , which is beneficial for selecting discriminative features. The third
term is to avoid overfitting.

By integrating the spectral clustering (3) and sparse regression (4) in a joint objective
function, the model we proposed can be obtained as follows:

min
W,Y

Tr(Y ⊺LY ) + α∥Y −X⊺W∥2,1 + β∥W∥2,1 + γ∥W∥2F

s.t. Y ⊺Y = Ic, Y ≥ O,
(5)

where α is a tuning parameter.

6



Unsupervised Feature Selection via NOCRM

4. Algorithm Description of Our Inexact ALM Method

In this section, we develop our inexact augmented Lagrangian method for solving problem
(5), which is a nonconvex optimization with a nonsmooth objective function. By introduc-
ing auxiliary variables U, V, Ŷ , F , the problem (5) can be transformed into the following
equivalent:

min
W,U,V,Y,F,Ŷ

Tr(Y ⊺LY ) + α∥U∥2,1 + β∥V ∥2,1 + γ∥W∥2F + δS1(Ŷ ) + δS2(F )

s.t.


Y = F
U = Y −X⊺W
V = W

Y = Ŷ

(6)

where S1 = { Ŷ | Ŷ ⊺Ŷ = Ic }, S2 = { F | O ≤ F ≤ E }.

Set λ := (λ1, λ2, λ3, λ4) ∈ Rn×c × Rd×c × Rn×c × Rn×c. The augmented Lagrangian
function for (6) is defined by

L(W,U, V, Y, F, Ŷ , λ; ρ) :=Tr(Y ⊺LY ) + α∥U∥2,1 + β∥V ∥2,1 + γ∥W∥2F + δS1(Ŷ )

+ δS2(F ) + ⟨λ1, Y −X⊺W − U⟩ + ⟨λ2, V −W ⟩

+ ⟨λ3, Y − F ⟩ + ⟨λ4, Ŷ − Y ⟩ +
ρ

2
(∥Ŷ − Y ∥2F + ∥V −W∥2F

+ ∥Y − F∥2F + ∥Y −X⊺W − U∥2F ),

(7)

where ρ is a positive penalty parameter.

The ALM method can be used to alternately update the (W,U, V, Y, F, Ŷ ), the multiplier
λ, and the penalty parameter ρ to satisfy the accuracy condition (10). We describe our
inexact ALM method for solving (5) in details as follows.

Remark 5 Set the parameters in Algorithm 1 as follows: τ ∈ [0, 1); ρ1 > 0; r > 1; the
sequence of positive tolerance parameters {ϵk}k∈N is chosen such that limk→+∞ ϵk = 0. The

parameters λ
1
1, λ

1
2, λ

1
3, λ

1
4, λN,min, λN,max are finite-valued matrices satisfying

−∞ < [λN,min]i,j < [λN,max]i,j < +∞ ∀i, j, N = 1, 2, 3, 4.

In Algorithm 1, the most important is how to solve (8-10). That is, given the current
iterate (W k, Uk, V k, Y k, F k, Ŷ k), how to generate the next iterate (W k+1, Uk+1, V k+1,
Y k+1, F k+1, Ŷ k+1) is very critical. We propose a PAM method to solve (8-10) and show
that there exists a solution for (8-10) and such a solution can be efficiently computed as
ϵk ↓ 0, i.e., Step 1 in Algorithm 1 is well defined. We will establish the PAM method and its
convergence in the following two subsections.

4.1 PAM for Augmented Lagrangian Subproblem

In this subsection, we present more details on implementing Algorithm 1 and construct a
PAM method to solve the augmented Lagrangian subproblem with arbitrarily given accuracy.
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Algorithm 1 Inexact ALM Method for (5)

Input. Data matrix X ∈ Rd×n. Given predefined parameters {ϵk}k∈N, ρ1, τ , r, λN,min,

λN,max (N = 1, 2, 3, 4), and λ
1

:= (λ
1
1, λ

1
2, λ

1
3, λ

1
4) that satisfy the condition in Remark 5,

for k = 1, 2, . . . ,
Output. Sort all the d features according to ∥Wi∥2 (i ∈ [d]) and select the top q ranked
features.
Step 1: Compute the subproblem

(W k, Uk, V k, Y k, F k, Ŷ k) ≈ arg min
W,U,V,Y,F,Ŷ

L(W,U, V, Y, F, Ŷ , λ
k
; ρk) (8)

such that
O ≤ F k ≤ E, (Ŷ k)⊺Ŷ k = Ic, (9)

and there exists Θk ∈ ∂L(W k, Uk, V k, Y k, F k, Ŷ k, λ
k
; ρk) satisfying

∥Θk∥∞ ≤ ϵk. (10)

Step 2: Update the multiplier as:

λk+1
1 = λ

k
1 + ρk(Y k −X⊺W k − Uk)

λk+1
2 = λ

k
2 + ρk(V k −W k)

λk+1
3 = λ

k
3 + ρk(Y k − F k)

λk+1
4 = λ

k
4 + ρk(Ŷ k − Y k)

where λ
k+1
N = ΠΩλ

k+1
N and Ω = {λN : λN,min ≤ λN ≤ λN,max}, N = 1, 2, 3, 4.

Step 3: Update the penalty parameter:

ρk+1 =

{
ρk if ∥Rk

i ∥∞ ≤ τ∥Rk−1
i ∥∞ (i = 1, 2, 3, 4)

rρk otherwise,
(11)

where Rk
1 = Y k −X⊺W k − Uk, Rk

2 = V k −W k, Rk
3 = Y k − F k, Rk

4 = Ŷ k − Y k.

It can be seen that the constraint (10) is an ϵk-perturbation of the critical point property

0 ∈ ∂L(W k, Uk, V k, Y k, F k, Ŷ k, λ
k
; ρk). (12)

In fact, the algorithm we proposed to deal with (12) is a regularized proximal six-block
Gauss-Seidel method. At the kth outer iteration, the problem (12) can be solved with
arbitrary accuracy using the following alternating minimizing procedure:

(a) Update W k,j :

W k,j ∈ arg min {L(W,Uk,j−1, V k,j−1, Y k,j−1, F k,j−1, Ŷ k,j−1, λ
k
; ρk)+

Ck,j−1
1

2
∥W−W k,j−1∥2F },

(13)
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(b) Update Uk,j :

Uk,j ∈ arg min {L(W k,j , U, V k,j−1, Y k,j−1, F k,j−1, Ŷ k,j−1, λ
k
; ρk) +

Ck,j−1
2

2
∥U − Uk,j−1∥2F },

(14)

(c) Update V k,j :

V k,j ∈ arg min {L(W k,j , Uk,j , V, Y k,j−1, F k,j−1, Ŷ k,j−1, λ
k
; ρk) +

Ck,j−1
3

2
∥V − V k,j−1∥2F },

(15)

(d) Update Y k,j :

Y k,j ∈ arg min {L(W k,j , Uk,j , V k,j , Y, F k,j−1, Ŷ k,j−1, λ
k
; ρk) +

Ck,j−1
4

2
∥Y − Y k,j−1∥2F }, (16)

(e) Update F k,j :

F k,j ∈ arg min {L(W k,j , Uk,j , V k,j , Y k,j , F, Ŷ k,j−1, λ
k
; ρk) +

Ck,j−1
5

2
∥F − F k,j−1∥2F }, (17)

(f) Update Ŷ k,j :

Ŷ k,j ∈ arg min {L(W k,j , Uk,j , V k,j , Y k,j , F k,j , Ŷ , λ
k
; ρk) +

Ck,j−1
6

2
∥Ŷ − Ŷ k,j−1∥2F }, (18)

where the proximal parameters {Ck,j
i }k,j need to satisfy

0 < C ≤ Ck,j
i < C < ∞, k, j ∈ N, i = 1, 2, 3, 4, 5, 6,

for some predetermined positive constants C and C.
By direct calculation, the subproblems in (13-18) have closed-form solutions as follows:

(a) For (13):

W k,j =

(
1

a
Id −

ρk

a2
X(In +

ρk

a
X⊺X)−1X⊺

)
Z,

where a = 2γ + ρk + Ck,j−1
1 and

Z = Xλ
k
1 + λ

k
2 + ρkXY k,j−1 − ρkXUk,j−1 + ρkV k,j−1 + Ck,j−1

1 W k,j−1.

(b) For (14): Uk,j = (Uk,j
i )i∈[n], where Uk,j

i is the row vector of Uk,j .

Set

N = Y k,j−1 −X⊺W k,j +
λ
k
1

ρk

and denote ni as the i-th row vector of N . Then,

Uk,j
i = max

{
0, 1 − α

∥ρkni + Ck,j−1
2 Uk,j−1

i ∥2

}[
ρk

ρk + Ck,j−1
2

ni +
Ck,j−1
2

ρk + Ck,j−1
2

Uk,j−1
i

]
.

9
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(c) For (15): V k,j = (V k,j
i )i∈[d] , where V k,j

i is the row vector of V k,j .

Set

M = W k,j − λ
k
2

ρk

and its row vector is denoted by mi. Then,

V k,j
i = max

{
0, 1 − β

∥ρkmi + Ck,j−1
3 V k,j−1

i ∥2

}[
ρk

ρk + Ck,j−1
3

mi +
Ck,j−1
3

ρk + Ck,j−1
3

V k,j−1
i

]
.

(d) For (16):

Y k,j = [2L + (3ρk + Ck,j−1
4 )I]−1P,

where

P = λ
k
4 − λ

k
3 − λ

k
1 + ρkX⊺W k,j + ρkUk,j + ρkF k,j−1 + ρkŶ k,j−1 + Ck,j−1

4 Y k,j−1.

(e) For (17):

F k,j = (F k,j
s,t )s∈[n],t∈[c] and F k,j

s,t = Π[0,1]Ast, where

A = (As,t)s∈[n],t∈[c] =
ρk(Y k,j + λ

k
3

ρk
) + Ck,j−1

5 F k,j−1

ρk + Ck,j−1
5

.

(f) For (18):
Ŷ k,j = UIn×cV

⊺, where U ∈ Rn×n, V ∈ Rc×c are two orthogonal matrices and∑
∈ Rn×c is a diagonal matrix satisfying the SVD factorization

ρk(Y k,j − λ
k
4

ρk
) + Ck,j−1

6 Ŷ k,j−1

ρk + Ck,j−1
6

= U
∑

V ⊺.

The iteration is terminated if there exists Θk,j ∈ ∂L(W k,j , Uk,j , V k,j , Y k,j , F k,j , Ŷ k,j , λ
k
; ρk)

satisfying
∥Θk,j∥∞ ≤ ϵk, O ≤ F k,j ≤ E, (Ŷ k,j)⊺Ŷ k,j = Ic,

where Θk,j := (Θk,j
1 ,Θk,j

2 ,Θk,j
3 ,Θk,j

4 ,Θk,j
5 ,Θk,j

6 ) ∈ Rd×c×Rn×c×Rd×c×Rn×c×Rn×c×Rn×c

is concretely expressed in the form

Θk,j
1 :=ρkX(Y k,j−1 − Y k,j) + ρkX(Uk,j − Uk,j−1) + ρk(V k,j−1 − V k,j)

+ Ck,j−1
1 (W k,j−1 −W k,j)

Θk,j
2 :=ρk(Y k,j−1 − Y k,j) + Ck,j−1

2 (Uk,j−1 − Uk,j)

Θk,j
3 :=Ck,j−1

3 (V k,j−1 − V k,j)

Θk,j
4 :=ρk(F k,j−1 − F k,j) + ρk(Ŷ k,j−1 − Ŷ k,j) + Ck,j−1

4 (Y k,j−1 − Y k,j)

Θk,j
5 :=Ck,j−1

5 (F k,j−1 − F k,j)

Θk,j
6 :=Ck,j−1

6 (Ŷ k,j−1 − Ŷ k,j).

(19)

We summarize the algorithmic framework of PAM in Algorithm 2, whose convergence
analysis is established in the next subsection.

10
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Algorithm 2 PAM Method for (8-10)

Input:
Let (W 1,0,U1,0,V 1,0,Y 1,0,F 1,0,Ŷ 1,0) be any initialization;
For k≥2, set (W k,0, Uk,0, V k,0, Y k,0, F k,0, Ŷ k,0) = (W k−1, Uk−1, V k−1, Y k−1, F k−1, Ŷ k−1);

Output: (W k,Uk,V k,Y k,F k,Ŷ k);
Step 1: Reiterate on j until ∥Θk,j∥∞ ≤ ϵk, where Θk,j is defined by (19);

1. Compute W k,j by (13);

2. Compute Uk,j by (14);

3. Compute V k,j by (15);

4. Compute Y k,j by (16);

5. Compute F k,j by (17);

6. Compute Ŷ k,j by (18);

Step 2: Set

(W k, Uk, V k, Y k, F k, Ŷ k) := (W k,j , Uk,j , V k,j , Y k,j , F k,j , Ŷ k,j)

and Θk := Θk.j .

4.2 Convergence Analysis for Algorithm 2

For the sake of notation simplicity, we fix some notations. We define T := (W,U, V, Y, F, Ŷ )

and Lk(T ) := L(W,U, V, Y, F, Ŷ , λ
k
; ρk) for the k-th outer iteration. In this part, we will

establish the global convergence for Algorithm 2, in other words, we can derive that the
solution set of (8-10) is nonempty and hence Algorithm 1 is well defined with using Algorithm
2 to solve the subproblem in Step 1.

We first claim that Θk,j := (Θk,j
1 ,Θk,j

2 ,Θk,j
3 ,Θk,j

4 ,Θk,j
5 ,Θk,j

6 ) defined by (19) must satisfy

Θk,j ∈ ∂Lk(T k,j) ∀ j ∈ N.

for each k ∈ N.
Considering the structure of Lk(T ), it can be split as

Lk(T ) = f1(W ) + f2(Y ) + f3(U) + f4(V ) + f5(F ) + f6(Ŷ ) + gk(T ), (20)

where

f1(W ) :=γ∥W∥2F ; f2(Y ) := Tr(Y ⊺LY ); f3(U) := α∥U∥2,1;

f4(V ) :=β∥V ∥2,1; f5(F ) := δS2(F ); f6(Ŷ ) := δS1(Ŷ );

gk(T ) :=⟨λk
1, Y −X⊺W − U⟩ + ⟨λk

2, V −W ⟩ + ⟨λk
3, Y − F ⟩ + ⟨λk

4, Ŷ − Y ⟩

+
ρk

2

(
∥Y −X⊺W − U∥2F + ∥Ŷ − Y ∥2F + ∥V −W∥2F + ∥Y − F∥2F

)
.

11
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Then, a direct calculation shows that Θk,j := (Θk,j
1 ,Θk,j

2 ,Θk,j
3 ,Θk,j

4 ,Θk,j
5 ,Θk,j

6 ) defined by
(19) can be expressed in terms of partial derivatives of g := gk as

Θk,j
1 = −∇W g(W k,j , Uk,j−1, V k,j−1, Y k,j−1, F k,j−1, Ŷ k,j−1) − Ck,j−1

1 (W k,j −W k,j−1) + ∇W g(T k,j),

Θk,j
2 = −∇Ug(W k,j , Uk,j , V k,j−1, Y k,j−1, F k,j−1, Ŷ k,j−1) − Ck,j−1

2 (Uk,j − Uk,j−1) + ∇Ug(T k,j),

Θk,j
3 = −∇V g(W k,j , Uk,j , V k,j , Y k,j−1, F k,j−1, Ŷ k,j−1) − Ck,j−1

3 (V k,j − V k,j−1) + ∇V g(T k,j),

Θk,j
4 = −∇Y g(W k,j , Uk,j , V k,j , Y k,j , F k,j−1, Ŷ k,j−1) − Ck,j−1

4 (Y k,j − Y k,j−1) + ∇Y g(T k,j),

Θk,j
5 = −∇F g(W k,j , Uk,j , V k,j , Y k,j , F k,j , Ŷ k,j−1) − Ck,j−1

5 (F k,j − F k,j−1) + ∇F g(T k,j),

Θk,j
6 = −∇Ŷ g(W k,j , Uk,j , V k,j , Y k,j , F k,j , Ŷ k,j) − Ck,j−1

6 (Ŷ k,j − Ŷ k,j−1) + ∇Ŷ g(T k,j).
(21)

Moreover, given (W k,j−1, Uk,j−1, V k,j−1, Y k,j−1, F k,j−1, Ŷ k,j−1), using 8.8(c) in Rockafellar and
Wets (2009), the necessary first-order optimality conditions for the subproblem (13-18) are
the following system:

∇W g(W k,j , Uk,j−1, V k,j−1, Y k,j−1, F k,j−1, Ŷ k,j−1) + ∇f1(W k,j) + Ck,j−1
1 (W k,j −W k,j−1) = O,

ξk,j + ∇Ug(W k,j , Uk,j , V k,j−1, Y k,j−1, F k,j−1, Ŷ k,j−1) + Ck,j−1
2 (Uk,j − Uk,j−1) = O,

ζk,j + ∇V g(W k,j , Uk,j , V k,j , Y k,j−1, F k,j−1, Ŷ k,j−1) + Ck,j−1
3 (V k,j − V k,j−1) = O,

∇f2(Y k,j) + ∇Y g(W k,j , Uk,j , V k,j , Y k,j , F k,j−1, Ŷ k,j−1) + Ck,j−1
4 (Y k,j − Y k,j−1) = O,

ϑk,j + ∇F g(W k,j , Uk,j , V k,j , Y k,j , F k,j , Ŷ k,j−1) + Ck,j−1
5 (F k,j − F k,j−1) = O,

ςk,j + ∇Ŷ g(W k,j , Uk,j , V k,j , Y k,j , F k,j , Ŷ k,j) + Ck,j−1
6 (Ŷ k,j − Ŷ k,j−1) = O,

(22)

where ξk,j ∈ ∂f3(Uk,j), ζk,j ∈ ∂f4(V k,j), ϑk,j ∈ ∂f5(F k,j), and ςk,j ∈ ∂f6(Ŷ k,j). Combining
(21) with (22), we have 

Θk,j
1 = ∇f1(W

k,j) + ∇W g(T k,j),

Θk,j
2 = ξk,j + ∇Ug(T k,j),

Θk,j
3 = ζk,j + ∇V g(T k,j),

Θk,j
4 = ∇f2(Y

k,j) + ∇Y g(T k,j),

Θk,j
5 = ϑk,j + ∇F g(T k,j),

Θk,j
6 = ςk,j + ∇

Ŷ
g(T k,j).

By Proposition 2.1 in Attouch et al. (2010), for each k ∈ N, we get

Θk,j ∈ ∂Lk(W k,j , Uk,j , V k,j , Y k,j , F k,j , Ŷ k,j), ∀ j ∈ N.

Thus, we can obtain the following theorem which shows that Algorithm 2 converges,
which means the Step 1 of Algorithm 1 is well defined. The proof is based on a general
result established in Attouch et al. (2013, Theorem 6.2).

Theorem 6 Set parameters r > 1, ρ1 > 0 in Algorithm 1. For each k ∈ N, we have the
sequence {T k,j}j∈N produced by Algorithm 2 converges and

∥Θk,j∥∞ → 0 as j → ∞.

12



Unsupervised Feature Selection via NOCRM

Proof We know that S1 and S2 are semi-algebraic sets and their indicator functions are semi-
algebraic (Bolte et al., 2014). The quadratic functions x⊺Lx and ∥x∥p(p is rational) are also
semi-algebraic. Using the fact that composition of semi-algebraic functions is semi-algebraic,
we derive that Lk is a semi-algebraic function. Also known is that the semi-algebraic function
is a Kurdyka-Lojasiewicz (KL) function (Bolte et al., 2014, Appendic). Thus, Lk is a KL
function. From the expression (20) of Lk, it can be seen that the function Lk satisfies: (i)fi
is a proper lower semicontinuous function, i = 1, 2, 3, 4, 5, 6; (ii) gk is a C1-function with
locally Lipschitz continuous gradient.

Next, we will verify that for each k ∈ N, Lk is bounded below and the sequence {T k,j}j∈N
is bounded. For each k ∈ N, the lower boundness of Lk is proved by showing that Lk is
a coercive function (i.e., Lk(T ) → +∞ when ∥T∥∞ → ∞), provided that the parameters
r > 1, ρ1 > 0. Clearly, the five terms f1, f3, f4, f5, f6 of Lk in (20) are coercive. Then the
residual terms are

f2(Y ) + gk(W,U, V, Y, F, Ŷ ) =Tr(Y ⊺LY ) + ⟨λk
1, Y −X⊺W − U⟩ + ⟨λk

2, V −W ⟩ + ⟨λk
3, Y − F ⟩

+ ⟨λk
4, Ŷ − Y ⟩ +

ρk

2

(
∥Ŷ − Y ∥2F + ∥V −W∥2F + ∥Y − F∥2F

+ ∥Y −X⊺W − U∥2F
)
.

We can rewrite it as

f2(Y ) + gk(W,U, V, Y, F, Ŷ ) = g1,k(W,U, Y ) + g2,k(W,V, Y, F, Ŷ ),

where

g1,k(W,U, Y ) =Tr(Y ⊺LY ) + ⟨λk
1, Y −X⊺W − U⟩ +

ρk

2
∥Y −X⊺W − U∥2F

and

g2,k(W,V, Y, F, Ŷ ) =⟨λk
2, V −W ⟩ + ⟨λk

3, Y − F ⟩ + ⟨λk
4, Ŷ − Y ⟩ +

ρk

2
(∥Ŷ − Y ∥2F + ∥V −W∥2F

+ ∥Y − F∥2F ).

Let us observe that

g1,k(W,U, Y ) =Tr(Y ⊺LY ) +
ρk

2
∥Y −X⊺W − U +

λ
k
1

ρk
∥2F − ρk

2
∥λ

k
1

ρk
∥2F

and

g2,k(W,V, Y, F, Ŷ ) =
ρk

2

[
∥V −W +

λ
k
2

ρk
∥2F + ∥Y − F +

λ
k
3

ρk
∥2F + ∥Ŷ − Y +

λ
k
4

ρk
∥2F − (∥λ

k
2

ρk
∥2F

+ ∥λ
k
3

ρk
∥2F + ∥λ

k
4

ρk
∥2F )

]
.

Thus, g1,k(W,U, Y ) and g2,k(W,V, Y, F, Ŷ ) are all bounded below. Furthermore, the functions
{Lk}k ∈ N defined by (20) are all coercive.

13
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The boundedness of the sequence {T k,j}j∈N is proved by contradiction. On the one hand,
suppose that the sequence {T k0,j}j∈N is unbounded, and so limj→∞ ∥T k0,j∥ = ∞. Then,
it follows from the coercive of Lk0(T ) that the sequence {Lk0(T k0,j)}j∈N should diverge to
infinity. On the other hand, let

L̃1
k0,j =Lk0(W k0,j+1, Uk0,j , V k0,j , Y k0,j , F k0,j , Ŷ k0,j),

L̃2
k0,j =Lk0(W k0,j+1, Uk0,j+1, V k0,j , Y k0,j , F k0,j , Ŷ k0,j),

L̃3
k0,j =Lk0(W k0,j+1, Uk0,j+1, V k0,j+1, Y k0,j , F k0,j , Ŷ k0,j),

L̃4
k0,j =Lk0(W k0,j+1, Uk0,j+1, V k0,j+1, Y k0,j+1, F k0,j , Ŷ k0,j),

L̃5
k0,j =Lk0(W k0,j+1, Uk0,j+1, V k0,j+1, Y k0,j+1, F k0,j+1, Ŷ k0,j).

By (13-18), we deduce that

L̃1
k0,j +

Ck0,j
1

2
∥W k0,j+1 −W k0,j∥2F ≤ Lk0(T k0,j);

L̃2
k0,j +

Ck0,j
2

2
∥Uk0,j+1 − Uk0,j∥2F ≤ L̃1

k0,j ;

L̃3
k0,j +

Ck0,j
3

2
∥V k0,j+1 − V k0,j∥2F ≤ L̃2

k0,j ;

L̃4
k0,j +

Ck0,j
4

2
∥Y k0,j+1 − Y k0,j∥2F ≤ L̃3

k0,j ;

L̃5
k0,j +

Ck0,j
5

2
∥F k0,j+1 − F k0,j∥2F ≤ L̃4

k0,j ;

Lk0(T k0,j+1) +
Ck0,j
6

2
∥Ŷ k0,j+1 − Ŷ k0,j∥2F ≤ L̃5

k0,j .

Summing up these inequalities, we have

Lk0(T k0,j+1) +
C

2
∥T k0,j+1 − T k0,j∥2F ≤ Lk0(T k0,j), j ∈ N,

which implies that {Lk0(T k0,j)}j∈N is a nonincreasing sequence, leading to a contradiction.
Based on a general result established in Attouch et al. (2013, Theorem 6.2), we know that

for each k ∈ N, the sequence {T k,j}j∈N has finite length, i.e.,
∑∞

j=1 ∥T k,j+1 − T k,j∥F < ∞,

and the sequence {T k,j}j∈N converges to a critical point of Lk. Since Θk,j is given by (19),
we conclude that for each k ∈ N, ∥Θk,j∥∞ → 0 as j → ∞. The proof is complete.

5. Convergence Analysis of Our Inexact ALM Method

In this section, we discuss the convergence for our inexact ALM method given in Algorithm
1.

In the following, we rewrite (6) using the notation of vectors. Let x ∈ R2dc+4nc denote
the column vector formed by concatenating the columns of W,U, V, Y, F, Ŷ , i.e.,

x := Vec([W |U |V |Y |F |Ŷ ]). (23)

14
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Then, problem (6) can be rewritten as follows:

min
x∈R2dc+4nc

f(x) s.t. h1(x) = 0 and h2(x) = 0, (24)

where h1(x) ∈ R3nc+dc denotes Vec([Y −X⊺W − U |V −W |Y − F |Ŷ − Y ]), h2(x) denotes

the c(c+1)
2 × 1 vector obtained by vectorizing only the lower triangular part of the symmetric

matrix Ŷ ⊺Ŷ − Ic, and

f(x) :=
c∑

j=1

Y ⊺
j LYj + γ∥Wj∥22 + δS′(Fj) +

n∑
i=1

α∥Ui∥2 +
d∑

i=1

β∥Vi∥2.

In this case, Yj ,Wj , Fj are the column vectors of Y,W and F , respectively; Ui and
Vi are the row vectors of U and V , respectively; S′ = {Fj | 0 ≤ Fj ≤ 1}. Let Λ :=
Vec([λ1|λ2|λ3|λ4]). Then, the corresponding augmented Lagrangian function of (24) is

L(x,Λ; ρ) := f(x) +

m1∑
i=1

[Λ]i[h1(x)]i +
ρ

2

m1∑
i=1

[h1(x)]2i ,

where x ∈ Γ, m1 := 3nc + dc, m2 := c(c+1)
2 and

Γ := {x | h2(x) = 0}. (25)

Therefore, (W ∗, U∗, V ∗, Y ∗, F ∗, Ŷ ∗) is a KKT point for optimization problem (6) if and only
if the vector x defined by (23) is a KKT point for optimization problem (24), i.e., there exist
θ∗ ∈ ∂f(x∗), Λ∗ ∈ Rm1 , η∗ ∈ Rm2 such that the following system is fulfilled

θ∗ +
∑m1

i=1[Λ
∗]i∇[h1(x

∗)]i +
∑m2

i=1[η
∗]i∇[h2(x

∗)]i = 0,
h1(x

∗) = 0,
h2(x

∗) = 0.
(26)

Suppose that {T k}k∈N is a sequence generated by Algorithm 1. We will show first that
the sequence {T k}k∈N is bounded. Then, there exists at least one convergent subsequence of
{T k}k∈N. We will next show that it converges to a KKT point of the optimization problem
(24). Thus, we have the following main convergence result for Algorithm 1.

Theorem 7 Suppose that the parameters r > 1 and ρ1 > 0 in Algorithm 1. Let {T k}k∈N be
the sequence generated by Algorithm 1. Then, the limit point set of {T k}k∈N is nonempty,
and every limit point is a KKT point of the original problem (6).

To show Theorem 7, we need the following two lemmas.

Lemma 8 Let {T k}k∈N be the sequence generated by Algorithm 1. Suppose that the param-
eters r, ρ1 in Algorithm 1 are chosen so that r > 1 and ρ1 > 0. Then, {T k}k∈N is bounded
and thus contains at least one convergent sequence.
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Proof It follows from (9) that the sequence {F k}k∈N and {Ŷ k}k∈N are bounded. The first
four partial subdifferentials of L in (10) guarantee the following: there exist ξk ∈ ∂α∥U∥2,1,
ζk ∈ ∂β∥V ∥2,1 and ℵk = (ℵk

1,ℵk
2,ℵk

3,ℵk
4) ∈ Rd×c × Rn×c × Rd×c × Rn×c such that

ℵk
1 =2γW k −Xλ

k
1 − λ

k
2 − ρkX(Y k −X⊺W k − Uk) − ρk(V k −W k),

ℵk
2 =ξk − λ

k
1 − ρk(Y k −X⊺W k − Uk),

ℵk
3 =ζk + λ

k
2 + ρk(V k −W k),

ℵk
4 =2LY k + λ

k
1 + λ

k
3 − λ

k
4 + ρk(Y k −X⊺W k − Uk) + ρk(Y k − F k) − ρk(Ŷ k − Y k),

(27)

where ∥ℵk∥∞ ≤ ϵk. By adding ℵk
2 and ℵk

4, we obtain that

ℵk
2 + ℵk

4 = ξk + (2L + 2ρkI)Y k + λ
k
3 − λ

k
4 − ρkF k − ρkŶ k.

This implies

Y k = [2(L + ρkI)]−1(ℵk
2 + ℵk

4 − ξk − λ
k
3 + λ

k
4 + ρkF k + ρkŶ k). (28)

Let L = Ddiag(σ1, · · · , σn)D⊺ denotes the SVD decomposition of the symmetric and positive
semi-definite matrix L. Hence (28) yields

Y k =Ddiag

(
1

2(σ1 + ρk)
,

1

2(σ2 + ρk)
, · · · , 1

2(σn + ρk)

)
D⊺(ℵk

2 + ℵk
4 − ξk − λ

k
3 + λ

k
4)

+ Ddiag

(
ρk

2(σ1 + ρk)
,

ρk

2(σ2 + ρk)
, · · · , ρk

2(σn + ρk)

)
D⊺(F k + Ŷ k).

(29)

Using the fact {ρk}k∈N is a nondecreasing sequence and 2(L + ρ1I) ≻ 0, for k ∈ N, we have
2(L + ρkI) ≻ 0, which derives 2(σi + ρk) > 0, i = 1, 2, · · · , n. Then, we can show that for
each k ∈ N {

0 < 1
2(σi+ρk)

≤ 1
2(σi+ρ1)

< +∞, i = 1, 2, · · · , n;

0 < ρk

2(σi+ρk)
≤ 1

2 , i = 1, 2, · · · , n.
(30)

Note that {ξk}k∈N, {ℵk
2}k∈N, {ℵk

4}k∈N, {λk
3}k∈N and {λk

4}k∈N are bounded. It follows from
(29) and (30) that the sequence {Y k}k∈N is bounded.

Likewise, according to the expression of ℵk
3 and ℵk

2 in (27), we conclude that {ρk(V k −
W k)}k∈N and {ρk(Y k − X⊺W k − Uk)}k∈N are bounded. Then, from the expression of
ℵk
1 in (27), we must have that the sequence {W k}k∈N is bounded. Using the fact that

ρk ≥ ρ1 again, we obtain that {V k − W k}k∈N and {Y k − X⊺W k − Uk}k∈N are bounded.
Therefore, the sequence {V k}k∈N and {Uk}k∈N are bounded. In a conclusion, the sequence
{(W k, Uk, V k, Y k, F k, Ŷ k)}k∈N is bounded. The proof is complete.

Lemma 9 Suppose that x̄ ∈ Γ. Then {∇[h1(x̄)]i}m1
i=1 ∪ {∇[h2(x̄)]i}m2

i=1 are linearly indepen-
dent, where h1 and h2 are defined as in (24).
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G(x) =



2Ŷ1 Ŷ2 Ŷ3 · · · Ŷc On×1 On×1 · · · On×1 On×1 On×1 On×1

On×1 Ŷ1 On×1 · · · On×1 2Ŷ2 Ŷ3 · · · Ŷc

..

.
..
.

..

.

On×1 On×1 Ŷ1 · · · On×1 On×1 Ŷ2 · · · On×1 · · · On×1 On×1

...
...

...
. . .

. . . On×1

...
. . .

. . .
... 2Ŷc−1 Ŷc On×1

On×1 On×1 · · · On×1 Ŷ1 On×1 · · · On×1 Ŷ2 On×1 Ŷc−1 2Ŷc


(31)

Proof For convenience, we define the block diagonal matrix A ∈ Rdc×nc, B ∈ Rdc×dc and
C ∈ Rnc×nc as follows:

A =


−X

−X
. . .

−X

 , B =


Id

Id
. . .

Id

 , C =


In

In
. . .

In

 .

By the structure of x defined in (23), we have

∇h1(x) =



A −B Odc×nc Odc×nc

−C Onc×dc Onc×nc Onc×nc

Odc×nc B Odc×nc Odc×nc

C Onc×dc C −C

Onc×nc Onc×dc −C Onc×nc

Onc×nc Onc×dc Onc×nc C

 and ∇h2(x) =



Odc×m2

Onc×m2

Odc×m2

Onc×m2

Onc×m2

G(x)

 ,

where G(x) is given in (31) and {Ŷi}ci=1 are the cloumn vectors of Ŷ .

As x ∈ Γ, we must have that the column vectors {Ŷi}ci=1 are orthogonal to each other,
and then the columns of G(x) are orthogonal to each other. Note that the first 3nc + 2dc
rows of ∇h2(x) constitute a zero matrix. Therefore, it follows from the structure of ∇h1(x)
and ∇h2(x) that {∇[h1(x̄)]i}m1

i=1 ∪ {∇[h2(x̄)]i}m2
i=1 are linearly independent for any x ∈ Γ.

The proof is complete.

By Lemmas 8 and 9, we can show that any accumulation point x∗ of the corresponding
sequence {xk}k∈N with respect to {T k}k∈N is a KKT point of problem (24). As shown in
Remark 4, the normal cone ∂δS1(T ) = NS1(T ) in vector notation is

NΓ(x̄) = {∇h2(x̄)υ|υ ∈ Rm2} = {
m2∑
i=1

[υ]i∇[h2(x̄)]i|υ ∈ Rm2}.

According to the well-definedness of (10), in view of the vector notation, we can obtain a
solution xk such that there exist two vectors θk ∈ ∂f(xk) and υk to satisfy

∥θk +

m1∑
i=1

([Λ
k
]i + ρk[h1(x

k)]i)∇[h1(x
k)]i +

m2∑
i=1

[υk]i∇[h2(x
k)]i∥∞ ≤ ϵk

for each k ∈ N. The following result is central to this paper.
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Theorem 10 Let {xk}k∈N be the iteration sequence generated by Algorithm 1 and x∗ be its
accumulation point, i.e., there exists a subsequence K ⊆ N such that limk∈K xk = x∗. Then
x∗ is also a KKT point of problem (24).

Proof We first show that x∗ satisfies the feasibility of problem (24), i.e., h1(x
∗) = 0 and

h2(x
∗) = 0. By (9), we conclude that h2(x

k) = 0 for each k ∈ N. The continuity of h2
yields h2(x

∗) = 0, i.e., x∗ ∈ Γ. The proof of feasibility h1(x
∗) = 0 is divided into two parts,

according to the boundedness of the sequence {ρk}k∈N.
Part I. Suppose first that the penalty sequence {ρk}k∈N is bounded. By the penalty

parameter update rule (11), it follows that ρk stabilizes after some k0, which implies that
∥h1(xk+1)∥∞ ≤ τ∥h1(xk)∥∞ for all k ≥ k0 and the constant τ ∈ [0, 1). By a standard
continuity argument, we obtain that h1(x

∗) = 0.
Part II. In the following, we assume that {ρk}k∈N is unbounded. For each k ∈ K, there

exist vectors {δk}k∈N with ∥δk∥∞ ≤ ϵk and ϵk ↓ 0 such that

θk +

m1∑
i=1

([Λ
k
]i + ρk[h1(x

k)]i)∇[h1(x
k)]i +

m2∑
i=1

[υk]i∇[h2(x
k)]i = δk (32)

for some θk ∈ ∂f(xk). Dividing both sides of (32) by ρk, we obtain that

m1∑
i=1

([
Λ
k

ρk
]i + [h1(x

k)]i)∇[h1(x
k)]i +

m2∑
i=1

[υ̂k]i∇[h2(x
k)]i =

δk − θk

ρk
, (33)

where υ̂k = υk

ρk
. Define

H(x)⊺ := [∇h1(x) ∇h2(x)]

and

ηk := ([
Λ
k

ρk
]1 + [h1(x

k)]1, · · · , [
Λ
k

ρk
]m1 + [h1(x

k)]m1 , [υ̂
k]1, · · · , [υ̂k]m2)⊺.

Hence we can rewrite (33) in the following way:

H(x)⊺ηk =
δk − θk

ρk
.

A straightforward application of Lemma 9 yields that {∇[h1(x
∗)]i}m1

i=1 ∪ {∇[h2(x
∗)]i}m2

i=1

are independent as x∗ ∈ Γ. In addition, we notice that the gradient vectors ∇h1,∇h2 are
continuous and h2(x

k) = 0 for all k ∈ K. This means that H(xk) → H(x∗) and H(x∗) has
full rank as x∗ ∈ Γ. Therefore, we have that H(xk)H(xk)⊺ → H(x∗)H(x∗)⊺ ≻ 0. By the
fact that eigenvalues of a symmetric matrix vary continuously with its matrix values. We
then conclude that H(xk)H(xk)⊺ is nonsingular for sufficiently large k ∈ K, which yields

ηk = [H(xk)H(xk)⊺]−1H(xk)
δk − θk

ρk
.

Since f is a convex function, the set ∪x∈X∂f(x) is bounded whenever X is bounded. A
nice proof of this result can be found in Bertsekas (1999, Proposition B.24(b)). It is
then straightforward to see that {θk}k∈K is bounded by setting X = {xk}k∈K, where the
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boundedness of {xk}k∈K is motivated by Proposition 8. Combining the previous result
∥δk∥∞ ≤ ϵk ↓ 0, we obtain for k ∈ K

ηk → 0 as k → ∞.

Finally, with the boundedness of Lagrange multipliers {λk}k, [h1(x
∗)]i = 0 = [υ̂]j is

guaranteed for all i, j. Hence we conclude that h1(x
∗) = 0.

Next, we show that x∗ is a KKT point. The boundedness of {θk}k∈K implies that there
exists a subsequence K1 ⊆ K such that limk∈K1 θ

k = θ∗. Together with limk∈K1 x
k = x∗ and

θk ∈ ∂f(xk), it can be follows from the closedness property of subdifferential that

θ∗ ∈ ∂f(x∗).

By the fact that [λk+1]i = [Λ
k
]i + ρk[h1(x

k)]i for all i, we have that for k ∈ K1

θk +

m1∑
i=1

[λk+1]i∇[h1(x
k)]i +

m2∑
i=1

[υk]i∇[h2(x
k)]i = δk (34)

for some vector δk with ∥δk∥∞ ≤ ϵk ↓ 0 and θk ∈ ∂f(xk). Define

πk := ([λk+1]1, · · · , [λk+1]m1 , [υ
k]1, · · · , [υk]m2)⊺. (35)

We then deduce from (34)

H(xk)⊺πk = δk − θk.

Likewise, the matrix H(xk)H(xk)⊺ is nonsingular for sufficiently large k ∈ K1, and

πk = [H(xk)H(xk)⊺]−1H(xk)(δk − θk).

Taking limitations within K1 on both sides of the expression above for πk, we have then

πk → π∗ = −[H(x∗)H(x∗)⊺]−1H(x∗)θ∗.

Taking limitations for k ∈ K1 again on both sides of (34), it follows from (35) that

θ∗ +

m1∑
i=1

[Λ∗]i∇[h1(x
∗)]i +

m2∑
i=1

[υ∗]i∇[h2(x
∗)]i = 0,

where Λ∗ and υ∗ are guaranteed by π∗. Therefore, x∗ is a KKT point of problem (24).

By Theorem 10 and (23), we can immediately obtain Theorem 7. Our numerical
experiments in the next section testify that Algorithm 1 works well and can output KKT
point of the original problem (6).
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6. Experiment Study

In this section, we conduct numerical experiments to show effectiveness of Algorithm 1 by
using MATLAB (2020a) on a laptop of 16G of memory and Inter Core i7 2.3Ghz CPU against
several state-of-the-art unsupervised feature selection methods on six real-world datasets,
including one speech signal dataset (Isolet∗), two face image datasets (ORL∗,COIL20∗), three
microarray datasets (lung∗, TOX-171∗, 9 Tumors†). Table 1 summarizes the details of these
6 benchmark datasets used in the experiments. In addition to verifying the effectiveness of
our method on the above datasets, we also show the stability analysis, robustness analysis
and parameter sensitivity analysis on some datasets.

Table 1: Dataset Description

Dataset Size # of Features # of Classes

lung 203 3312 5
TOX-171 171 5748 4
9 Tumors 60 5726 9

Isolet 1560 617 26
ORL 400 1024 40

COIL20 1440 1024 20

Methods to Compare. We compare the performance of Algorithm 1 with the following
state-of-the-art unsupervised feature selection methods:

• Baseline: All of the original features are adopted.

• MaxVar (Krzanowski, 1987): Features corresponding to the maximum variance are
selected to obtain the expressive features.

• LS (He et al., 2005): Laplacian Score, in which features are selected with the most
consistency with Gaussian Laplacian matrix.

• SPEC (Zhao and Liu, 2007): According to spectrum of the graph to select features.

• MCFS (Cai et al., 2010): Multi-cluster feature selection, it uses the l1-norm to
regularize the feature selection process as a spectral information regression problem.

• NDFS (Li et al., 2012):Non-negative discriminative feature selection, which addressed
feature discriminability and correlation simultaneously.

• UDFS (Yang et al., 2011a):Unsupervised discriminative feature selection incorporated
discriminative analysis as well as l2,1-norm minimization, which is formalized as a
unified framework.

∗. https://jundongl.github.io/scikit-feature/datasets.html
†. https://github.com/primekangkang/Genedata
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• UDPFS (Wang et al., 2020): Unsupervised discriminative projection for feature
selection to select discriminative features by conducting fuzziness learning and sparse
learning simultaneously.

Evaluation Measures. Similar to previous work, and basing on the attained clustering
results and the ground truth information, we evaluate the performance of the unsupervised
feature selection methods by two widely utilized evaluation metrics, i.e., clustering ACCuracy
(ACC) and Normalized Mutual Information (NMI) (Yang et al., 2011a). The higher the
ACC and NMI are, the better the clustering performance is.

Given one sample xi ∈ {xi}ni=1, denote yi be the ground truth label and li be the
predicted clustering label. The ACC is defined as

ACC =
1

n

n∑
i=1

δ(yi,map(li)),

where δ(a, b) = 1 if a = b; otherwise δ(a, b) = 0, and map(li) is the permutation mapping
function that maps each cluster label li to the equivalent label from the data set.

Given two random variables P and Q, P denotes the true labels and Q represents
clustering results. The NMI of P and Q is defined as:

NMI(P,Q) =
I(P ;Q)√
H(P )H(Q)

,

where I(P ;Q) is the mutual information between P and Q, H(P ) and H(Q) are the entropies
of P and Q, respectively.

Experiment Setting. In our experiments, the parameters of Algorithm 1 are set as
follows:

τ = 0.99, r = 1.01, ρ1 = c/2, λ
1
1 = λ

1
3 = λ

1
4 = On×c, λ

1
2 = Od×c,

and

λN,min = −100E, λN,max = 100E (N = 1, 2, 3, 4), ϵk = 0.995k (k ∈ N).

The parameters in Algorithm 2 are set as C = Ck,j
i = C = 0.5. The iteration is terminated

if the iteration number exceeds 20.

In the compared methods, there are some hyper-parameters to be set in advance. We
fix number of neighboring parameter k = 5 for LS, SPEC, MCFS, UDFS, NDFS, and
our proposed method. In order to make fair comparison of different unsupervised feature
selection methods, we tuned the parameters for all methods by a grid-search strategy
from {10−6, 10−5, 10−4, · · · , 104, 105, 106}, and the best clustering results from the optimal
parameters are reported for all the algorithms. Because the optimal number of selected
features is unknown, we set different number of selected features for all datasets, the selected
feature number was tuned from {50, 100, 150, 200, 250, 300}. After completing the feature
selection process, we use K-means algorithm to cluster the data into c groups. Since the
initial center points have great impact on the performance of K-means algorithm, we conduct
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K-means algorithm 20 times repeatedly with random initialization to report the mean and
standard deviation values of ACC and NMI.

In the next subsections, we will illustrate the algorithmic performance, stability, robust-
ness and parameter sensitivity, respectively.

6.1 Algorithmic Performance

The experiments results of different methods on the datasets are summarized in Tables 2
and 3. The best results are highlighted in bold fonts.

In view of the averaging of all numerical results, it can be seen that the performance of
our method is superior to other state-of-the-art methods. Its good performance is mainly
attributed to the following aspects: Firstly, we adopt the technology similar to NDFS to
establish the model, i.e., learning the pseudo class label indicators and the feature selection
matrix simultaneously. However, the difference is that we use l2,1-norm to characterize
the linear loss function between features and pseudo labels and also take into account the
prevention of overfitting. Secondly, different from the commonly used processing methods,
we apply a convergent algorithm that can simultaneously optimize all variables in the feature
selection model. In the previous section, we have proven the convergence property of our
algorithm. Since the iterative sequence of our algorithm converges to KKT points, it achieves
better results than other methods.

Table 2: Clustering results (ACC±STD%) of different feature selection algorithms on six
real-world datasets. The best results are highlighted in bold.

Dataset All features LS Maxvar MCFS NDFS SPEC UDFS UDPFS Ours

lung 65.0±3.6 74.9±0.2 68.0±9.4 77.6±11.0 63.3±6.9 64.1±7.9 72.3±10.9 69.6±7.7 82.4±7.9

ORL 49.7±3.2 49.9±2.4 50.8±1.4 55.7±3.7 50.5±3.0 51.4± 2.2 53.3±4.1 53.1±3.8 52.9±3.4

Isolet 60.9±2.1 58.7±1.5 56.9±2.3 64.5±4.3 61.6±4.4 56.5±3.0 57.8± 3.1 58.3±2.9 65.8±3.9

COIL20 62.7±3.1 62.2±1.9 61.4±1.6 63.0±3.7 58.7± 4.1 65.5±3.8 60.2±4.2 58.2 ±4.6 61.6±3.8

TOX-171 42.8±2.1 43.1±1.4 42.9±1.6 42.9±1.6 43.4±3.3 40.4±0.0 48.2±2.1 54.0± 3.2 49.2±4.1

9 Tumors 40.8±3.7 42.3±2.6 41.2±2.6 42.4±3.6 44.0±3.7 35.8±2.4 43.0± 4.3 44.2±4.3 44.1±4.1

Mean 53.7±3.0 55.2±1.7 53.5±3.2 57.7±4.7 53.6±4.2 52.3±3.2 55.8±4.8 56.2±4.4 59.3±4.5

Table 3: Clustering results (NMI±STD%) of different feature selection algorithms on six
real-world datasets. The best results are highlighted in bold.

Dataset All features LS Maxvar MCFS NDFS SPEC UDFS UDPFS Ours

lung 51.6±1.9 53.1± 0.5 57.8± 3.9 67.5±7.0 53.0±3.5 52.5± 5.6 61.3±5.8 59.0±4.0 69.0±4.4

ORL 70.0±1.7 71.1± 1.3 70.7± 2.1 76.8±1.8 73.2±1.9 71.4± 1.3 74.7±1.6 74.8±1.6 74.9±1.7

Isolet 75.7±0.8 73.2±0.9 74.8±1.3 77.7±1.7 77.1± 2.2 72.4±1.1 74.7±1.8 74.4±1.3 80.5±1.3

COIL20 77.1±1.3 72.5±1.1 71.9±0.7 76.5±1.7 74.0± 1.6 75.3±1.6 75.4±1.3 73.9±2.0 76.3±2.3

TOX-171 13.6±2.3 12.5±1.7 11.4±3.2 12.7±0.4 16.4 ±5.9 9.7 ± 0.0 22.8±3.5 29.9±1.2 25.3±4.4

9 Tumors 39.5±3.1 41.0±2.3 40.2±2.5 41.1±2.7 44.7±4.5 34.5±2.4 44.1±4.3 46.7±3.6 44.8±3.2

Mean 54.6±1.9 53.9±1.3 54.5±2.3 58.7±2.6 56.4±3.3 52.6±2 58.8±3.1 59.8±2.3 61.8±2.9
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(a) lung (b) Isolet

Figure 1: Stability curves over lung and Isolet.

6.2 Stability Analysis

Now we will illustrate that our algorithm is more stable than other iterative algorithms
including: UDPFS (Wang et al., 2020), NDFS (Li et al., 2012) and UDFS (Yang et al.,
2011a). Following the symbol in Li et al. (2012); Yang et al. (2011a); Wang et al. (2020),
we denote the feature selection matrix as W in these methods and define

η =
∥Wk+1 −Wk∥F
∥Wk −Wk−1∥F

,

where Wk is the k-th iterative point. To demonstrate fully that our algorithm is more stable,
we randomly initialize cluster indicator matrix Y and W 20 times. Under the parameter
setting of the optimal results obtained by corresponding method, we record the average
results of η. The experimental results are shown in Fig. 1.

It can be seen that the value of η of the other three methods are always changing
irregularly , while ours starts to stabilize after fewer iterations and then always less than
1. Furthermore, we know that , with the increase of iterative number k, ∥Wk+1 −Wk∥F
decreases gradually in our method, which shows that our iterative sequence {Wk}k∈N keeps
the ”distance” of the adjacent two points gradually reduced and it is changed regularly
according to the iterative rules. Following the previous theoretical proof, iterative sequence
{Wk}k∈N will eventually converge to the KKT points. Compared with our method, since
the values of η of UDPFS, NDFS and UDFS are ruleless, iterative sequence {Wk}k∈N is
“jumping” irregularly and does not have a convergence trend. Therefore, our method is more
stable.

6.3 Robustness Analysis

23



Li, Sun and Zhang

(a) (b)

Figure 2: Robustness comparison to data perturbation between our method and other
iterative methods on lung.

(a) (b)

Figure 3: Robustness comparison to data perturbation between our method and other
iterative methods on Isolet.

In this subsection, we summarize the main results for our robustness analysis. We
consider the effect of varying the amount of perturbation introduced in the datasets, i.e.,
the effect of performance if we fine-tune the Gaussian noise from the distribution N (0, σ2)
where σ is sampled from the set {0.0, 0.5, 1.0, 1.5, 2.0} and add the Gaussian noise to the
input data. In order to make a fair comparison, we conduct the experiments under the
parameter setting of the optimal results obtained by each method for the chosen dataset.
Meanwhile, in order to avoid the influence of the randomness of noise in a single experiment,
we uniformly do ten experiments for each noise variance, and then average the results as the
final result.
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(a) ACC over Isolet (b) NMI over Isolet

(c) ACC over lung (d) NMI over lung

Figure 4: Performance with different α, β, γ values on Isolet and lung with a grid search
strategy.

Fig. 2 and Fig. 3 show the robustness of the iterative methods here considered on the
lung dataset and Isolet dataset with different levels of noise. Note that with the increase
of disturbance, the robustness of all iterative methods falls off, while the performance of
our method is always the best. Therefore, compared with other methods, our method has a
strong robustness.

6.4 Parameter Sensitivity Analysis

Like many other feature selection algorithms, our proposed method also requires several
parameters α, β, γ to be set in advance. Next, we will discuss their sensitivity. In our
experiments, we observe that the parameters α and β have more effect on the performance
than the parameter γ on the given datasets. Therefore, we focus on discussing the parameters
α and β. We will conduct the parameter sensitivity study in terms of α, β when γ is fixed
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to some values. α and β are tuned from {10−6, 10−5, · · · , 105, 106}. The results on lung and
Isolet are presented in Fig. 4. It can be seen that our method is not sensitive to α, β and γ
with relatively wide ranges.

7. conclusion

In this paper, we firstly have explored an ideal feature selection model: l2,1-norm regularized
regression optimization problem with non-negative orthogonal constraint, which well captures
the most representative features from the original high-dimensional data. Then, we propose
an inexact augmented Lagrangian multiplier method to solve our feature selection model.
Moreover, a proximal alternating minimization method is utilized to solve the augmented
Lagrangian subproblem with the benefit being that each subproblem has a closed form
solution. It is shown that our algorithm has the subsequence convergence property, which is
not provided in the state-of-the-art unsupervised feature selection methods. Quantitative
and qualitative experimental results have shown the effectiveness of our proposed method.
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