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Abstract

Recently, a quaternion tensor product named Qt-product was proposed, and then the singular value
decomposition and the rank of a third-order quaternion tensor were given. From a more applicable
perspective, we extend the Qt-product and propose a novel multiplication principle for third-order
quaternion tensor named gQt-product. With the gQt-product, we introduce a brand-new singular
value decomposition for third-order quaternion tensors named gQt-SVD and then define gQt-rank
and multi-gQt-rank. We prove that the optimal low-rank approximation of a third-order quaternion
tensor exists and some numerical experiments demonstrate the low-rankness of color videos. So,
we apply the low-rank quaternion tensor completion to color video inpainting problems and present
alternating least-square algorithms to solve the proposed low gQt-rank and multi-gQt-rank quaternion
tensor completion models. The convergence analyses of the proposed algorithms are established and
some numerical experiments on various color video datasets show the high recovery accuracy and
computational efficiency of our methods.

keywords: quaternion tensor; color video inpainting; low-rank; singular value decomposition;
tensor completion

1 Introduction

The purpose of this paper is to recover color videos via tensor completion. So far, tensors have been
widely applied to signal processing [1], computer vision [2], graph analysis [3, 4, 5] and data mining [6], to
name a few. Tensor decomposition is a fundamental tool to cope with large-scale data which is arranged in
tensor-based forms, since the scale of tensor data can be notably reduced while most inherent information
are still preserved by using decomposition techniques. Four commonly used tensor decomposition methods
are CANDECOMP/PARAFAC (CP) decomposition [7, 8], Tucker decomposition [9], tensor singular value
decomposition (t-SVD) [10] and Triple Decomposition [11], and the corresponding ranks are called CP
rank [7, 8], Tucker rank [9], tubal rank [12] and Triple rank [11], respectively.

For a positive integer n, [n]
.
= {1, 2, . . . , n}. Suppose that A ∈ Rn1×n2×···×np is an p-th order tensor,

where n1, . . . , np ∈ N+. The CP decomposition is to decompose A as a sum of some outer products of p
vectors:

A =

r∑
i=1

a
(i)
1 ◦ a(i)2 ◦ · · · ◦ a(i)p , (1)

where the symbol “◦” denotes the outer product and a
(i)
j ∈ Rnj , i ∈ [r], j ∈ [p]. The smallest r required in

CP decomposition (1) is defined as the CP rank of A. It is learned from [13] that, in general, determining
the CP rank of a given tensor whose order is no less than three is an NP-hard problem. In contrast to
CP decomposition, Tucker decomposition is more computationally efficient. Hence a number of low-rank
tensor completion and recovery models are based on Tucker rank [14, 15, 16]. Precisely, Tucker rank is a
vector of the matrix ranks

rankTC(A) =
(
rank(A(1)), rank(A(2)), . . . , rank(A(p))

)
,
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where A(i) ∈ Rni×(Πp
k=1nk/ni) is mode-i matricization of tensor (i ∈ [p]). CP decomposition and Tucker

decomposition are applicable to tensors with arbitrary orders. In 2011, Kilmer and Martin proposed a novel
decomposition strategy specifically for third-order tensors [10]. Whereafter, the relevant tubal rank was
introduced and studied in [12] and testified to have excellent performance for image and video inpainting
problems [3].

Third-order tensors are the most widely used higher-order tensors in applications [3, 4, 5, 12, 17, 18].
For instance, a grey scale video can be viewed as a third-order tensor indexed by two spatial variables and
one temporal variable. Unless otherwise specialized, tensors in this paper are of third-order. Low-rank
tensor completion is one of the most important problems in tensor processing and analysis. It aims at
filling in the missing entries of a partially observed low-rank tensor. Many practical datasets are highly
structured in the sense that they can be approximately represented through a low-rank decomposition
[19, 20]. As a consequence, the key idea of the recovery process is to find the low-rank approximation of
the original tensor via the observed data, i.e.,

min
C

rank(C), s.t. PΩ(C) = PΩ(M), (2)

where rank(·) is a certain tensor rank and Ω is the index set locating the observed data, PΩ(·) is a linear
operator that extracts the entries in Ω and fills the entries not in Ω with zeros, and M is the raw tensor.

As previously mentioned, addressing model (2) with CP rank is an NP-hard problem. An alternative
way is to employ Tucker rank instead of CP rank:

min
C

p∑
i=1

rank(C(i)), s.t. PΩ(C) = PΩ(M), (3)

and the nuclear-norm based convex relaxation of model (3) is considered as

min
C

p∑
i=1

∥C(i)∥∗, s.t. PΩ(C) = PΩ(M). (4)

However, Romera-Paredes et al. [21] proved that (4) is not a tight convex relaxation of (3), and SVD is
needed to solve (4), which will lead to high computational cost when coping with large-scale issues. To
overcome the computational difficulty, a matrix factorization method was designed by Xu et al. [19], which
preserves the low-rank structure of the unfolded matrices, i.e.,

min
Xi,Y i,C

p∑
i=1

αi∥XiY i − C(i)∥2F , s.t. PΩ(C) = PΩ(M), (5)

where αi is a positive weight parameter satisfying
∑p

i=1 αi = 1. A similar third-order tensor recovery
method based on Triple decomposition is proposed in [11]. As pointed in [10, 12], directly unfolding
a tensor will destroy the multi-way structure of the original data, resulting in vital information loss and
degraded recovery performance. Besides, solving (5) requires to deal with p matrices and each matrix owns
the same scale components as the original tensor. Thus the computational cost is relatively expensive.
Instead, tubal rank has been adopted in (2) and testified to have not only promising recovery performance
but also efficient computational process. Semerci et al. [22] developed a new tensor nuclear norm (TNN)
based on t-SVD, and subsequently Zhang et al. [4] applied TNN to tensor completion problems. Zhou et
al. [3] proposed the following model based on tubal rank and tensor product (t-product) to replace model
(2):

min
A,B,C

1

2
∥A ∗ B − C∥2F , s.t. PΩ(C) = PΩ(M), (6)

where “*” denotes the t-product [10]. From [10, 12], one can deal with t-product via fast Fourier transform
(FFT) and block diagonalization of third-order tensors, which can significantly reduce the computational
cost.

Motivation. We now briefly describe the motivation of this paper here. All the above methods explore
the approximate low-rank property of higher-order tensors. However, they are not good enough for the
classic color video inpainting problems. In specific, the traditional t-SVD and Triple decomposition are
specially designed for third-order tensors, while a color video can be naturally described as a fourth-order
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tensor, with four dimensions representing the length, width, frame numbers and RGB-channels of the
considered color video, respectively. Moreover, the computational complexity of CP decomposition is NP-
hard, and the unfolding operation in Tucker decomposition will destroy the original multi-way structure of
the data. Therefore, it is desirable to design a new type of tensor factorization strategy which can tackle
the above issues in terms of the capability, the recovery performance and the computational cost. Notice
that the red, green and blue channel pixel values can be intuitively encoded on the three imaginary parts
of a quaternion. The use of quaternion matrices for color image representation has been fully studied in
the literature [23, 24, 25, 26, 27]. In 2022, we proposed a quaternion tensor product (Qt-product) and then
introduced the singular value decomposition (Qt-SVD) and the rank of a third-order quaternion tensor
(Qt-rank) by employing the discrete Fourier transformation (DFT) technique. They also proved that the
existence of the best low-rank approximation of a third order quaternion tensor from the theoretical point
and the low-rank of color videos from numerical experiments [28]. But this is not applied to solve color
video inpainting problems, and the DFT used in [28] is very special. From a more applicable perspective,
in this paper, we generalize the Qt-product and propose a novel multiplication principle for third-order
quaternion tensor, and then establish low-rank quaternion tensor completion models to recover color videos.

Contribution. By introducing an extensive quaternion discrete Fourier transformation (QDFT) based
on a pure quaternion basis, we propose a novel multiplication principle for third-order quaternion tensor
named gQt-product, and then a new SVD is given. With such SVD, we establish two low-rank quaternion
tensor completion models to recover the incomplete color video data, and present an alternating least-
squared (ALS) algorithm to solve the color video inpainting problems. The numerical experiments show
that our methods outperform other state-of-the-arts in the recovery accuracy and computational efficiency.
The main contributions are summarized as follows.

• A generalized QDFT based on a pure quaternion basis is introduced and a novel quaternion tensor
product named gQt-product is proposed. With the gQt-product, we define identity quaternion tensor,
unitary quaternion tensor, conjugate transpose and inverse of quaternion tensor. We prove that the
collection of all invertible n× n× l quaternion tensors forms a ring under standard tensor addition
and the gQt-product.

• A new gQt-product based SVD for quaternion tensors named gQt-SVD is given, and then the gQt-
rank and the nuclear norm of third-order quaternion tensor are defined. We prove that the optimal
low-rank approximation of third-order quaternion tensor exists and some numerical experiments
demonstrate the low-rankness of color videos. Note that gQt-rank is only defined on one mode of
third order quaternion tensor without low rank structure in the other two modes, so we also introduce
multi-gQt-rank.

• To cope with color video inpainting problem, we construct low-rank quaternion tensor completion
models (2) based on gQt-rank and multi-gQt-rank, and further propose their evolved forms (28) and
(59) via the gQt-product. We present an ALS algorithm to solve (28) and (59), and also show that
the sequence generated by the ALS algorithm globally converges to a stationary point of the problem
by using the Kurdyka– Lojasiewicz property exhibited in the resulting problem. Extensive numerical
experiments on various color video datasets show the high recovery accuracy and computational
efficiency of our methods. Especially, the criterion of the recovery performance illustrates our gQt-
SVD-based method is superior to the commonly used t-SVD-based one.

The rest of this paper is organized as follows. In Section 2, we list some existing results for quaternion
matrices and quaternion tensors. and discuss the Fourier transform of quaternion tensors. In Section 3,
we introduce a generalized QDFT based on a pure quaternion basis, and then gQt-product, gQt-SVD,
gQt-rank and multi-gQt-rank are defined. In Section 4, we establish related low-rank quaternion tensor
completion models to recover the incomplete color video data, and present the ALS algorithm to solve the
resulting problem. Moreover, its convergence rate analysis is also established. In Section 5, some numerical
results are reported to confirm the advantages of gQt-SVD-based methods. The conclusions are drawn in
Section 6.
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2 Preliminary

2.1 Quaternions

Let R and C denote the real field and the complex field, respectively. The quaternion field, denoted as
H, is a four-dimensional vector space over real number field R with an ordered basis, denoted by 1, i, j
and k. Here i, j and k are three imaginary units with the following multiplication laws:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Let x = a + bi + cj + dk ∈ H, where a, b, c, d ∈ R, then the conjugate of x is defined by

x∗ .
= a− bi− cj− dk,

the norm of x is
|x| = |x∗| =

√
xx∗ =

√
x∗x =

√
a2 + b2 + c2 + d2.

and if x ̸= 0, then x−1 = x∗

|x|2 .

2.2 Quaternion matrix and quaternion tensor

We give some notations here. Scalars, vectors, matrices and third-order tensors are denoted as lowercase
letters (a, b, . . .), bold-case lowercase letters (a, b, . . . ), capital letters (A,B, . . .) and Euler script letters
(A,B, . . .), respectively. We use 0,O and O to denote zero vector, zero matrix and zero tensor with
appropriate dimensions. We use symbols e to represent the vector whose elements are all 1, and I and I
to denote the identity matrix, and the identity tensor, respectively. The identity tensor I will be defined
in Section 3.

Then a quaternion matrix A = (Aij) ∈ Hn1×n2 can be denoted as

A = Ae + Aii + Ajj + Akk,

where Ae, Ai, Aj, Ak ∈ Rn1×n2 . The transpose of A is AT = (Aji). The conjugate transpose of A is

A∗ = (A∗
ji) = AT

e −AT
i i−AT

j j−AT
kk.

The Frobenius norm of A is

∥A∥F
.
=

√√√√ n1∑
i=1

n2∑
j=1

|Aij |2.

With a simple calculation, it can be seen that

∥A∥2F = tr(AA∗) = tr(A∗A), (7)

where tr(·) is the trace of a matrix.
Let A ∈ Hn×n. A is a unitary matrix if and only if AA∗ = A∗A = In, where In ∈ Rn×n is the real

n × n identity matrix. A is invertible if AB = BA = In for some B ∈ Hn×n. The following lemma gives
Some properties of invertible quaternion matrix which can be found in [29, Theorem 4.1].

Lemma 2.1. Let A ∈ Hn1×n2 and B ∈ Hn2×n3 , then
(i) (AB)∗ = B∗A∗,
(ii) (AB)−1 = B−1A−1 if A and B are invertible,
(iii) (A∗)−1 = (A−1)∗ if A is invertible.

The following theorem for the SVD of quaternion matrix (QSVD) was given in [29].

Theorem 2.1. Any quaternion matrix A ∈ Hn1×n2 has the following QSVD form

A = U

[
Σr O
O O

]
V ∗,

where U ∈ Hn1×n1 and V ∈ Hn2×n2 are unitary, and Σr = diag{σ1, . . . , σr} is a real nonnegative diagonal
matrix, with σ1 ≥ · · · ≥ σr as the singular values of A.
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By Theorem 2.1, the nuclear norm of A is defined as ∥A∥∗ =
r∑

i=1

σi. The quaternion rank of A is the

number of its singular values, denoted as rank(A). It follows from [30, Lemma 9] that we can prove the
following lemma, which reveals the relationship between the matrix-factorization and the nuclear norm of
a quaternion matrix.

Lemma 2.2. For a given quaternion matrix A ∈ Hn1×n2 ,

∥A∥∗ = min
A=XY ∗

∥X∥F ∥Y ∥F = min
A=XY ∗

1

2
(∥X∥2F + ∥Y ∥2F ) (8)

Proof. We denote three parts in (8) as (i), (ii) and (iii) from left to right.
(ii)≤ (iii): This follows from the arithmetic mean and geometric mean inequality.
(iii)≤ (i): We decompose A into the form in Theorem 2.1, and then set

X̃ = U

[
Σr

1/2 O
O O

]
, Ỹ =

[
Σr

1/2 O
O O

]
V.

Hence, X̃, Ỹ are feasible matrices of (iii), and 1
2 (∥X̃∥2F + ∥Ỹ ∥2F ) = ∥A∥∗, which implies (iii) ≤ (i).

(i)≤ (ii): For all X,Y with A = XY ∗, let ui, vi be the i-th column of U and V , respectively. Then

∥A∥∗ =

r∑
i=1

u∗
iAvi =

r∑
i=1

(X∗ui)
∗(Y ∗vi)

≤
r∑

i=1

∥X∗ui∥F ∥Y ∗vi∥F

≤ (

r∑
i=1

∥X∗ui∥2F )1/2(

r∑
i=1

∥Y ∗vi∥2F )1/2

≤ ∥X∗U∥F ∥Y ∗V ∥F = ∥X∥F ∥Y ∥F ,

where the first and second inequalities are from Cauchy-Schwarz inequality, which can be verified on
quaternion, and the third inequality holds because we complete the rest part of U and V .

A third-order quaternion tensor A ∈ Hn1×n2×n3 is expressed as

A = (Ai1i2i3), Ai1i2i3 ∈ H, 1 ≤ it ≤ nt, 1 ≤ t ≤ 3.

Also, it can be expressed as
A = Ae + Aii + Ajj + Akk. (9)

where Ae,Ai,Aj,Ak ∈ Rn1×n2×n3 . We use the Matlab notations A(i, :, :), A(:, j, :) and A(:, :, k) to denote
its i-th horizontal, j-th lateral and k-th frontal slice, respectively. Let A(k) = A(:, :, k) be the k-th (k ∈ [n3])
frontal slice and A∗ denote its conjugate transpose (see Section 3). The Frobenius norm of A is the sum
of all norms of its entries, i.e.,

∥A∥F
.
=

√√√√ n1∑
i=1

n2∑
j=1

n3∑
k=1

|Aijk|2.

The block circulant matrix circ(A) ∈ Hn1n3×n2n3 of A is defined as

circ(A)
.
=


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

 .

The operator “unfold” is defined as

unfold(A)
.
= [A(1);A(2); . . . ;A(n3)],
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and its inverse operator “fold” is defined by fold(unfold(A)) = A. The operator “diag” of A is given as

diag(A)
.
=


A(1)

A(2)

. . .

A(n3)

 .

In 2022, Qin et al [28] noted that a quaternion x = a+bi+cj+dk can be written as x = (a+bi)+j(c−di)
and then the quaternion tensor A can be written as the form of A = A1,i + jAj,k with A1,i,Aj,k ∈
Cn1×n2×n3 . So, Qin et al [28] defined the following quaternion tensor product named Qt-product, and
they also give SVD of third-order quaternion tensor by using the Qt-product and the following DFT.

Definition 2.1 (Qt-product [28]). For A ∈ Hn1×r×n3 and B ∈ Hr×n2×n3 , define

A ∗H B .
= fold((circ(A1,i) + jcirc(Aj,k) · (Pn3

⊗ Ir)) · unfold(B)) ∈ Hn1×n2×n3 ,

where the symbol “⊗” means the Kronecker product, the matrix Pn3 = (Pij) ∈ Rn3×n3 is a permutation
matrix with P11 = Pij = 1 if i + j = n3 + 2, 2 ≤ i, j ≤ n3; Pij = 0, otherwise.

The DFT used in [28] is given as the form of the normalized DFT matrix Fn3 ∈ Cn3×n3 with

Fn3(i, j) =
1

√
n3

ω(i−1)(j−1), ω = exp(−2πi/n3) and i, j ∈ [n3]. (10)

The DFT (10) plays an important role in the Qt-SVD of third-order quaternion tensor given in [28]. As a
generalization of the traditional Fourier transform, the quaternion Fourier transform was first defined by
Ell [31] to process quaternion signal. Motivated by the idea of quaternion Fourier transform in [31] and
from a more applicable perspective, in this paper we define a new quaternion DFT (QDFT) based on a
unit pure quaternion µ = ai + bj + ck with µ2 = −1, which can be regards as a generalization of DFT
(10). And then, we introduce a novel multiplication principle for third-order quaternion tensor via the
new defined QDFT.

3 QDFT, gQt-Product and gQt-SVD

One major contribution of this paper is to introduce a novel multiplication principle for third-order
quaternion tensor, named gQt-product, via our new defined QDFT. The gQt-product is also the cornerstone
of the quaternion tensor decomposition. In this section, we will introduce gQT-product and some relevant
properties. Theorem 3.1 is one of the main results, which shows the relationship between gQt-product of
quaternion tensors and matrix product of their QDFT matrices. Furthermore, we propose a new SVD of
quaternion tensor via gQt-product, named gQt-SVD. With gQt-SVD, we can find the low-rank optimal
approximation of quaternion tensor.

3.1 QDFT: a new DFT of third-order quaternion tensor

In this subsection, we define a new quaternion DFT (QDFT) based on a unit pure quaternion µ =
ai + bj + ck with µ2 = −1, which can be regards as a generalization of DFT (10). Because the quaternion
multiplication is not commutative, QDFT of vectors can be defined by the sum of components multiplied
by the exponential kernel of the transform from the right or from the left.

Let Fµ,n3 ∈ Hn3×n3 be the normalized QDFT matrix with the (i, j)-th element as

Fµ,n3
(i, j) =

1
√
n3

ω(i−1)(j−1), i, j ∈ [n3], (11)

where the kernel ω is defined as

ω = exp(−µ2π/n3) = cos(2π/n3) − µ sin(2π/n3).

Obviously, it follows that

ωp = exp(−µ2πp/n3) = cos(2πp/n3) − µ sin(2πp/n3), p ∈ Z. (12)
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Clearly, when µ = i, QDFT matrix defined as (11) is equal to DFT matrix given in (10). So, QDFT is
more applicable than DFT.

It is easy to see that the result of QDFT of A ∈ Hn1×n2×n3 is still a quaternion tensor Â ∈ Hn1×n2×n3

with
Â(i, j, :) =

√
n3Fµ,n3

A(i, j, :), i ∈ [n1], j ∈ [n2].

Moreover,
∥Â∥2F = n3∥A∥2F . (13)

We also denote the QDFT of A as fft(A), and its inverse operator “ifft” is defined by ifft(fft(A)) = A.
It is known that any real circulant matrix can be diagonalized by the normalized DFT matrix [32]. For
QDFT, by simple calculation, we also obtain the same result for any real tensor A ∈ Rn1×n2×n3 :

(Fµ,n3
⊗ In1

) · circ(A) · (F ∗
µ,n3

⊗ In2
) = diag(Â). (14)

Denote Pn = (Pij) ∈ Rn×n as a permutation matrix with P11 = Pij = 1 if i + j = n + 2, 2 ≤ i, j ≤
n; Pij = 0, otherwise. We now give some special kernels of QDFT matrices, which will be used to introduce
gQt-product. For a unit pure quaternion µ = ai + bj + ck with µ2 = −1, set

µi = ai− bj− ck, µj = −ai + bj− ck, µk = −ai− bj + ck. (15)

The following lemma gives the relationship between QDFT matrices in the form of (11) with different
quaternion basis.

Lemma 3.1. For two unit pure quaternion numbers µ1 and µ2 with µ2
1 = µ2

2 = −1, it holds that

F ∗
µ1,nFµ2,n =

1

2
(1 − µ1µ2)In +

1

2
(1 + µ1µ2)Pn, Fµ1,nFµ2,n =

1

2
(1 + µ1µ2)In +

1

2
(1 − µ1µ2)Pn.

Proof. It follows from (11) and (12) that

Fµt,n = Cn − µtSn, F ∗
µt,n = Cn + µtSn, t = 1, 2, (16)

where Cn = (Cij) ∈ Rn×n and Sn = (Sij) ∈ Rn×n satisfy

Cij =
1√
n

cos(2π(i− 1)(j − 1)/n), Sij =
1√
n

sin(2π(i− 1)(j − 1)/n).

By (10) and (11), the traditional DFT matrix Fn can be written as Fi,n. By simple computation, we have

F ∗
i,nFi,n = In, Fi,nFi,n = Pn.

Combining (16), it is easy to get

C2
n + S2

n = In, C2
n − S2

n = P, CnSn = SnCn = O.

Hence,

F ∗
µ1,nFµ2,n = (Cn + µ1Sn)(Cn − µ2Sn) = C2

n − µ1µ2S
2
n

=
1

2
(1 − µ1µ2)In +

1

2
(1 + µ1µ2)Pn.

In the same way, we can prove that Fµ1,nFµ2,n = 1
2 (1 + µ1µ2)In + 1

2 (1 − µ1µ2)Pn.

3.2 gQt-product: a new product between third-order quaternion tensors

In this subsection, based on QDFT (11) and the form of quaternion tensor A as (9), we introduce the
concept of gQt-product and define identity quaternion tensor and inverse quaternion tensor. Moreover,
the relation of gQt-product of quaternion tensors and matrix product of their QDFT matrices is given.
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Definition 3.1 (gQt-product). For any given unit pure quaternion µ = ai + bj + ck with µ2 = −1, let
µi, µj, µk be given as (15) and matrices Ti, Tj, Tk be defined as

Ti = F ∗
µi,n3

Fµ,n3 , Tj = F ∗
µj,n3

Fµ,n3 , Tk = F ∗
µk,n3

Fµ,n3 .

Define gQt-product of A ∈ Hn1×r×n3 and B ∈ Hr×n2×n3 as

A∗µB
.
= fold

(
(circ(Ae) + icirc(Ai) · (Ti ⊗ Ir) + jcirc(Aj) · (Tj ⊗ Ir) + kcirc(Ak) · (Tk ⊗ Ir)) · unfold(B)

)
.

Clearly, A∗µB ∈ Hn1×n2×n3 .

We have the following remarks for Definition 3.1.

Remark 3.1. When µ = i, gQt-product “∗µ” becomes Qt-product “∗H” in Definition 2.1 [28]. Moreover,
if we restrict the product to real tensors, gQt-product is just t-product defined in [10]. In this view,
gQt-product is a generalization of t-product in a wider field.

Remark 3.2. For any unit pure quaternion µ = ai+ bj+ ck with a2 + b2 + c2 = 1, by Lemma 3.1, we can
get

F ∗
µi,n3

Fµ,n3
=
(
a2 − a(bk− cj)

)
In3

+
(
1 − a2 + a(bk− cj)

)
Pn3

,

F ∗
µj,n3

Fµ,n3
=
(
b2 − b(ci− ak)

)
In3

+
(
1 − b2 + b(ci− ak)

)
Pn3

,

F ∗
µk,n3

Fµ,n3 =
(
c2 − c(aj− bi)

)
In3 +

(
1 − c2 + c(aj− bi)

)
Pn3 .

Hence, it is easy to see that Ti, Tj, Tk is the combination of identity matrix In3 and permutation matrix
Pn3

, with the sum of the coefficients being one. In this vision, the operator from circ(A) to circ(Ae) +
icirc(Ai) · (Ti ⊗ Ir) + jcirc(Aj) · (Tj ⊗ Ir) + kcirc(Ak) · (Tk ⊗ Ir) will not change the magnitude, so there is
no loss of information in gQt-product.

We now present the relation of gQt-product of quaternion tensors and matrix product of their QDFT
matrices in the following theorem. For any given A ∈ Hn1×n2×n3 , setting its QDFT tensor as Â = fft(A),
then we have

unfold(Â) =
√
n3(Fµ,n3 ⊗ In1) · unfold(A). (17)

Theorem 3.1. Let A ∈ Hn1×r×n3 , B ∈ Hr×n2×n3 and C ∈ Hn1×n2×n3 , Â, B̂, Ĉ be their QDFT tensors.
Then,

diag(Ĉ) = diag(Â) · diag(B̂) ⇔ C = A∗µB.

Proof. Clearly, iFµ,n3 = Fµi,n3 i. Thus, it follows from (17) and (14) that

diag
(
fft(Aii)

)
= diag

(
fold

(√
n3(Fµ,n3

⊗ In1
) · unfold(Aii)

))
= diag

(
fold

(√
n3(Fµ,n3

⊗ In1
) · unfold(Ai)

))
i

= diag
(
fft(Ai)

)
i

= (Fµ,n3 ⊗ In1) · circ(Ai) · (F ∗
µ,n3

⊗ In2)i

= (Fµ,n3
⊗ In1

) · icirc(Ai) · (F ∗
µi,n3

⊗ In2
), (18)

where the second equality holds due to the homogeneity of operators “fold”, “unfold” and “diag”. Similarly,
we also have

diag
(
fft(Ajj)

)
= (Fµ,n3 ⊗ In1) · jcirc(Aj) · (F ∗

µj,n3
⊗ In2), (19)

diag
(
fft(Akk)

)
= (Fµ,n3 ⊗ In1) · kcirc(Ak) · (F ∗

µk,n3
⊗ In2). (20)

So, by (18), (19) and (20), it holds that

diag(Â) = diag
(
fft(Ae)

)
+ diag

(
fft(Aii)

)
+ diag

(
fft(Ajj)

)
+ diag

(
fft(Akk)

)
= (Fµ,n3

⊗ In1
) ·
(
circ(Ae) · (F ∗

µ,n3
⊗ In2

) + icirc(Ai) · (F ∗
µi,n3

⊗ In2
)

+ jcirc(Aj) · (F ∗
µj,n3

⊗ In2
) + kcirc(Ak) · (F ∗

µk,n3
⊗ In2

)
)
, (21)
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which implies

unfold
(
Ĉ
)

= unfold
(
fft(A∗µB)

)
=

√
n3(Fµ,n3 ⊗ In1) · unfold(A∗µB)

=
√
n3(Fµ,n3 ⊗ In1) ·

(
(circ(Ae) + icirc(Ai) · (F ∗

µi,n3
Fµ,n3 ⊗ Ir)

+ jcirc(Aj) · (F ∗
µj,n3

Fµ,n3
⊗ Ir) + kcirc(Ak) · (F ∗

µk,n3
Fµ,n3

⊗ Ir)
)
· unfold(B))

= diag(Â) ·
√
n3(Fµ,n3 ⊗ Ir) · unfold(B)

= diag(Â) · unfold(B̂).

Thus, the proof is completed.

We next to discuss the group-theoretical property of gQt-product in the following theorem. At first,
we introduce the concepts of identity quaternion tensor and inverse quaternion tensor.

Definition 3.2. The n× n× l identity quaternion tensor Innl is the tensor whose first frontal slice is the
identity matrix and others are all zeros.

Definition 3.3. An n × n × l quaternion tensor A is said to be invertible if there exists a quaternion
tensor B ∈ Hn×n×l such that

A∗µB = Innl = B∗µA.

The tensor B is called the inverse of A, denoted as A−1.

Theorem 3.2. The collection of all invertible n× n× l quaternion tensors forms a group under the “∗µ”
operation given in Definition 3.1.

Proof. It is easy to see that
diag(Înnl) = Inl ∈ Rnl×nl.

For all A ∈ Hn×n×l, it follows from Theorem 3.1 that

diag(Â)diag(Înnl) = diag(Înnl)diag(Â) = diag(Â) ⇔ A∗µInnl = Innl∗µA = A,

which implies that Innl is the identical-element in group.
Similarly, for all A,B, C ∈ Hn×n×l, it holds that(

diag(Â)diag(B̂)
)
diag(Ĉ) = diag(Â)

(
diag(B̂)diag(Ĉ)

)
⇒ (A∗µB)∗µC = A∗µ(B∗µC).

So, the “∗µ” operation is associative. Hence, the collection of all invertible n × n × l quaternion tensors
forms a group under the “∗µ” operation.

We can easily check that the collection of all invertible n×n× l quaternion tensors forms a ring under
standard tensor addition and gQt-product.

3.3 gQt-SVD: gQt-product based SVD of third-order quaternion tensor

Our goal in this subsection is to build SVD of third-order quaternion tensor based on gQt-product. To
begin with, we introduce the concepts of conjugate transpose of third-order quaternion tensor and unitary
quaternion tensor, which will be used in the sequent.

For real third-order tensors, the definition of conjugate transpose was given in [10, Definition 3.14], and
we recall it in Definition 3.4.

Definition 3.4. Let A ∈ Rn1×n2×n3 , then A∗ ∈ Rn2×n1×n3 , the conjugate transpose of A, is obtained by
transposing each of the frontal slices and then reversing the order of transposed frontal slices 2 through n3.

Example 3.1. Let A ∈ Rn1×n2×4 and its frontal slices be given by the n1×n2 matrices A(1), A(2), A(3), A(4).
Then, the conjugate transpose of A is

A∗ = fold




(A(1))∗

(A(4))∗

(A(3))∗

(A(2))∗


 .
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For any A ∈ Rn1×n2×n3 , it is seen that

circ(A)∗ = circ(A∗). (22)

For any given A ∈ Hn1×n2×n3 , by (9), it can be written as A = Ae +Aii+Ajj+Akk where Ae,Ai,Aj

and Ak are n1×n2×n3 real tensors. Hence, based on Definition 3.4, we can define the conjugate transpose
of the quaternion tensor A.

Definition 3.5. The conjugate transpose of a quaternion tensor A = Ae +Aii+Ajj+Akk ∈ Hn1×n2×n3

is also denoted as A∗ ∈ Hn2×n1×n3 , which is defined by

unfold(A∗) = unfold(A∗
e) − (T ∗

i ⊗ In2
)unfold(A∗

i )i− (T ∗
j ⊗ In2

)unfold(A∗
j )j− (T ∗

k ⊗ In2
)unfold(A∗

k)k,

where T ∗
i = F ∗

µ,n3
Fµi,n3

, T ∗
j = F ∗

µ,n3
Fµj,n3

, and T ∗
k = F ∗

µ,n3
Fµk,n3

.

Example 3.2. Let A ∈ Hn1×n2×3 and its frontal slices be given by the matrices A(1), A(2), A(3) ∈ Hn1×n2 .
Setting µ = i, the conjugate transpose of A is given as

A∗ = fold


(A

(1)
e )∗ − i(A

(1)
i )∗ − j(A

(1)
j )∗ − k(A

(1)
k )∗

(A
(3)
e )∗ − i(A

(3)
i )∗ − j(A

(2)
j )∗ − k(A

(2)
k )∗

(A
(2)
e )∗ − i(A

(2)
i )∗ − j(A

(3)
j )∗ − k(A

(3)
k )∗


 .

We give some properties of the conjugate transpose of a quaternion tensor A.

Theorem 3.3. For A ∈ Hn1×n2×n3 , we have diag
(
fft(A∗)

)
= diag(Â)∗.

Proof. By (22), (21) and Lemma 2.1, we have

diag(Â)∗ =
(

(Fµ,n3 ⊗ In1) ·
(
circ(Ae) · (F ∗

µ,n3
⊗ In2) + icirc(Ai) · (F ∗

µi,n3
⊗ In2)

+ jcirc(Aj) · (F ∗
µj,n3

⊗ In2
) + kcirc(Ak) · (F ∗

µk,n3
⊗ In2

)
))∗

= (Fµ,n3
⊗ In2

) · circ(A∗
e) · (F ∗

µ,n3
⊗ In1

) − (F ∗
µi,n3

⊗ In2
) · circ(A∗

i )(F ∗
µi,n3

⊗ In1
)i

− (F ∗
µj,n3

⊗ In2) · circ(A∗
j )(F ∗

µj,n3
⊗ In1)j− (F ∗

µk,n3
⊗ In2) · circ(A∗

k)(F ∗
µk,n3

⊗ In1)k. (23)

It follows from (14) and (17) that

(Fµi,n3 ⊗ In2) · circ(A∗
i ) · (F ∗

µi,n3
⊗ In2)i = diag

(
fold

(√
n3(Fµi,n3 ⊗ In2) · unfold(A∗

i )
))

i

= diag
(

fold
(√

n3(Fµ,n3F
∗
µ,n3

Fµi,n3 ⊗ In2) · unfold(A∗
i )i
))

= diag

(
fft
(

fold
(
(F ∗

µ,n3
Fµi,n3 ⊗ In2) · unfold(A∗

i )i
)))

.

Similarly,

(Fµj,n3
⊗ In2

) · circ(A∗
j ) · (F ∗

µj,n3
⊗ In2

)j = diag

(
fft
(

fold
(
(F ∗

µ,n3
Fµj,n3

⊗ In2
) · unfold(A∗

j )j
)))

,

(Fµk,n3
⊗ In2

) · circ(A∗
k) · (F ∗

µk,n3
⊗ In2

)k = diag

(
fft
(

fold
(
(F ∗

µ,n3
Fµk,n3

⊗ In2
) · unfold(A∗

k)k
)))

,

which, together with (23), imply that

diag(Â)∗ = diag
(
fft(A∗)

)
.

Thus, the proof is completed.

Corollary 3.1. For any two quaternion tensors A,B with adequate dimensions, we have

(A∗µB)∗ = B∗∗µA∗.
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Proof. Since QDFT is invertible, the equality (A∗µB)∗ = B∗∗µA∗ can be written as

diag
(

fft
(
(A∗µB)∗

))
= diag

(
fft(B∗∗µA∗)

)
.

By Theorems 3.1 and 3.3, we have

(A∗µB)∗ = B∗∗µA∗ ⇔
(
diag(Â)diag(B̂)

)∗
= diag(B̂)∗diag(Â)∗.

This, together with Lemma 2.1, completes the proof.

We next to introduce the concepts of unitary quaternion tensor and partially unitary quaternion tensor.
Some properties of unitary quaternion tensor are given, which are still true for partially unitary quaternion
tensor.

Definition 3.6. The n × n × l quaternion tensor U is unitary if U∗∗µU = U∗µU∗ = Innl. In addition,
U ∈ Hm×n×l is said to be partially unitary if U∗∗µU = Innl.

By Theorem 3.3, we immediately obtain the following result.

Corollary 3.2. A quaternion tensor U ∈ Hn×n×n3 is unitary if and only if diag(Û) is a unitary matrix.

A nice feature of unitary quaternion tensor is to preserve the Frobenius norm.

Theorem 3.4. Let U be a unitary tensor and A ∈ Hn1×n2×n3 be a quaternion tensor with adequate
dimensions. Then,

∥U∗µA∥F = ∥A∥F .

Proof. Since normalized QDFT will not change the Frobenius norm, we have

∥U∗µA∥2F =
∑
p,q

∥(U∗µA)(p, q, :)∥2F =
1

n3

∑
p,q

∥fft(U∗µA)(p, q, :)∥2F =
1

n3
∥diag

(
fft(U∗µA)

)
∥2F . (24)

By Theorems 3.1 and 3.3, Corollary 3.1, and (7), we can obtain

∥U∗µA∥2F =
1

n3
tr
(

diag
(
fft(U∗µA))∗ · diag(fft(U∗µA)

))
=

1

n3
tr
(

diag
(
fft((U∗µA)∗)

)
· diag

(
fft(U∗µA)

))
=

1

n3
tr
((

diag(Â)
)∗(

diag(Û)
)∗

diag(Û)diag(Â)
)

=
1

n3
∥diag(Â)∥2F = ∥A∥2F .

Thus, we complete the proof.

We say a tensor is “f-diagonal” if each frontal slice is diagonal, and then the following decomposition
of quaternion tensor is proposed.

Theorem 3.5 (gQt-SVD). Any third-order quaternion tensor A ∈ Hn1×n2×n3 can be factorized as

A = U∗µS∗µV∗,

where S ∈ Hn1×n2×n3 is an f-diagonal tensor, U ∈ Hn1×n1×n3 and V ∈ Hn2×n2×n3 are unitary. Moreover,
∥A∥F = ∥S∥F .

Proof. With the quaternion matrix SVD in Theorem 2.1, we have

diag(Â) = diag(Û)diag(Ŝ)diag(V̂)∗,

where diag(Û) and diag(V̂)∗ are unitary, and diag(Ŝ) is diagonal.

11



Let U ,S,V be the quaternion tensors corresponding to diag(Û), diag(Ŝ), diag(V̂), respectively. That
is,

U .
= fold

(
(F ∗

µ,n3
⊗ In1

)
1

√
n3

diag(Û)(e⊗ In1
)
)
,

V .
= fold

(
(F ∗

µ,n3
⊗ In2

)
1

√
n3

diag(V̂)(e⊗ In2
)
)
,

S .
= fold

(
(F ∗

µ,n3
⊗ In1)

1
√
n3

diag(Ŝ)(e⊗ In2)
)
,

where e is an n3-dimensional column vector whose all elements are 1. Clearly, U ,V are unitary, and S is
an f-diagonal tensor. It follows from Theorem 3.1 and Corollary 3.2 that A = U∗µS∗µV∗. By Theorem
3.4, we immediately obtain ∥A∥F = ∥S∥F .

By Theorem 3.5, any third-order quaternion tensor has gQt-SVD. So, in the next subsection we will
define its rank based on such decomposition, and show the existence of low-rank optimal approximation.

3.4 gQt-rank, low-rank optimal approximation, and multi-gQt-rank

For any third-order quaternion tensor A ∈ Hn1×n2×n3 and its gQt-SVD A = U∗µS∗µV∗, we regard
U(:, i, :) ∈ Hn1×1×n3 , V(:, i, :) ∈ Hn2×1×n3 , and S(i, i, :) ∈ H1×1×n3 as tensors. By QDFT (11), we have

fft(U(:, i, :)) = Û(:, i, :), fft(S(i, i, :)) = Ŝ(i, i, :), fft(V(:, i, :)) = V̂(:, i, :).

It follows from Theorem 2.1 that

diag(Â) =

min(n1,n2)∑
i=1

diag
(
fft(U(:, i, :))

)
diag

(
fft(S(i, i, :))

)
diag

(
fft(V(:, i, :))

)∗
.

With simple calculation, we can get

A =

m∑
i=1

U(:, i, :)∗µS(i, i, :)∗µV(:, i, :)∗, m
.
= min(n1, n2). (25)

Thus, A can be written as a finite sum of gQt-product of matrices. Naturally, according to (25), we can
define the “gQt-rank” for any third-order quaternion tensor.

Definition 3.7 (gQt-rank). Let A ∈ Hn1×n2×n3 and its gQt-SVD be given as A = U∗µS∗µV∗. The
number of nonzero elements of {S(i, i, :)}mi=1 is called gQt-rank of A, denote as rankgQt(A). That is,

rankgQt(A)
.
= #{i| S(i, i, :) ̸= 0} = #{i| Ŝ(i, i, :) ̸= 0}.

The i-th singular value of A is defined as

σi(A)
.
=

1

n3
∥Ŝ(i, i, :)∥1, i ∈ [m],

and the nuclear norm of A is defined as

∥A∥∗
.
=

m∑
i=1

σi(A).

Similar to Lemma 2.2, we have the following result for the nuclear norm ∥A∥∗.

Lemma 3.2. Let A ∈ Hn1×n2×n3 , then

∥A∥∗ =
1

n3

n3∑
i=1

∥Â(:, :, i)∥∗ = min
X ,Y

{
1

2
(∥X∥2F + ∥Y∥2F ) : A = X∗µY∗

}
.

12



Proof. From Definition 3.7, we have

∥A∥∗ =

m∑
j=

n3∑
i=

|Ŝ(j, j, i)| =
1

n3

n3∑
i=

∥Â(:, :, i)∥∗

= min
X̂ ,Ŷ

{
1

2n3

n3∑
i=1

(∥X̂ (:, :, i)∥2F + ∥Ŷ(:, :, i)∥2F ) : X̂ (:, :, i)(Ŷ(:, :, i))∗ = Â(:, :, i), i ∈ [n3]

}

= min
X ,Y

{
1

2
(∥X∥2F + ∥Y∥2F ) : A = X∗µY∗

}
.

By (25), the following theorem shows the existence of low-rank (rankgQt(A) = k < m) optimal approx-
imation.

Theorem 3.6. Let A ∈ Hn1×n2×n3 and its gQt-SVD be given as A = U∗µS∗µV∗. For k < m, denote

Ak =

k∑
i=1

U(:, i, :)∗µS(i, i, :)∗µV(:, i, :)∗. (26)

Then,

Ak ∈ arg min
C∈Mk

∥A − C∥F , where Mk = {C| X ∈ Hn1×k×n3 ,Y ∈ Hk×n2×n3 , C = X∗µY}.

Proof. For all C ∈ Mk, it is easy to see that the rank of each block matrix of diag(Ĉ) is not greater than
k. Since there exists rank-k optimal approximation of quaternion matrix, it follows that

∥A − C∥2F =
1

n3
∥diag(Â) − diag(Ĉ)∥2F

=
1

n3

n3∑
q=1

∥Â(:, :, q) − Ĉ(:, :, q)∥2F

≥ 1

n3

n3∑
q=1

∥Â(:, :, q) −
k∑

p=1

Û(:, p, q)Ŝ(p, p, q)V̂(:, p, q)∗∥2F

=
1

n3

n3∑
q=1

∥Â(:, :, q) − Âk(:, :, q)∥2F = ∥A −Ak∥2F ,

where the first equality is from (24) and the last two equalities hold due to (26) and Theorem 3.1. Thus,
this completes the proof.

We now investigate gQt-rank of third order quaternion tensor generated by color video, and show that
the low gQt-rankness is actually an inherent property of many color videos. We select a video data “News”
in widely used YUV Video Sequences1. We take all 300 frames of size 288 × 352 as a color video data
C̃, i.e., C̃ ∈ H288×352×300, where we encode the red, green, and blue channel pixel values on the three
imaginary parts of a quaternion. Figure 1 illustrates the low-rank structure of C̃ from color videos.

1http://trace.eas.asu.edu/yuv/
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(a) Sampled frames in video (b) Singular values of C̃

Figure 1: The sampled frames in video and singular values.

Note that gQt-rank is only defined on one mode-3 of third order quaternion tensor, and the low-rank
structure on the other two modes is missing. Motivated by this and multi-tubal rank given [33], we next
to introduce “multi-gQt-rank” for third-order quaternion tensor A ∈ Hn1×n2×n3 by extending QDFT (11)
from mode-3 to the other two modes.

To begin with some notations, we denote

A
(i)
1 = A(i, :, :), A

(j)
2 = A(:, j, :), A

(k)
3 = A(:, :, k), i ∈ [n1], j ∈ [n2], k ∈ [n3].

Define QDFT of A along w-th mode (w = 1, 2, 3) as Â1, Â2 and Â3, which satisfy

Â1(:, j, k) = Fµ,n1
A(:, j, k), Â2(i, :, k) = Fµ,n2

A(i, :, k), Â3(i, j, :) = Fµ,n3
A(i, j, :),

for i ∈ [n1], j ∈ [n2], k ∈ [n3]. Here, Fµ,nw
is defined similarly to (11). For simplicity, we define

Â
(i)
1

.
= Â1(i, :, :), Â

(j)
2

.
= Â2(:, j, :), Â

(k)
3

.
= Â3(:, :, k), i ∈ [n1], j ∈ [n2], k ∈ [n3].

We also define the following operators for w = 1, 2, 3,

diagw(A)
.
=


A

(1)
w

A
(2)
w

. . .

A
(nu)
w

 , circw(A)
.
=


A

(1)
w A

(n3)
w · · · A

(2)
w

A
(2)
w A

(1)
w · · · A

(3)
w

...
...

. . .
...

A
(n3)
w A

(n3−1)
w · · · A

(1)
w

 ,

and

unfoldw(A)
.
= [A(1)

w ;A(2)
w ; . . . ;A(nw)

w ].

The inverse operator “foldw” is defined by foldw(unfoldw(A)) = A. With µi, µj, µk defined in (15), we set

Ti,w = F ∗
µi,nw

Fµ,nw
, Tj,w = F ∗

µj,nw
Fµ,nw

, Tk,w = F ∗
µk,nw

Fµ,nw
.

We now generalize gQt-product along three modes. For A ∈ Hn1×n2×r and B ∈ Hn1×r×n3 , define

A∗1µB
.
= fold

(
(circ1(Ae)+icirc1(Ai)·(Ti,1⊗Ir)+jcirc1(Aj)·(Tj,1⊗Ir)+kcirc1(Ak)·(Tk,1⊗Ir))·unfold1(B)

)
.

For A ∈ Hn1×n2×r and B ∈ Hr×n2×n3 , define

A∗2µB
.
= fold

(
(circ2(Ae)+icirc2(Ai)·(Ti,2⊗Ir)+jcirc2(Aj)·(Tj,2⊗Ir)+kcirc2(Ak)·(Tk,2⊗Ir))·unfold2(B)

)
.

For A ∈ Hn1×r×n3 and B ∈ Hr×n2×n3 , define

A∗3µB
.
= fold

(
(circ3(Ae)+icirc3(Ai)·(Ti,3⊗Ir)+jcirc3(Aj)·(Tj,3⊗Ir)+kcirc3(Ak)·(Tk,3⊗Ir))·unfold3(B)

)
.

We introduce the concept of “multi-gQt-rank” for third-order quaternion tensor as follows.
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Definition 3.8 (multi-gQt-rank). Let A ∈ Hn1×n2×n3 and rlw = rank(Â
(l)
w ) with l ∈ [nw] and w ∈ [3].

The multi-gQt-rank of A is defined as

rankmgQt(A) = (r1(A), r2(A), r3(A)),

where rw(A) = max(r1w, r
2
w, . . . , r

nw
w ).

By Theorem 3.1 and Lemma 3.2, we can easily get the following results.

Theorem 3.7. Let A,B be quaternion tensors and C = A ∗wµ B be defined above for w ∈ [3]. If their

QDFT tensors along mode-w are Âw, B̂w, and Ĉw, respectively, then, it holds
(i) ∥A∥2F = 1

nw
∥Âw∥2F .

(ii) diagw(Ĉw) = diagw(Âw) · diagw(B̂w).
(iii) rw(C) ≤ min(rw(A), rw(B)).

We now investigate multi-gQt-rank of third order quaternion tensor generated by color video, and
show that the low rankness is actually an inherent property of many color videos. We select a video data
“Coastguard” in YUV Video Sequences2 to group into the quaternion tensor C̃ ∈ H288×352×300. Figure 2
shows the low-rank structures of tensor C̃ in mode 1, 2 and 3.

(a) Sampled frames in video (b) Singular values of C̃ in mode 1

(c) Singular values of C̃ in mode 2 (d) Singular values of C̃ in mode 3

Figure 2: The sampled frames in video and singular values.

As mentioned in [3, 34, 35], when the color image or video data is regarded as quaternion matrices or
real tensors, they lie on a union of low-rank subspaces approximately, which lead the low-rank structure

2http://trace.eas.asu.edu/yuv/
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of the real data. This is also true for third-order quaternion tensors data. Figures 1 and 2 indicate that
third-order quaternion tensors generated by color videos in real life have an inherent low-rank property.
Hence, in order to recover color videos with partial data loss, we can design tensor completion model as
(2) via gQt-rqnk and multi-gQt-rank. This is the aim of next section.

4 Quaternion Tensor Completion for Color Video Inpainting

In this section, we establish low-rank quaternion tensor completion models based on gQt-rank and
multi-gQt-rank to recover color videos with partial data loss. We present an ALS algorithm to solve the
proposed models and show that the generated sequence converges to the stationary point of our model.

4.1 Low gQt-rank quaternion tensor completion model

We first define the operator ℜ to get the real part of a quaternion tensor, and the operator ℑ to get the
imaginary part. Our low gQt-rank quaternion tensor completion is to find the minimal gQt-rank solution
satisfying the consistency with the observed data. Let M be the raw tensor and Ω be the index set locating
the observed data. Then, by (2), the low gQt-rank quaternion tensor completion can be modeled as

min
C∈Hn1×n2×n3

rankgQt(C), s.t. PΩ(C −M) = 0, ℜ(C) = 0, (27)

To solve (27) efficiently, the following relaxation via nuclear norm is considered

min
C∈Hn1×n2×n3

∥C∥∗, s.t. PΩ(C −M) = 0, ℜ(C) = 0.

By Theorem 3.5, computing ∥C∥∗ is via gQt-SVD of C. However, its computational complexity will be
O(n1n2n3(log(n3) + min(n1, n2))). In order to reduce the computational cost, by Lemma 3.2, we consider
the following quaternion tensor factorization model:

min
C,A,B

1

2
(∥A∥2F + ∥B∥2F ), s.t. C = A∗µB, PΩ(C −M) = 0, ℜ(C) = 0.

In practical applications, each frame of the video data has spatial stability feature. We use total
variation (TV) to capture these spatial correlation features and consider the square of total variation of
data to keep objective function analytic, i.e.,

∥C ×1 Hn1
∥2F + ∥C ×2 Hn2

∥2F =

n1−1∑
k=1

∥C(k, :, :) − C(k + 1, :, :)∥2F +

n2−1∑
k=1

∥C(:, k, :) − C(:, k + 1, :)∥2F ,

where H = Toeplitz(0,−1, 1) be an (n− 1) × n Toeplitz matrix, i.e.,

Hn =



1 −1 0 · · · · · · 0

0 1 −1
. . .

. . . 0

0 0 1
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .

0 · · · · · · · · · 1 −1


∈ R(n−1)×n.

In addition, the real color video quaternion tensor C is only approximately low gQt-rank, and hence it is
likely to fail to find a low gQt-rank solution strictly satisfying the restriction C = A∗µB. Therefore, we
usually penalize C = A∗µB into objective function. Thus, we get our final low gQt-rank quaternion tensor
completion model as follows:

min
C,A,B

f(C,A,B)
.
=

1

2
∥A∗µB − C∥2F +

λ

2
(∥A∥2F + ∥B∥2F ) +

2∑
k=1

λk∥C ×k Hnk
∥2F ,

s.t. PΩ(C −M) = 0, ℜ(C) = 0, (28)

where λ, λ1 and λ2 are the penalty parameters.
We will propose an algorithm for solving the model (28) in the next subsection.
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4.2 Solution method

In this subsection, we present an ALS procedure to solve (28). At each iteration, two variables of A,
B, C are fixed and the other one is updated by solving the updated model (28).

At the t-th iteration of our method, Ct is updated by

Ct = arg min
PΩ(C−M)=0,ℜ(C)=0

1

2
∥At−1∗µBt−1 − C∥2F +

2∑
k=1

λk∥C ×k Hnk
∥2F , (29)

and At,Bt are updated by the regularized version of (28) as follows:

At = arg min
1

2
∥A∗µBt−1 − Ct∥2F +

λ

2
∥A∥2F +

β

2
∥A −At−1∥2F , (30)

Bt = arg min
1

2
∥At∗µB − Ct∥2F +

λ

2
∥B∥2F +

β

2
∥B − Bt−1∥2F , (31)

where β > 0 is the regularization parameter.
We next to solve the subproblems (29)-(31). First, we rewrite (29) as

Ct = arg min
ℜ(C)=0

1

2
∥At−1∗µBt−1 − C∥2F +

2∑
k=1

λk∥C ×k Hnk
∥2F + δ{PΩ(C−M)=0}(C), (32)

where δS(·) is the indicator function, i.e., δS(x) = 0, if x ∈ S; δS(x) = +∞, if x /∈ S.
For simplicity, set C = Cii + Cjj + Ckk whose real part is zero. Thus, the objective function in (28) can

be written as f(Ci, Cj, Ck|Â, B̂) due to
√
n3∥A∥F = ∥Â∥F . Denote

f1(Ci, Cj, Ck) =
1

2
∥ℑ(At−1∗µBt−1) − C∥2F +

2∑
k=1

λk∥C ×k Hnk
∥2F ,

h1(Ci, Cj, Ck) = δ{PΩ(C−M)=0}(C). (33)

Then, (32) is equivalent to the following unconstrained optimization problem:

min
Ci,Cj,Ck

f1(Ci, Cj, Ck) + h1(Ci, Cj, Ck). (34)

Clearly, f1 is differentiable and h1 is a proper closed convex function. So, we can solve (34) inexactly by
the well-known proximal gradient method (PGM). We employ the following PGM with Barzilar-Borwein
[36] line research rule to solve (34).

Algorithm 1 BB-PGM for (34)

Input. The tensor data M,At−1∗µBt−1, the observed set Ω, initial step size α0, parameters
λ, λi, Hni

, 1 ≤ i ≤ 2.
Step 0. Initialize z0 = [C0

i , C0
j , C0

k] which satisfies PΩ(C0
i i + C0

j j + C0
kk−M) = 0, z−1 = z0. Iterate the

following steps for k = 0, 1, 2, · · · while it does not satisfy stop criterion.
Step 1. If k ≥ 1, choose step size

αk =
∥zk − zk−1∥2F

⟨zk − zk−1,∇f1(zk) −∇f1(zk−1)⟩
, or αk =

⟨zk − zk−1,∇f1(zk) −∇f1(zk−1)⟩
∥∇f1(zk) −∇f1(zk−1)∥2F

.

Step 2. Update [Ck+1
i , Ck+1

j , Ck+1
k ] = proxαkh1

(
[Ck

i , Ck
j , Ck

k] − αk∇f1(Ck
i , Ck

j , Ck
k)
)

.

Output. Ck+1
i i + Ck+1

j j + Ck+1
k k.

Here, proxαkh1
(·) in Step 2 of Algorithm 1 is the proximal mapping of h1 with parameter αk > 0, i.e.,

proxαkh1
(X ) = arg min

Y∈Rn1×n2×n3×3

{
αkh1(Y) +

1

2
∥Y − X∥2F

}
, ∀X ∈ Rn1×n2×n3×3.
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It is known that the proximal mapping of indicator function is a projection, i.e.,

proxαkh1
(X ) = P{PΩ(Xii+Xjj+Xkk−M)=0}(X ), ∀X = [Xi,Xj,Xk] ∈ Rn1×n2×n3×3.

For solving (30) and (31), we consider their matrix versions because the updates of At and Bt are just
those of their QDFT tensors from the calculation perspective. Hence, by (13), we can rewrite (30) and
(31) as the following corresponding matrix versions:

Ât = arg min
Â

n3∑
l=1

(
1

2
∥Â(l)B̂t−1,(l) − Ĉt,(l)∥2F +

λ

2
∥Â(l)∥2F +

β

2
∥Â(l) − Ât−1,(l)∥2F

)
, (35)

and

B̂t = arg min
B̂

n3∑
l=1

(
1

2
∥Ât,(l)B̂(l) − Ĉt,(l)∥2F +

λ

2
∥B̂(l)∥2F +

β

2
∥B̂(l) − B̂t−1,(l)∥2F

)
. (36)

To solve the problems (35) and (36) with quaternion variables, we apply the following results, which
were given in [37] to introduce the gradient for a quaternion matrix function and optimality condition for
an equality-constrained quaternion matrix optimization.

Definition 4.1 ([37] Definition 4.1). Let f : Hm×n → R and X = Xe + Xii + Xjj + Xkk. f is said to be

differentiable at X if ∂f
∂Xv

exists at Xv for v = e, i, j,k. Moreover, its gradient is defined as

∇Hf(X) =
∂f

∂Xe
+

∂f

∂Xi
i +

∂f

∂Xj
j +

∂f

∂Xk
k.

f is said to be continuously differentiable at X if ∂f
∂Xv

exists in a neighborhood of Xv and is continuous at Xv

for v = e, i, j,k. Furthermore, f is said to be continuously differentiable if f is continuously differentiable
at any X ∈ Hm×n.

Theorem 4.1 ([37] Theorem 4.2). Suppose that f : Hm×n → R is continuously differentiable, and X# ∈
Hm×n is an optimal solution of min{f(X)}. Then, it holds

∇Hf(X#) = O.

By Theorem 4.1, we can find the closed-form solutions to (30) and (31). For l ∈ [n3], Ât,(l) is updated
as

Ât,(l) = arg min
Â

1

2
∥Â(l)B̂t−1,(l) − Ĉt,(l)∥2F +

λ

2
∥Â(l)∥2F +

β

2
∥Â(l) − Ât−1,(l)∥2F

=
(
Ĉt,(l)(B̂t−1,(l))∗ + βÂt−1,(l)

)(
B̂t−1,(l)(B̂t−1,(l))∗ + (λ + β)I

)−1
, (37)

and B̂t,(l) is updated as

B̂t,(l) = arg min
B̂

1

2
∥Ât,(l)B̂(l) − Ĉt,(l)∥2F +

λ

2
∥B̂(l)∥2F +

β

2
∥B̂(l) − B̂t−1,(l)∥2F

=
(
(Ât,(l))∗Ât,(l) + (λ + β)I

)−1(
(Ât,(l))∗Ĉt,(l) + βB̂t−1,(l)

)
. (38)

Denote Ωc as the complement of the set Ω. Based on above discussions, we propose the following
algorithm to solve our model (28).

4.3 Convergence analysis for QRTC

We now analyze the convergence of QRTC. For convenience, we collect all variables as a real undeter-
mined vector

z
.
=
(
Ci, Cj, Ck, Âe, Âi, Âj, Âk, B̂e, B̂i, B̂j, B̂k

)
∈ R3n1n2n3+4∥r∥1(n1+n2).
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Algorithm 2 gQt-Rank Tensor Completion (QRTC)

Input. The tensor data M ∈ Hn1×n2×n3 , the observed set Ω, the rank r ∈ Zn3
+ , parameters

λ, λi, Hni , 1 ≤ i ≤ 3 and ϵ.
Step 0. Initialize Â0, B̂0 and C0 satisfying PΩ(C0 −M) = 0, ℜ(C0) = 0 and the rank of Â0, B̂0 are less
than r. Iterate the following steps for t = 1, 2, · · · while it does not satisfy stop criterion.
Step 1. Compute

Ct = arg min
PΩ(C−M)=0,ℜ(C)=0

1

2
∥At−1∗µBt−1 − C∥2F +

2∑
k=1

λk∥C ×k Hnk
∥2F +

∑
α=i,j,k

⟨δtα, Cα⟩ (39)

via Algorithm 1. That is, given parameters of Algorithm 1, apply BB-PGM to find an approximate
solution Ct of (32) such that the error vector δt satisfies ℜ(δt) = 0, PΩ(δt) = 0 and the accuracy
condition

∥PΩc(δt)∥F ≤ 1

4
∥Ct − Ct−1∥F . (40)

Step 2. Compute Ât by (37).
Step 3. Compute B̂t by (38).
Step 5. Check the stop criterion: |f(Ck,Ak,Bk) − f(Ck−1,Ak−1,Bk−1)|/|f(Ck−1,Ak−1,Bk−1)| < ϵ.
Output. Ct.

And then (28) can be written as

min
z∈Λ

f(z), (41)

where
Λ = {z ∈ R3n1n2n3+4∥r∥1(n1+n2)| PΩ(Cii + Cjj + Ckk−M) = 0}.

Therefore, the projected gradient of f at z ∈ Λ is given as

ΠΛ(∇f(z)) =



[
PΩc(

∂f(z)

∂Ci
);PΩc(

∂f(z)

∂Cj
);PΩc(

∂f(z)

∂Ck
)

]
[
∂f(z)

∂Âe

;
∂f(z)

∂Âi

;
∂f(z)

∂Âj

;
∂f(z)

∂Âk

]
[
∂f(z)

∂B̂e

;
∂f(z)

∂B̂i

;
∂f(z)

∂B̂j

;
∂f(z)

∂B̂k

]


,

where ΠΛ(·) denotes the projection onto the feasible set Λ.

Definition 4.2 (stationary point). The point z∗ ∈ Λ is said to be a stationary point of the low gQt-rank
quaternion tensor completion model (28) if ΠΛ(∇f(z∗)) = 0.

The following theorems show that the sequence generated by Algorithm 2 is bounded and any accu-
mulation point converges to a stationary point of (28).

Theorem 4.2. Let {zt} be the sequence generated by QRTC. Then, there exists a constant K1 such that

f(zt) − f(zt+1) ≥ K1∥zt − zt+1∥22. (42)

Moreover, the sequence {zt} is bounded.

Proof. Let h1 be defined as (33). It is easy to see that f(Ci, Cj, Ck| Â, B̂) + h1(Ci, Cj, Ck) − 1
2∥PΩc(ℜ(C))∥2F

is a convex function. Since h1 is an indicator function on affine space, we have

∂(f + h1)

∂Cα
(·) = PΩc

( ∂f

∂Cα
(·)
)
, α = i, j,k.
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It follows from

h1(Ct+1
i , Ct+1

j , Ct+1
k ) = 0, h1(Ct

i , Ct
j , Ct

k) = 0, ∥Ct+1 − Ct∥F = ∥PΩc(Ct+1 − Ct)∥F , (43)

and the convexity of function f(Ci, Cj, Ck| Â, B̂) + h1(Ci, Cj, Ck) − 1
2∥PΩc(ℜ(C))∥2F that

f(Ct|Ât, B̂t) − f(Ct+1|Ât, B̂t) = f(Ct
i , Ct

j , Ct
k|Ât, B̂t) − f(Ct+1

i , Ct+1
j , Ct+1

k |Ât, B̂t)

≥
∑

α=i,j,k

(〈∂f + h1

∂Cα
(Ct+1

i , Ct+1
j , Ct+1

k |Ât, B̂t), Ct
α − Ct+1

α

〉
+

1

2
∥Ct

α − Ct+1
α ∥2F

)
=

∑
α=i,j,k

〈
PΩc

( ∂f

∂Cα
(Ct+1

i , Ct+1
j , Ct+1

k |Ât, B̂t)
)
, PΩc(Ct

α − Ct+1
α )

〉
+

1

2
∥Ct − Ct+1∥2F (44)

From (39),

PΩc(δt+1
α ) = PΩc

( ∂f

∂Cα
(Ct+1

i , Ct+1
j , Ct+1

k | Ât, B̂t)
)
, α = i, j,k. (45)

With (44), we can obtain

f(Ct|Ât, B̂t) − f(Ct+1|Ât, B̂t) ≥
∑

α=i,j,k

⟨PΩc(δt+1
α ), PΩc(Ct

α − Ct+1
α )⟩ +

1

2
∥Ct − Ct+1∥2F

≥ −∥PΩc(δt+1)∥F ∥PΩc(Ct − Ct+1)∥F +
1

2
∥Ct − Ct+1∥2F

≥ 1

4
∥Ct − Ct+1∥2F , (46)

where the last inequality holds due to (43) and (40). Thus,

f(Ât|Ct+1, B̂t) − f(Ât+1|Ct+1, B̂t) =
1

n3

n3∑
l=1

(
1

2
∥Ât,(l)B̂t,(l) − Ĉt+1,(l)∥2F +

λ

2
∥Ât,(l)∥2F

− 1

2
∥Ât+1,(l)B̂t,(l) − Ĉt+1,(l)∥2F − λ

2
∥Ât+1,(l)∥2F )

=
1

n3

n3∑
l=1

(
1

2
∥(Ât,(l) − Ât+1,(l))B̂t,(l)∥2F +

λ

2
∥Ât,(l) − Ât+1,(l)∥2F

ℜ
(

tr
(
(Ât+1,(l)B̂t,(l) − Ĉt+1,(l))(B̂t,(l))∗(Ât,(l) − Ât+1,(l))∗

)
+ λtr

(
Ât+1,(l)(Ât,(l) − Ât+1,(l))∗

)))
. (47)

By Theorem 4.1 and (37), it holds for any l ∈ [n3],

(Ât+1,(l)B̂t,(l) − Ĉt+1,(l))(B̂t,(l))∗ + λÂt+1,(l) = β(Ât,(l) − Ât+1,(l)),

which, together with (47), implies

f(Ât|Ct+1, B̂t) − f(Ât+1|Ct+1, B̂t) =
1

n3

n3∑
l=1

(1

2
∥(Ât,(l) − Ât+1,(l))B̂t,(l)∥2F + (

λ

2
+ β)∥Ât,(l) − Ât+1,(l)∥2F

)
≥ 1

n3

n3∑
l=1

(
λ

2
+ β)∥Ât,(l) − Ât+1,(l)∥2F

=
λ + 2β

2n3
∥Ât − Ât+1∥2F . (48)

Similarly, we have

f(B̂t|Ct+1, Ât+1) − f(B̂t+1|Ct+1, Ât+1) ≥ λ + 2β

2n3
∥B̂t − B̂t+1∥2F . (49)
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Therefore, combining (46), (48) and (49), we get

f(Ct, Ât, B̂t) − f(Ct+1, Ât+1, B̂t+1) ≥ min
(1

4
,
λ + 2β

2n3

)
∥zt − zt+1∥22.

Taking

K1 = min

(
1

4
,
λ

2
+

λ + 2β

2n3

)
,

we prove that (42) holds and hence the sequence {f(zt)} is monotonically decreasing.
It follows from f ≥ 0 that

∞∑
t=1

(
f(zt) − f(zt+1)

)
< ∞,

∞∑
t=1

∥zt − zt+1∥22 < ∞, lim
t→∞

zt − zt+1 = 0.

Since

f(z1) ≥ f(zt) ≥ λ

2
(∥At∥2F + ∥Bt∥2F ),

{At}, {Bt} are bounded, and so {Ât}, {B̂t} are also bounded. Together with the fact that

f(z1) ≥ f(zt) ≥ ∥At∗µBt − Ct∥2F ,

{Ct} is also bounded, and hence {zt} is bounded.

Theorem 4.3. Let {zt} be the sequence generated by QRTC. Then, there exists a constant K2 such that

K2∥zt − zt+1∥2 ≥ ∥ΠΛ

(
∇f(zt)

)
∥F . (50)

Moreover, any accumulation point of {zt} is a stationary point of (28).

Proof. By Theorem 4.2, {zt} is bounded. So, there exists a compact convex set Z such that {zt} ⊂ Z.
Since f is a quadratic polynomial in Z, its gradient is Lipschitz in Z with the Lipschitz constant Lf , that
is,

∥∇f(z) −∇f(z′)∥2 ≤ Lf∥z − z′∥2, ∀z, z′ ∈ Z.

By Theorem 4.1, (37) and (38), for any l ∈ [n3], we have

∇Hf(Ât+1,(l)|Ât+1,(−l), Ct+1, B̂t) =
β

n3
(Ât,(l) − Ât+1,(l)),

∇Hf(B̂t+1,(l)|B̂t+1,(−l), Ct+1, Ât+1) =
β

n3
(B̂t,(l) − B̂t+1,(l)),

where Ât+1,(−l) and B̂t+1,(−l) denote Ât+1 and B̂t+1 except Ât+1,(l) and B̂t+1,(l), respectively. Set

∂f

∂Â
=

[
∂f

∂Âe

;
∂f

∂Âi

;
∂f

∂Âj

;
∂f

∂Âk

]
,

∂f

∂B̂
=

[
∂f

∂B̂e

;
∂f

∂B̂i

;
∂f

∂B̂j

;
∂f

∂B̂k

]
,

then,

∥ ∂f
∂Â

(zt)∥F ≤ ∥ ∂f
∂Â

(zt) − ∂f

∂Â
(Ct+1,At+1,Bt)∥F + ∥ ∂f

∂Â
(Ct+1,At+1,Bt)∥F

≤ Lf∥zt − zt+1∥2 +

n3∑
l=1

∥ ∂f

∂Â(l)
(Ct+1,At+1,Bt)∥F

= Lf∥zt − zt+1∥2 +

n3∑
l=1

∥∇Hf(Ât+1,(l)|Ât+1,(−l), Ct+1, B̂t)∥F

= Lf∥zt − zt+1∥2 +

n3∑
l=1

∥ β

n3
(Ât,(l) − Ât+1,(l))∥F

≤ (Lf +
β

n3
)∥zt − zt+1∥2. (51)
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Similarly, we have

∥ ∂f
∂B̂

(zt)∥F ≤ (Lf +
β

n3
)∥zt − zt+1∥2. (52)

It follows from (45) that∑
α=i,j,k

∥PΩc

∂f

∂Cα
(zt)∥F ≤

∑
α=i,j,k

(
∥
(
PΩc

∂f

∂Cα
(zt) − PΩc

∂f

∂Cα
(Ct+1, Ât, B̂t)

)
∥F + ∥PΩc

∂f

∂Cα
(Ct+1, Ât, B̂t)∥F

)
≤ ∥ΠΛ

(
∇f(zt)

)
− ΠΛ

(
∇f(Ct+1, Ât, B̂t)

)
∥F +

∑
α=i,j,k

∥PΩc(δt+1
α )∥F

≤ Lf∥zt − zt+1∥2 +
1

4
∥Ct − Ct+1∥F

≤ (Lf +
1

4
)∥zt − zt+1∥2. (53)

Combining (51), (52) and (53), it is easy to see that (50) holds with K2 = Lf + max( 1
4 ,

β
n3

).

Since {zt} is bounded, there exists a convergent subsequence of {zt}. Without loss of generality, we
assume that limk→∞ ztk = z∗. Then,

∥ΠΛ

(
∇f(z∗)

)
∥F ≤ ∥ΠΛ

(
∇f(z∗) −∇f(ztk)

)
∥F + ∥ΠΛ

(
∇f(ztk)

)
∥F

≤ Lf∥z∗ − ztk∥2 + K3∥ztk − ztk+1∥2,

which, together with taking limit k → ∞ in the right hand side, shows ΠΛ

(
∇f(z∗)

)
= 0, and hence z∗ is

a stationary point of (28).

Theorems 4.2 and 4.3 show that the sequence {zt} generated by QRTC is bounded and its any accumu-
lation point is a stationary point of (28). We next use the Kurdyka- Lojasiewicz (KL) property [38, 39, 40]
to prove that {zt} is convergent.

Definition 4.3 (KL property). Let Z ∈ Rn be an open set and f : Z → R be a semi-algebraic function.
For every critical point z∗ ∈ Z of f , there is a neighborhood Z ′ ∈ Z of z∗, an exponent θ ∈ [0, 1) and a
positive constant K3 such that

|f(z) − f(z∗)|θ ≤ K3∥ΠΛ

(
∇f(z)

)
∥F , ∀z ∈ Z ′. (54)

It is obvious that f(z) + δΛ(z) is a semi-algebraic function. Then, from Definition 4.3 and [40], the KL
inequality (54) holds for the function f(z) + δΛ(z). Hence, for the given θ,K3 in Definition 4.3 and K1,K2

are defined as Theorems 4.2 and 4.3, we have the following convergence results.

Theorem 4.4. Let {zt} be the sequence generated by QRTC and z∗ be an accumulation point of {zt}.
Assume z0 ∈ B(z∗, τ)

.
= {z| ∥z − z∗∥F < τ} ⊂ Z ′ with

τ >
K2K3

K1(1 − θ)
|f(z0) − f(z∗)|1−θ + ∥z0 − z∗∥2,

then, zt ∈ B(z∗, τ) for t = 0, 1, 2, . . .. Moreover,

∞∑
t=0

∥zt+1 − zt∥2 ≤ K2K3

K1(1 − θ)
|f(z0) − f(z∗)|1−θ, lim

t→∞
zt = z∗. (55)

Proof. We show {zt} ⊂ B(z∗, τ) by induction. When t = 0, it holds obviously. Assume that zt ∈ B(z∗, τ)
holds for all t ≤ t̂, then KL property is true for zt. Now we display that zt ∈ B(z∗, τ) is true when t = t̂+1.
Let

ϕ(x)
.
=

K3

1 − θ
|x− f(z∗)|1−θ, x > f(z∗).

Then ϕ(x) is concave and differentiable. Hence, we have

ϕ
(
f(zt)

)
− ϕ

(
f(zt+1)

)
≥ ϕ

′(
f(zt)

)(
f(zt) − f(zt+1)

)
=

K3

|f(zt) − f(z∗)|θ
(
f(zt) − f(zt+1)

)
.
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By Definition 4.3, (42) and (50), we get

ϕ
(
f(zt)

)
− ϕ

(
f(zt+1)

)
≥ 1

∥ΠΛ

(
∇f(zt)

)
∥F
(
f(zt) − f(zt+1)

)
≥ K1

K2
∥zt − zt+1∥2.

Therefore,

t∑
p=0

∥zp − zp+1∥2 ≤ K2

K1

t∑
p=0

(
ϕ
(
f(zp)

)
− ϕ

(
f(zp+1)

))
≤ K2

K1
ϕ
(
f(z0)

)
, (56)

which implies

∥zt̂+1 − z∗∥2 ≤
t̂∑

p=0

∥zp+1 − zp∥2 + ∥z0 − z∗∥2 ≤ K2

K1
ϕ
(
f(z0)

)
+ ∥z0 − z∗∥2 ≤ τ.

Thus, {zt} ⊂ B(z∗, τ).
Taking t → ∞ in (56), the first inequality in (55) is arrived. Without loss of generality, we assume that

limk→∞ ztk = z∗. Then, for all t > 0 and tk+1 ≥ t > tk,

∥zt − z∗∥2 ≤ ∥ztk − z∗∥2 +

t−1∑
p=tk

∥zp+1 − zp∥2,

which, together with the fact that {∥zt+1 − zt∥2} is Cauchy sequence, implies limt→∞ zt = z∗.

Theorem 4.5. Suppose that {zt} is the sequence generated by QRTC and z∗ be its limit point. Then, the
following statements hold.

(i) If θ ∈ (0, 1
2 ], there exist γ > 0 and ξ ∈ (0, 1) such that

∥zt − z∗∥2 ≤ γξt.

(ii) If θ ∈ ( 1
2 , 1), there exists γ > 0 such that

∥zt − z∗∥2 ≤ γt−
1−θ
2θ−1 .

Proof. Since {zt} converges to z∗, there exists an index k0 such that zk0 ∈ B(z∗, τ), where τ is given in
Theorem 4.4. Hence, we can regard zk0 as an initial point. Without loss of generality, we set z0 ∈ B(z∗, τ).
Let

∆t
.
=

∞∑
p=t

∥zp − zp+1∥2 ≥ ∥zt − z∗∥2. (57)

It follows from (56) that

∆t ≤
K2

K1
ϕ
(
f(zt)

)
=

K2K3

K1(1 − θ)
|f(zt) − f(z∗)|1−θ =

K2K3

K1(1 − θ)

(
|f(zt) − f(z∗)|θ

) 1−θ
θ .

Using KL inequality (54), it holds

∆t ≤
K2K3

K1(1 − θ)

(
K3∥ΠΛ

(
∇f(zt)

)
∥F
) 1−θ

θ .

Set ξ1 = (K2K3)
1
θ

K1(1−θ) , then the above inequality, together with (42) and (50), implies

∆t ≤
K2K3

K1(1 − θ)

(
K2K3∥zt − zt+1∥2

) 1−θ
θ = ξ1(∆t − ∆t+1)

1−θ
θ . (58)

We now prove (i). If θ ∈ (0, 1
2 ], then 1−θ

θ ≥ 1. It holds for sufficiently large t,

∆t ≤ ξ1(∆t − ∆t+1).
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Hence,

∆t+1 ≤ ξ1 − 1

ξ1
,

which together with (57) implies that (i) holds with ξ = ξ1−1
ξ1

.

We next to prove (ii). If θ ∈ ( 1
2 , 1), let q(x) = x− θ

1−θ . Then, q(x) is monotonically decreasing on x. It
follows from (58) that

ξ
− θ

1−θ

1 ≤ q(∆t)(∆t − ∆t+1) =

∫ ∆t+1

∆t

q(∆t)dx ≤
∫ ∆t+1

∆t

q(x)dx = − 1 − θ

2θ − 1

(
∆

− 2θ−1
1−θ

t − ∆
− 2θ−1

1−θ

t+1

)
.

Define ν
.
= − 2θ−1

1−θ . Then ν < 0 and hence

∆ν
t+1 − ∆ν

t ≥ −νξ
− θ

1−θ

1 > 0.

Thus, there exists t̄ such that for all t ≥ 2t̄,

∆ν
t ≥ ∆ν

t̄ − νξ
− θ

1−θ

1 (t− t̄) ≥ −ν

2
ξ
− θ

1−θ

1 t,

which implies
∆t ≤ γt

1
ν .

Let γ =

(
−ν

2 ξ
− θ

1−θ

1

) 1
ν

. Then, the above inequality shows that (ii) holds.

4.4 Low multi-gQt-rank tensor completion model

In this subsection, we establish a novel low-rank tensor completion model based on multi-gQt-rank and
then present the tensor factorization based solution method.

Different from (28), we replace the loss function in mode-3, i.e., 1
2∥A∗µB − C∥2F , with a weighted sum

of the loss functions in three modes, and consider the following model

min
C,Au,Bw,w∈[3]

g(C,A1,B1,A2,B2,A3,B3), s.t. PΩ(C −M) = 0, ℜ(C) = 0, (59)

where,

g(C,A1,B1,A2,B2,A3,B3) =

3∑
w=1

(
αw

2
∥Aw ∗wµ Bw − C∥2F +

λ

2
(∥Aw∥2F + ∥Bw∥2F )

)
+

2∑
k=1

λk∥C ×k Hnk
∥2F ,

and αw (w = 1, 2, 3) is the weighted coefficient.
Similar to Subsection 4.2, we solve (59) as the following steps. First, update Ct by

arg min
Ci,Cj,Ck

3∑
w=1

αw

2
∥At−1

w ∗wµ Bt−1
w − C∥2F +

2∑
k=1

λk∥C ×k Hnk
∥2F + δ{PΩ(C−M)=0}(C)

= arg min
Ci,Cj,Ck

1

2

3∑
w=1

αw∥X t−1 − C∥2F +

2∑
k=1

λk∥C ×k Hnk
∥2F + δ{PΩ(C−M)=0}(C), (60)

where X t−1 = 1
α1+α2+α3

∑3
w=1 αwAt−1

w ∗wµ Bt−1
w . Let

f2(Ci, Cj, Ck) =

3∑
w=1

αw

2
∥ℑ(X t−1) − C∥2F +

2∑
k=1

λk∥C ×k Hnk
∥2F ,

h2(Ci, Cj, Ck) = δ{PΩ(C−M)=0}(C).

Similar to Algorithm 1, we can solve (60) by the following PGM.
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Algorithm 3 PGM for (60)

Input. The tensor data M,X t−1, the observed set Ω, initial step size α0, parameters λ, λi, Hni
, 1 ≤

i ≤ 3.
Step 0. Initialize z0 = [C0

i , C0
j , C0

k] which satisfies PΩ(C0
i i + C0

j j + C0
kk−M) = 0, z−1 = z0. Iterate the

following steps for k = 0, 1, 2, · · · while it does not satisfy stop criterion.
Step 1. If k ≥ 1, choose step size

αk =
∥zk − zk−1∥2F

⟨zk − zk−1,∇f2(zk) −∇f2(zk−1)⟩
, or αk =

⟨zk − zk−1,∇f2(zk) −∇f2(zk−1)⟩
∥∇f2(zk) −∇f2(zk−1)∥2F

.

Step 2. Update [Ck+1
i , Ck+1

j , Ck+1
k ] = proxαkh2

(
[Ck

i , Ck
j , Ck

k] − αk∇f2(Ck
i , Ck

j , Ck
k)
)

.

Output. Ck+1
i i + Ck+1

j j + Ck+1
k k.

It follows from Theorem 3.7 that (59) is rewritten as

min
Ĉ,Âw,B̂w,w∈[3]

3∑
w=1

nw∑
l=1

(
αw

2nw
∥Â(l)

w B̂(l)
w − Ĉ(l)

w ∥2F +
λ

2nw
(∥A(l)

w ∥2F + ∥B(l)
w ∥2F )

)
+

2∑
k=1

λk∥C ×k Hnk
∥2F .

To update Ât,(l)
w and B̂t,(l)

w , we consider the following problem

min
Ât,(l)

w ,B̂t,(l)
w

αw

2nw
∥Â(l)

w B̂(l)
w − Ĉ(l)

w ∥2F +
λ

2nw
(∥A(l)

w ∥2F + ∥B(l)
w ∥2F ).

For l ∈ [n3] and w ∈ [3], update Â(l)
w by

Ât,(l)
w = arg min

Âw

αw

2
∥Â(l)

w B̂t−1,(l)
w − Ĉt,(l)

w ∥2F +
λ

2
∥Â(l)

w ∥2F +
β

2
∥Â(l)

w − Ât−1,(l)
w ∥2F

=
(
αwĈt,(l)

w (B̂t−1,(l)
w )∗ + βÂt−1,(l)

w

)(
αwB̂t−1,(l)

w (B̂t−1,(l)
w )∗ + (λ + β)I

)−1
, (61)

and the updating of B̂(l)
w is given by

B̂t,(l)
w = arg min

B̂w

αw

2
∥Ât,(l)

w B̂(l)
w − Ĉt,(l)

w ∥2F +
λ

2
∥B̂(l)

w ∥2F +
β

2
∥B̂(l)

w − B̂t−1,(l)
w ∥2F

=
(
αw(Ât,(l)

w )∗Ât,(l)
w + (λ + β)I

)−1(
αw(Ât,(l)

w )∗Ĉt,(l)
w + βB̂t−1,(l)

w

)
. (62)

Consequently, we propose the following algorithm to solve (59). The convergence analysis of Algorithm 4
is similar to that of Algorithm 2 and hence we omit it here.

5 Numerical Experiments

In this section, we report some numerical results of our proposed algorithms QRTC and MQRTC to
show the validity. Moreover, we compare them with several existing state-of-the-art methods, including
TMac [19], TNN [4], TCTF [3] and LRQA-2 [34]. Note that TMac has two versions, i.e., TMac-dec and
TMac-inc, and the former uses the rank-decreasing scheme to adjust its rank while the latter employs the
rank-increasing scheme. The codes of TMac3, TNN4, TCTF5 are open source and LRQA-2 is provided by
the authors in [34].

A color video is a 4-way tensor defined by two indices for spatial variables, one index for temporal
variable and one index for color mode. All the videos in our simulations are initially represented by 4-way
tensors C ∈ Rn1×n2×n3×3, where n1 × n2 stands for the pixel scale of each frame, and n3 is the number of

3https://xu-yangyang.github.io/codes/TMac.zip
4http://www.ece.tufts.edu/~shuchin/tensor_completion_and_rpca.zip
5https://panzhous.github.io/assets/code/TCTF_code.rar
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Algorithm 4 Multi gQt-Rank Tensor Completion (MQRTC)

Input. The tensor data M ∈ Hn1×n2×n3 , the observed set Ω, the rank r ∈ Zn3
+ , parameters

λ, λi, Hni , 1 ≤ i ≤ 2 and ϵ.
Step 0. Initialize Â0

w, B̂0
w with w ∈ [3] and C0 satisfying PΩ(C0 −M) = 0, ℜ(C0) = 0, and the rank of

Â0, B̂0 are less than r. Iterate the following steps for t = 1, 2, · · · while it does not satisfy stop criterion.

Step 1. Compute

Ct = arg min
PΩ(C−M)=0,ℜ(C)=0

3∑
w=1

αw

2
∥At−1

w ∗wµ Bt−1
w − C∥2F +

2∑
k=1

λk∥C ×k Hnk
∥2F +

∑
α=i,j,k

⟨δtα, Cα⟩

via Algorithm 3. That is, given parameters of Algorithm 3, apply PGM to find an approximate solution
Ct of (60) such that the error vector δt satisfies ℜ(δt) = 0, PΩ(δt) = 0 and the accuracy condition

∥PΩc(δt)∥F ≤ 1

4
∥Ct − Ct−1∥F .

Step 2. Compute Ât
w by (61).

Step 3. Compute B̂t
w by (62).

Step 5. Check the stop criterion:

|g(Ck,Ak
1 ,Bk

1 ,Ak
2 ,Bk

2 ,Ak
3 ,Bk

3 ) − g(Ck−1,Ak−1
1 ,Bk−1

1 ,Ak−1
2 ,Bk−1

2 ,Ak−1
3 ,Bk−1

3 )|
|g(Ck−1,Ak−1

1 ,Bk−1
1 ,Ak−1

2 ,Bk−1
2 ,Ak−1

3 ,Bk−1
3 )|

< ϵ.

Output. Ct.

frames. C(:, :, :, 1), C(:, :, :, 2) and C(:, :, :, 3) correspond to red, green and blue channels, respectively. The
index set is Ω and the sampling ratio ρ is defined by

ρ =
numel(Ω)

n1 × n2 × n3
.

For TCTF, TNN and TMac3D, the three third-order real tensors for red, green and blue channels are
first recovered. Then, the three recovered tensors are combined to form the integrated color video data.
For TMac4D, we arrange the color video data as a fourth-order tensor and directly recover the incomplete
part PΩ(C). Totally there are four TMac-type methods, i.e., TMac3D-dec, TMac3D-inc, TMac4D-dec and
TMac4D-inc. For LRQA-2 method, we recover each frame of video by LRQA-2 and finally combine them
into an integrated video tensor. In our two methods, each color video is reshaped as a pure quaternion
tensor C ∈ Hn1×n2×n3 by using the following way:

C̃ = C(:, :, :, 1)i + C(:, :, :, 2)j + C(:, :, :, 3)k.

All the simulations are run in MATLAB 2020b under Windows 10 on a laptop with 1.30 GHz CPU and
16GB memory.

5.1 Quantitative assessment and parameter settings

In order to evaluate the performance of QRTC and MQRTC, we employ four quantitative quality
indexes, including the relative square error (RSE), the peak signal-to-noise ratio (PSNR), the structure
similarity (SSIM) and the feature similarity (FSIM), which are respectively defined as follows:

RSE = 10 log 10

(
∥C − Ĉ∥F
∥C∥F

)
,
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where Ĉ and C are the recovered and truth data, respectively.

PSNR = 10 log 10

(
numel(Ĉ)Peakval2

∥Ĉ − C∥2F

)
,

where Peakval is taken from the range of the image datatype (e.g., for uint8 image, it is 255).

SSIM =
(2µCµĈ + C1)(2σCĈ + C2)

(µ2
C + µ2

Ĉ
+ C1)(σ2

C + σ2
Ĉ

+ C2)
,

where µC , µĈ , σC , σĈ and σCĈ are the local means, standard deviations, and cross-covariance for video C
and Ĉ, C1 = (0.01L)2, C2 = (0.03L)2, L is the specified dynamic range of the pixel values.

FSIM =

∑
x∈∆ SL(x)PCm(x)∑

x∈∆ PCm(x)
,

where ∆ demotes the whole video spatial and temporal domain. The phase congruency for position x of
video C is denoted as PCC(x), then PCm(x) = max{PCC(x), PCĈ(x)}, SL(x) is the gradient magnitude for
position x.

Without special instructions, in the all experiments in Section 5, we set the initialized rank r0 =
[30, 30, 30] in TMac3D-dec, r0 = [30, 30, 30, 30] in TMac4D-dec, r0 = [3, 3, 3] in TMac3D-inc and r0 =
[3, 3, 3, 3] in TMac4D-inc, and set the weights for both versions as suggested in [19]. For TCTF, we set the
initialized rank r0 = [30, . . . , 30] ∈ Rn3 the same as that in [3]. Following [34], we use LRQA with Laplace
function penalty, and set parameter γ = 20. For all the methods except ours, the stopping criteria are
built-in their codes. In our methods, the initial rank r0 = [30, . . . , 30] ∈ Rn3 . An then we will give the
same setting of weight parameter α1, α2, α3, the penalty parameter λ and TV penalty parameter λ1, λ2

in both QRTC and MQRTC. Noticing that two spatial dimension are symmetry, so we can naturally set
α1 = α2 and λ1 = λ2. We Set α3 as cardinality 1, and then as a matter of experience, we set α1 = α2 = 10,
λ1 = λ2 = 5 and λ = α1 + α2 + α3. In experiments, the maximum iteration number is set to be 20 and
the termination precision ϵ is set to be 1e-3.

5.2 Performances of methods based on Qt-SVD and t-SVD

Both t-SVD [10] and our novel factorization Qt-SVD depict the inherent low rank structure of a third
order real or quaternion tensor. Here we conduct experiments to compare them in detail on real color video
data. Other methods are not compared here since they are not based on matrix factorization of a Fourier
transform result. In order to show that Qt-SVD explores the low rank property better of color video, we
fairly compare TCTF and our method in the similar formulation. Notice that the model of TCTF is given
as (6), we set parameters λ = λ1 = λ2 = 0 in QRTC (28) to get the similar formulation QRTC-1, i.e.

min
C,A,B

1

2
∥A∗µB − C∥2F , s.t. PΩ(C −M) = 0, ℜ(C) = 0. (63)

We test TCTF and QRTC-1 on fifteen real color videos data of YUV Video Sequences. The frame size of
each video is 288 × 352, and only the first 30 frames of each video are extracted as experimental data due to
the computational limitation. The initialized rank of TCTF and QRTC-1 are set as r0 = [30, . . . , 30] ∈ Rn3 .
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(a) ρ = 0.1 (b) ρ = 0.3

(c) ρ = 0.5 (d) ρ = 0.7

Figure 3: Comparison of RSE result of TCTF and QRTC-1 for color video recovery on 15 videos, sample ratio

ρ = 0.1, 0.3, 0.5 and 0.7. From RSE, our Qt-SVD based QRTC outperforms over t-SVD based TCTF. Moreover,

the smaller of sample size, the performance of QRTC-1 is better from (a).

As shown in Figure 3, we display the RSE values of the recovery of fifteen video data with four sample
ratios, ρ = 0.1, 0.3, 0.5 and 0.7, respectively. We can see that the RSE values of our Qt-SVD based
QRTC-1 are always less than of TCTF with all sample ratios. This shows the better performance and
robustness of methods based on Qt-SVD. And when sample ratio ρ = 0.1, our method has a greater RSE,
which shows QRTC-1 has better performance.

Table 1 displays the PSNR values of recovery of fifteen videos data with four sample ratios, ρ =
0.1, 0.3, 0.5 and 0.7, respectively. The bold values in Table 1 is the best values of two methods. It is
shown in Table 1 that our method always achieves the best. Especially with ρ = 0.1, the average PSNR
values of our method is two times better than of TCTF, this shows our method has a greater development
on exploring the low rank structure of color video data. Table 2 shows the average running time of two
methods. We can see that the running time of QRTC-1 not longer than an order of magnitude with TCTF,
which is an acceptable cost in practice.

5.3 Video inpainting for different methods

We first evaluate our method on the videoSegmentationData dataset, which can be downloaded in
[41]. We test all the above mentioned methods on color video datasets “AN119T”, “BR128T”, “DO01-
013”, “DO01-030” and “M07-058”. The frame size of all videos is 288 × 352. We set the sampling ratio
ρ = 0.3 and uniformly sample the videos to construct the observable index set Ω. All parameters are set

28



Index
ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7

TCTF QRTC-1 TCTF QRTC-1 TCTF QRTC-1 TCTF QRTC-1

Akiyo 10.0340 26.3871 18.1500 30.6066 24.9302 32.8357 29.7239 35.4168
Bridge(Close) 6.6788 25.1930 24.1929 28.4788 29.7362 30.1917 32.0634 32.6023

Bus 11.6938 17.4861 20.8127 21.2821 21.9240 24.3991 23.4783 27.6053
Coastguard 9.2534 22.1785 24.2265 26.3815 24.7123 29.4515 26.9737 32.7388
Container 8.1161 23.4795 21.5396 28.0197 26.5626 30.3911 28.7022 32.9819

Flower 5.3197 17.5676 19.2486 20.4618 20.1102 23.1790 22.3841 26.3466
Hall Monitor 8.6508 24.1589 21.5368 27.8881 28.3716 29.7974 30.6626 32.2779

Mobile 7.5761 15.2794 18.1969 18.6211 18.7906 20.9175 19.8210 23.6180
News 11.1349 24.4833 17.8918 28.2573 23.3263 30.1733 26.6495 326758
Paris 10.1639 20.1727 19.3490 22.9161 23.0965 24.8344 25.1367 27.3943
Silent 9.3471 24.3320 17.2662 28.3484 28.1783 30.5686 30.4278 33.1890
Stefan 8.6749 17.5420 18.7819 20.2443 20.2135 22.8605 21.9987 25.8947

Tempete 12.3150 19.3154 20.1789 22.4004 23.9860 24.4744 24.7784 27.0957
Waterfall 11.9192 23.9763 23.9104 28.1241 26.6389 30.4502 28.7643 30.0320
Foreman 7.1351 20.6288 24.1126 25.3807 21.5267 28.3540 23.7150 31.3344
Average 9.2009 21.4787 20.6263 25.1607 24.1403 27.5252 26.3520 30.2802

Table 1: Comparison of PSNR result of TCTF and QRTC-1 for color video recovery on 15 videos, sample ratio

ρ = 0.1, 0.3, 0.5, 0.7.

ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7
TCTF QRTC-1 TCTF QRTC-1 TCTF QRTC-1 TCTF QRTC-1

206 219 166 214 169 226 168 240

Table 2: Average running time (seconds) of TCTF and QRTC-1 for color video recovery on 15 videos, sample

ratio ρ = 0.1, 0.3, 0.5, 0.7.

as mentioned above. The first frames of five examples of selected videos are shown in Figure 4. From
Figure 4, it is seen that in all videos our two methods have better recovery of derails on the marginal area
between the main target and the surrounding environment. Table 3 summaries the RSE, PSNR, SSIM,
FSIM values and the running time of all the algorithms on the five testing videos displayed in Figure 4. In
Table 3, the bold values and the values in brackets stands for the best and the second best values of items
RSE, PSNR, SSIM and FSIM, respectively. From the results, it is shown that the overall performance
of QRTC and MQRTC are vastly superior to the others: the best of the above four quality assessments
is consistently of QRTC or MQRTC, while MQRTC behaves better than MARTC in most of cases. The
running time of QRTC is longer than several methods of TMac, but not longer than an order of magnitude.
The running time of MQRTC is approximately fourfold as long as that of QRTC, but no more than that
of TNN. All these outcomes demonstrate that in terms of color video inpainting problems, our methods
have better recovery accuracy than others and runs also very efficiently.

To verify the robustness of our methods to the sampling ratio ρ, we test the video “Stefan” which is of
YUV Video Sequences. The frame size of the video is 288 × 352. We set the sampling ratio ρ ranging from
0.1 to 0.5 and uniformly sample the pixels to construct Ω. All the other parameters are set as mentioned.
The first frame of the selected video with different sampling ratios are shown in Figure 5. Figure 5 indicates
that the recovered videos of our methods are the clearest under all sampling ratios. Table 4 summaries
the RSE, PSNR, SSIM, FSIM values and the running time of all the algorithms on the selected video
with all sampling ratios which are displayed in Figure 5. In Table 4, the bold values and the values in
brackets are the best and the second best values of RSE, PSNR, SSIM and FSIM, respectively. From the
results, the best and the second best of PSNR, RSE or SSIM are of either QRTC or MQRTC. For FSIM
value, MQRTC and QRTC performs better than others except the situation when ρ = 0.1. The running
time of QRTC is longer than several methods of TMac, but not longer than an order of magnitude. The
running time of MQRTC is approximately fourfold as long as that of QRTC, but not exceeds that of TNN
or LRQA-2. Thus, we can conclude that our methods are rather robust to the sampling ratio and have
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considerably better performance than others.

6 Conclusions

We introduce the concept of gQt-product for third-order quaternion tensor and then define QDFT.
Based the newly-defined QDFT, we introduce gQt-SVD of third-order quaternion tensors. We define gQt-
rank for third-order quaternion tensor via its gQt-SVD and show the existence of low gQt-rank optimal
approximation. We also generalize these results from mode-3 (QRTC) to three modes (MQRTC) of third-
order quaternion tensor, and obtain multi-gQt-rank. Numerical experiments indicate that third-order
quaternion tensors generated by color videos in real life have an inherent low-rank property.

Therefore, we establish low-rank quaternion tensor completion models based on gQt-rank and multi-
gQt-rank to recover color videos with partial data loss. Using TV-regularization to capture the spatial
stability feature, we obtain our novel tensor recovery models for color video inpainting. We present two ALS
algorithms (Algorithms 2 and 4) to solve our models. Their convergence is established (see Subsection
4.3). Extensive numerical experiments indicate that our approaches QRTC and MQRTC outperform
some existing state-of-the-arts methods on various video datasets with different sample ratios, which also
demonstrate the robustness of our methods. Especially, MQRTC outperforms QRTC.
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